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Mean-field dynamics of a population of stochastic map neurons
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We analyze the emergent regimes and the stimulus-response relationship of a population of noisy map neurons
by means of a mean-field model, derived within the framework of cumulant approach complemented by the
Gaussian closure hypothesis. It is demonstrated that the mean-field model can qualitatively account for stability
and bifurcations of the exact system, capturing all the generic forms of collective behavior, including macroscopic
excitability, subthreshold oscillations, periodic or chaotic spiking, and chaotic bursting dynamics. Apart from
qualitative analogies, we find a substantial quantitative agreement between the exact and the approximate system,
as reflected in matching of the parameter domains admitting the different dynamical regimes, as well as the
characteristic properties of the associated time series. The effective model is further shown to reproduce with
sufficient accuracy the phase response curves of the exact system and the assembly’s response to external

stimulation of finite amplitude and duration.
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I. INTRODUCTION

Gaining a comprehensive understanding of the emergent
dynamics of neuronal populations and their interactions is a
topical issue in neuroscience [1,2]. The acquired neurobio-
logical data corroborate that the operational tasks at different
levels of the brain’s multiscale hierarchical organization are
distributed across anatomically segregated, but functionally
integrated, moduli [3-5]. Within theoretical studies, substan-
tial attention have received the phenomena unfolding on the
intermediate (mesoscopic) scale [6], whereby the considered
models are supposed to reflect the behavior of assemblies
comprising microcolumns or cortical columns [7-9]. The
mesoscopic dynamics typically consists of oscillations of dif-
ferent frequencies and amplitudes, which may be interspersed
by episodes of chaotic or pseudo-chaotic irregular behavior
[7]. This can further be modulated via interplay with activity
generated at other scales, primarily the stochastic fluctuations
from the microscopic level and the slow rhythms derived from
the macroscopic structures.

Conceptually, the given phenomena are often addressed
by invoking a paradigm where each population exhibiting
a collective mode is regarded as a large-scale oscillator,
such that the assembly’s response to external stimuli, noise,
or collective oscillations from afferent populations may be
examined using the methods of nonlinear dynamics [10]. The
ensuing models of collective motion are developed using
different forms of mean-field (MF) approximation, which
mainly apply the bottom-up strategy [11] to build reduced
and analytically tractable description of population behavior
starting from the high-dimensional system of (stochastic)
differential equations for the local neuron dynamics. An
additional point that makes the mesoscopic circuits particularly
suitable for the MF treatment is that the often used assumption
on assembly homogeneity approximately holds at this scale
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[12]. In terms of fashion by which the population dynamics
is statistically characterized, one may classify the effective
systems into neural mass or probability density models [8,13].
The former rely on the large coherence approximation and
yield the mean-rate dynamics [14], whereas the latter involve
the diffusion approximation, providing for the evolution of the
assembly-averaged dynamics and the corresponding variance
[15,16]. The MF approach and its generalization to spatially
extended systems have become a standard tool for analyzing
diverse problems in neuroscience and other fields [17-23].

Nevertheless, one should emphasize that the MF analysis
has so far exclusively been applied to the class of continuous-
time systems, while the effective models for assemblies of
coupled maps have been lacking. In particular, the collective
motion of spiking or bursting neurons influenced by noise has
been extensively studied using different models of coupled
discrete systems, such as Rulkov [24-31] or Izhikevich
neuron maps [32,33], but this has not been complemented
by an appropriate MF theory. The latter has likely been the
consequence of inability to implement the Fokker-Planck
formalism to discrete-time systems. In the present paper,
we obtain for the first time the MF theory for a population
of coupled stochastic neuronal maps. The derivation relies
on Gaussian approximation, which is introduced within the
framework of Gaussian closure hypothesis [34—40].

We apply the MF approach to systematically analyze the
emergent behavior and the stimulus-response relationship of
a population of stochastic map neurons, where the local
dynamics can exhibit a variety of regimes, including excitabil-
ity, subthreshold oscillations, regular and chaotic spiking
or bursting, as well as mixed spiking-bursting oscillations
[41-44]. The particular set of issues we address consists
in establishing whether and how the MF model can be
used to (i) qualitatively analyze the network stability and
bifurcations of the exact system associated to emergence of
generic collective regimes; (ii) provide adequate quantitative
predictions in terms of bifurcation thresholds, and the average
interspike intervals or bursting cycles of the exact system; as
well as (iii) accurately anticipate the population’s response
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FIG. 1. Dynamical regimes exhibited by model (1). The heat map refers to variation of the amplitude of oscillations A of the x time
series in the J-B plane. The wave forms shown in subfigures I-VI illustrate the different forms of neuron’s behavior, including excitability (I),
subthreshold oscillations (II), regular spiking (III), chaotic bursting (IV), chaotic spiking (V), as well as the mixed spike-burst activity (VI).
The dots in the heat map indicate the particular (/,8) values where the representative wave forms are obtained.

to different forms of external stimuli. Within this context, it
will be examined whether the effective model is capable of
reproducing the properties of noise-activated, noise-induced,
and noise-perturbed modes of collective behavior.

The paper is organized as follows. In Sec. II, we make an
overview of the local map dynamics and introduce the popula-
tion model. Section III outlines the ingredients most relevant
for the derivation of the MF system, with the remaining tech-
nical details left for the Appendix. In Sec. IV, the qualitative
and quantitative agreement between the dynamics of the exact
and the MF model is illustrated by the appropriate bifurcation
diagrams, as well as by comparing the characteristic features
of the associated regimes. Section V concerns the assembly’s
stimulus-response relationship, first investigating the analogy
between the respective phase-response curves (PRCs) of the
exact system and the effective model in spiking and bursting
regimes and then considering the extent to which the MF model
reproduces the population’s response to rectangular pulses
of finite amplitude and duration. In Sec. VI, we provide a
summary of our main results.

II. MAP NEURON DYNAMICS AND THE
POPULATION MODEL

The dynamics of an isolated neuron conforms to a map
model first introduced in Refs. [45,46], which is given by

Xn+1 Xn+ G(xy) — BH(x, —d) — yu,

(1)
n +€(xy — J),

Yn+1

where n denotes the iteration step. The variable x,, qualitatively
accounts for the membrane potential, whereas the recovery
variable y,, whose rate of change is set by a small parameter
€ = 1072, mimics the behavior of ion-gating channels. The
parameters a, 8, and d modify the profile of the ensuing os-
cillations, while J crucially influences the neural excitability,
viz. the transitions from silence to active regimes.

The x, evolution features two nonlinear terms,
one being a FitzHugh-Nagumo-like cubic nonlinearity

G(x,) = x,(x, —a)(1 — x,), which is complemented by a
discontinuity term —BH(x, —d), where H stands for the
Heaviside step function. The parameters a = 0.1 and d =
0.45 are kept fixed throughout the paper. The impact of
discontinuity consists in making the fast subsystem [Eq. (1)
with € = 0] a Lorenz-type map within certain parameter
domains [46,47], which endows the model with the ability to
generate chaotic spike or burst oscillations, otherwise lacking
in the Fitzhugh-Nagumo type of systems.

Under variation of J and S, the map (1) may reproduce
a rich repertoire of generic regimes displayed by the real
neurons, as demonstrated in Fig. 1. In particular, the main
frame shows amplitudes of the corresponding x time series
for the given (J,8), while the remaining subfigures illustrate
the characteristic wave forms pertaining to excitable regime
(region I), subthreshold oscillations II), regular (III) or chaotic
spiking (I), chaotic bursting (V), as well as the mixed chaotic
spike-burst activity (VI). Some of the indicated boundaries,
such as those involving domains IV, V, and VI should be
understood as tentative, since the associated transitions are
smooth and therefore difficult to discern.

The detailed phase plane analysis concerning the relevant
unstable invariant curves and the mechanisms underlying tran-
sitions between the different dynamical regimes can be found
in Ref. [48]. Here we briefly mention that under increasing
J, the equilibrium loses stability via the Neimarck-Sacker
bifurcation, which gives rise to subthreshold oscillations. Note
that the latter may be considered an excitable state, in the sense
that a strong-enough perturbation can elicit genuine spike,
though the phase point does not relax to the equilibrium but
rather to a closed invariant curve.

Adopting model (1) for local dynamics, we focus on an
assembly of N stochastic neurons coupled in the all-to-all
fashion via electrical synapses (diffusive couplings). Each
neuron receives input from the units within the assembly and
is further influenced by synaptic noise from the embedding
environment. Note that it is quite common in two-dimensional
neuron models with sharp separation of characteristic time
scales to interpret the stochastic perturbation acting on the fast
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FIG. 2. Impact of noise on a single map neuron in the excitable
regime. (a) The mechanism behind noise-induced spiking. The data
are obtained for J = 0.046, 8 = 0.4, o = 0.005. The equilibrium is
deterministically stable given that the line x = J intersects the invari-
ant curve y = G(x) below the curve’s minimum. (b) The x, series
corresponding to noise-induced bursting (J = 0.042, 8 = 0.2, 0 =
0.008), whereas (c) demonstrates stochastic spiking superimposed on
subthreshold oscillations (J = 0.048, 8 = 0.4, o = 0.008).

(slow) time scale as synaptic (intrinsic) noise [49-51]. The
population activity is then described by the following system:

Xintl = Xip + G(xi,n) —BHxi, —d)— Yin + e

in >

Yion+1 = Yin + G(Xi,n - ])s (2)

N
Z (x.i,n - xl}n) + USi,n’

j=Lj#i

c
syn __ ycoup rand __ *
Ly =1L, + 1, =

in

where i specifies the particular neuron. The synaptic currents
1" comprise two types of terms. The diffusive couplings 7, "
are characterized by the strength ¢, which is assumed to be
uniform over the network and is setto ¢ = 1 in the remainder of
the paper. The random inputs I{‘,‘;’d involve uncorrelated white
noise [E[&;,] = 0,E[& ,&;,»] = 8;;6(n — n')] of intensity o.

Confined to a single unit, the stochastic component may
influence its dynamics either by perturbing the deterministic
oscillatory regimes or by inducing oscillations in the excitable
regime, cf. Fig. 2(b). The onset of noise-induced spiking or
bursting within the parameter domain where the fixed point
is deterministically stable (domain / in Fig. 1) corresponds
to a phenomenon of stochastic bifurcation [39,52-55]. The
latter are typically described phenomenologically, in a sense
that certain time-averaged quantities, such as the asymptotic
probability distributions of relevant variables or the associated
power spectra, exhibit a qualitative change under variation
of noise intensity. For instance, in continuous-time systems,
it has been shown that the stochastic Hopf bifurcation from
a stochastically stable fixed point to a stochastically stable
limit cycle is accompanied by the loss of Gaussian property
for the asymptotic distributions of the appropriate variables
[56]. At variance with standard deterministic bifurcations,
where one clearly observes a critical value of the control
parameter, the change of system’s behavior in noise-induced
transitions is gradual [39]. Note that noise can also play an
important part in the (J, ) region II where the deterministic
map shows subthreshold oscillations. Here noise can give rise
to a form of dynamics reminiscent of mixed-mode oscillations,
cf. Fig. 2(c).

So far, models similar to (2) have been applied to address
a number of problems associated to collective phenomena in
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networks of coupled neurons, including synchronization of
electrically coupled units with spike-burst activity [57,58], pat-
tern formation in complex networks with modular architecture
[41,42,59], transient cluster activity in evolving dynamical
networks [44], as well as the basin stability of synchronization
regimes in small-world networks [43]. Within this paper, the
collective motion will be described in terms of the global
variables X, = + Y xin,and ¥, = 5 SN Vi

III. DERIVATION OF THE MEAN-FIELD MODEL

Considering a MF approximation, our main goal lies
in deriving a reduced low-dimensional deterministic set of
nonlinear difference equations whose dynamics is qualitatively
analogous to the collective motion of the original system (2)
composed of 2N coupled stochastic maps. In particular, the
MF model should be able to generate all the regimes exhibited
by the exact system, qualitatively reproducing the bifurcations
that the latter undergoes. Also, applying the effective model,
one should be capable of inferring with sufficient accuracy
the parameter domains which admit the different collective
states of the exact system, with the corresponding time
series exhibiting similar characteristic quantitative features.
Regarding the explicit effects of noise, the MF model is
expected to account for the onset or suppression of different
types of collective modes associated to macroscopic spiking
or bursting activity, which are mediated by synchronization
or desynchronization of individual neuron dynamics, respec-
tively. The synchronization processes may be influenced by
noise in a variety of ways, including the scenarios where
noise acts as a perturbation to mainly deterministic (and
chaotic) local oscillations, or the ones where noise plays a
facilitatory role, in the sense that the collective mode emerges
via synchronization of noise-induced local dynamics.

Given that we consider a system of discrete-time equations,
one cannot adopt the usual method of deriving the MF
model via Fokker-Planck formalism [40]. Nevertheless, an
analytically tractable MF model may still be built by focusing
on the evolution of cumulants [34-36,39], whereby the full
density of states is factorized into a series of marginal
densities. The advantage of such an approach is that the
simplifying approximations aimed at truncating the underlying
cumulant series can be introduced in a controlled fashion. Such
approximations, stated in a form of closure hypothesis [34],
are required due to nonlinearity of the original system, which
causes the dynamics of cumulants of the given order to be
coupled to those of the higher order.

In our case, the derivation of the effective model incor-
porates an explicit Gaussian closure hypothesis [34-36,39],
by which all the cumulants above second order are assumed
to vanish. The collective dynamics is then described by a
set of five variables (the first- and second-order cumulants),
including

(i) the means, givenby m, , = lim % ZlN:l Xin = (Xin)s

N—o0
Myn = Nllj)noo % Z,N=] Yin = <yi,n>;

(i) the variances, defined as Sy, = (x7,) — (xi.,)* =
<x3n> - m)zr,n and S, , = (y,-z,,,) - <yi,n>2 = <yi%n> - mi,n;

(iii) the covariance U, = (X;,Yin) — My aMy p.

012226-3



FRANOVIC, MASLENNIKOV, BACIC, AND NEKORKIN

The expressions for higher-order moments (xl ,) in terms
of the first- and second-order cumulants [60], such as

(x.3) = m3 + 3m, S,

l

( )—m +6m Sy +352

(xl ,)—m)S +m, m +2m, U
(o €)]
xl

)=
()

(x0) = mS + 158} + 15m} S, + 45m’ S}

xXVx

=38.U +3Sm,m, +3m U —i—mym
=m> + 15m, S? + 10m? S,

can be derived using the closure hypothesis.
The Gaussian approximation effectively amounts to an
assumption that the relation

11m—2xm~E x5 4)

holds, whereby E refers to expectation value obtained by
averaging over an ensemble of different stochastic realizations.
In other words, one supposes that the local variables are inde-
pendent and are drawn from a normal distribution N (m,,S,).
We do not know a priori whether such an assumption is
fulfilled but can only judge on its validity by verifying the
correctness of the predictions on the population dynamics
provided by the MF model. Also note that the effective model
concerns the assembly dynamics in the thermodynamic limit

J
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N — oo. The stochastic terms in this case can be neglected, as
one may show them to contribute to finite-size effects which
scale as 1/N. This means that the influence of noise in our MF
model is felt only via the noise intensity, which assumes the
role of an additional bifurcation parameter.

Let us illustrate the main technical points required for the
derivation of the MF model. Our focus will lie with a couple of
relevant examples, whereas the remaining details are provided
in the Appendix. We begin by considering the dynamics of
m,, which is given by

Mypnyl =My — Nyp

+(G(xin)) — B(H(xjn —d)). (5)

It is easy to see that there is no contribution from the coupling
term. As far as the third term on the right-hand side of Eq. (5)
is concerned, using Eq. (3), one arrives at

(GG = (= x2 + (1 + a)? —ax;)
=G@m,)+ S;(1 +a —3m,). (6)

In the last expression, we have dropped the time index
for simplicity and have introduced the shorthand notation
G(my) = —m? + (1 +a)(m? + S,).

The key problem is how to treat the final term in the right-
hand side of Eq. (5). Our approach consists in replacing the
assembly average by the expectation value ((H(x; —d)) =~
E[H(x; — d)]), obtained by assuming that the local variables at
an arbitrary time moment are normally distributed according to
P(x;) ~ N(m,,S;). The expectation may then be evaluated as

E[—-B(H(x; —d))] = /dxl /dxg.../de(— %ZH(JC,- —d))p(xl,xz,...,xN)

— B / dxH(x) — d)p(x) = —p /

with the error function Erf(x) =

e _umo? _é(l —Erf[d _mxi|> @)
V27 S, 2 V28 1)’

\/%7 fox e"’dt. In the above calculation, we have explicitly used the assumption on the

independence of distributions of local variables at any given moment of time.
In a similar fashion, one may consider the S, dynamics, which constitutes the most demanding part of the derivation. In

particular, proceeding from the S, definition, we obtain
Sx,nJrl = <x,'2’n+1> - <xi,n+1>2
=A([(1 = )xin + G(xip) — BH(xip — d) —
— B{H (xi, — ).

Yin + Ei,n + me,n]2> -

- my,n + G(mx,n) + Sx,n(l +a— 3mx,n)
(3)

[my

As an illustration, let us evaluate one of the terms containing an average over the threshold function:

—2BE[G(x)H(x; —d))] = —2p [/ dxG(x))H(x) —d)p(x1) — /dX1H(X1 —d)p(x)[G(my) + S:(1 +a — 3mx)]]

&2

1
—2p [/ dxi[G(my) + G'(m)(x) — my) + EG”(mx)(xl —m)*1H(x) — d)p(x1)

- /dX1H(X1 —d)p(x)[G(my) + S:(1 +a — 3mx)]} =

—2B[(1 + a)(m, +d) — a — 3m.d] ;— exp [—

_ 2
(d —my) } ©)

T 28,

Again, the time indexes have been suppressed to simplify the notation.
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Leaving the remaining elements of the derivation for the Appendix, we now state the final equations of the MF model in the

thermodynamic limit
Mypyl = My — My, + G(mx,n) + Sx,n(l +a—

My 1 = My, + E(mx,n -J)

Sx,n+1 = (1 - C)ZSx,n + Sv n+ 02 -

3mx,n) -

ﬂ d - mx,n
5<1 _Erf[_zsx’n D

2(1 = U, + Sen(=3m2, + 201 + aym, . —a)’

—2(1 = &)(3m3 ,Sen + 355, — 201 4+ @)y Sen + aSx.n) + 2BSxn Uy + 3m% Uy — 2(1 + a)m, ,U,,)

—2B[(1 + a)(my, +d) —a — 3dm, ,] /%exp[ d - mxn)} 2501 )/ [ d— mxn):l

+52,[36m2,, — 24(1 + aym,, +2(1 + a)* + 6a] + 1553,

Syni1 = Syn + €Sy + 2€U,
Unt1 = Uy —(@+c+ €U, +€(l —c —a)Sep — Sy

_ 2
—ﬂe,/hexp[——(d Mein) ]
2

AT
IV. ANALYSIS OF STABILITY AND BIFURCATIONS

In this section, our goal is to demonstrate the qualitative
and quantitative analogies between the dynamics of the exact
system and the MF model. To this end, we first examine the
succession of macroscopic regimes in the J-8 parameter plane
for o fixed at an intermediate value o = 0.002, see Fig. 3. As
in case of a single unit, changing J is relevant for the system’s
excitability, viz. the transitions from silent to active regimes,
while g influences the wave forms of the active states (spiking,
bursting, or mixed spike-bursting activity). The assembly is
found to exhibit the collective modes which qualitatively
correspond to the dynamics of a single unit illustrated in plates

A (b)
1315 0.5

1052 0.4
0.789 0.3

0.526 0.2

0.263 0.1

0
0

FIG. 3. Heat maps in (a) and (b) show the dependencies A(J,f)
and T'(J,B) obtained by stochastic averaging for a network of N =
100 neurons, respectively. Panels (c) and (d) illustrate the analogous
results for the MF model. The noise intensity in all instances is
o = 0.001.

— (Uy + €S:,)[3S, + 3m?,

- 2(1 + a)mx,n]

(10)

(

IIT and VI of Fig. 1. The heat maps in the left column of Fig. 3
provide a comparison between the oscillation amplitudes A of
the global variable X (top row) and the MF variable m, (bottom
row) for the given (J, 8). The right column indicates how well
are matched the average interspike interval (or the average
bursting cycle) T of the exact system with the corresponding
characteristics of the dynamics of the MF model (Al). In
the given instances, exact system comprises an assembly of
N = 100 neurons, having obtained A by averaging over a

A

0 X 0@ My
' '
\ U i my
LY ] AT iy B
N4 égo i
E i \
%0.2 L ><'*0.2 '
;, 0 1 P
obt e L
02t v
0207750 100 150 200 250 300 0 50 100 150 200 250 300
n n

FIG. 4. Macroscopic excitability feature. In (a) and (b) are shown
the maximum values of X and m, reached within the time series of
the exact and the MF system, starting from the analogous initial
conditions (Xo,Yy) and (my 9,m, o), respectively. The parameters are
J =0.02,8 = 0.4. (c) Illustrates the case where a strong-enough
perturbation elicits a single-spike response (J = 0.02,8 = 0.4),
whereas (d) corresponds to a bursting response made up of three
spikes (J = 0.02,8 = 0.15). In both instances, the time series of the
MF model (dotted line) is indistinguishable from that of the exact
system (dashed line).
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FIG. 5. (a) A family of R(J) curves over 8 for a network of size N = 100 under fixed o = 0.001. Superimposed are the results for the MF
model, whereby the symbols x, 4, % ,x correspond to cases 8 = 0, 0.2, 0.3, and 0.4, respectively. Panels (b) and (c) illustrate the X series
associated to the spiking and the bursting collective modes. The considered network is made up of N = 100 neurons, with the parameters
setto J = 0.06, 8 = 0.4, 0 = 0.001 in (b), and J = 0.08, 8 = 0.2, ¢ = 0.001 in (c). In (d) and (e) are provided the m, series obtained for

parameters from (b) and (c).

sufficiently long time series, whereas 7 is determined by
taking average over an ensemble of 20 different stochastic
realizations. With regard to 7', we have selected a convenient
threshold & = 0.2, which allows a clear detection of individual
spikes and enables one to unambiguously discern the initiation
stage of bursts, as required for calculating the length of the
bursting cycle.

Let us begin the analysis by focusing on the domain of J
values where the exact system exhibits the stochastically stable
equilibrium, while the MF model has a stable stationary state.
The stochastic stability physically implies that fluctuations
around the deterministic fixed point are typically of the
order of noise, though some rare spikes may still be evoked.
For J sufficiently close to the region admitting the sub-
threshold oscillations, the population manifests macroscopic
excitability. The term “macroscopic” here refers to a form
of emergent assembly behavior rather than the characteristic
spatial scale. To properly illustrate this feature, we have
analyzed the assembly dynamics in the limit o = O, cf. Fig. 4.
In particular, Figs. 4(a) and 4(b) show the maximum X and
m, values reached in the corresponding time series obtained
for sets of different initial conditions (Xo,Yo) and (my ,m1,.0),
respectively. The comparison between the two plots clearly
corroborates that the boundary defining the domain of spiking
response is appropriately anticipated by the MF model. An
important remark is that for the given J, the assembly may
exhibit different forms of macroscopic excitability, generating
a single spike or a burst of spikes, as dependent on the value
of B. This is demonstrated by the time series in Figs. 4(c)
and 4(d). The former refers to a one-spike response in case
of § = 0.4. For smaller 8, one observes responses comprising
two or more closely packed spikes, with Fig. 4(d) illustrating
a three-spike burst encountered for § = 0.25. Note that the
time series of the full system and the MF model are exactly
matched in the limit o = 0.

Next we address the noise-influenced transitions from
silence to active regimes observed under increasing J. To
do so, in Fig. 5(a) we have plotted the change of the firing
(spiking or bursting) frequency R for an assembly consisting
of N = 100 neurons. The average frequency is determined by
considering an ensemble of 20 different stochastic realizations,
having o fixed to the moderate value from Fig. 4. The results
from simulations of the full system (2) are compared against

the data obtained for the MF model. In this context, two points
should be stressed. First, for moderate o, note that the firing
frequencies of the MF model lie in close agreement to those
of the exact system. As a second point, one finds that such
quantitative agreement extends to different forms of collective
behavior, viz. it holds for different types of transitions from
silent to active regimes. As already indicated, the wave forms
pertaining to the active states depend on S, such that the asso-
ciated transitions are mediated by the distinct synchronization
processes. For instance, at 8 = 0, synchronization involves
time series of single units that conform to spiking activity
of type III from Fig. 1, which are quite resilient to impact of
noise. On the other hand, for 8 = 0.3 or 8 = 0.4, the individual
units exhibit chaotic bursting or spiking activity, respectively,
such that the underlying synchronization process may be more
susceptible to stochastic effects. The typical X time series
illustrating the different collective modes are compared to the
corresponding m, series in Figs. 5(b)-5(e). The top (bottom)
row concerns the data for the exact system (MF model).

0.015 T T T T T
—a— = 0.001
—o—0=0.01 X
6=0.02
X
—0— o= 0.05 X X E;g\,,.oa
010 - x p
0.010 x mf, o=0.001 , W

0.005

FIG. 6. Family of R(J) curves over o obtained for a network
of N =100 neurons under fixed 8 = 0.2. The different symbols
correspond to cases o = 0.001 (squares), o = 0.01 (circles), o =
0.02 (triangles), and o = 0.05 (diamonds). The crosses connected
by the dashed line highlight the R(J) curve for the MF model at
o = 0.001.
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FIG. 7. Noise-induced phenomena within the J interval in vicinity of the deterministic threshold. X series in (a) shows the noise-induced
spike-bursting activity on top of subthreshold oscillations (J = 0.047, 8 = 0.2, o = 0.02). (b) Illustrates the “skipping” phenomenon where
the stochastic effects occasionally suppress the large-amplitude oscillations of the X variable (J = 0.058, 8 = 0.2, o = 0.01). In (¢) and (d)
are provided the m, series corresponding to parameter sets from (a) and (b), respectively.

In order to investigate more closely the influence of noise
for J interval in vicinity of the transition from silence to
active regimes, we examine how the profiles of R(J) curves
change under increasing o. The results shown in Fig. 6 refer
to 8 = 0.2 and a population comprised of N = 100 neurons.
As expected, the transition appears quite sharp for moderate
noise 0 = 0.001 but is considerably flattened for larger o, e.g.,
o = 0.05. The crosses indicate the firing frequencies predicted
by the MF model for ¢ = 0.001.

For larger o, the MF model fails to reproduce the behavior
of the exact system in vicinity of threshold J, in the sense
that it overestimates the maximal R value, as well as the
actual critical J characterizing the transition. Viewed from
another angle, one may infer that for sufficiently large o and J
below the threshold given by the MF model, the latter fails
to capture the impact of synchronization processes taking
place between the noise-induced oscillations of individual
units. This especially refers to J interval where the spikes
or bursts (depending on the given ) are superimposed on
the background of subthreshold oscillations. An example of
such a discrepancy between the behavior of the exact and
the effective system is provided in Fig. 7, cf. Fig. 7(a)
and Fig. 7(c). Also, for strong o and J values above the
transition, the firing frequencies anticipated by the effective
model are typically higher than those of the exact system (not
shown). Within this region, the stochastic effects suppress
synchronization between the chaotic oscillations of single
neurons, thereby reducing the corresponding R value. This
is not accounted for with sufficient accuracy by the MF
system. Note that such suppression of synchronization is
reflected in the corresponding X series by the spike (burst)
“skipping” mechanism, where the large-amplitude oscillations
are occasionally replaced with subthreshold oscillations. For
the associated J and o values, such a phenomenon is absent in
the dynamics of the effective model, cf. Fig. 7(b) and Fig. 7(d).
In both of the scenarios illustrated in Fig. 7, the reason for the
failure of MF model is that the Gaussian approximation breaks
down due to large stochastic fluctuations.

The fashion in which the validity of the effective model’s
predictions deteriorates with increasing o is made more
explicit in Fig. 8, which shows the A(J,0) and T(J,0)
dependencies for the exact and the approximate system at

fixed 8 = 0.4. The considered size of the network is N = 100.
Comparison between the respective A (left column) and T
plots (right column) suggests that the range of o values where
the MF approximation applies is contingent on J . For instance,
in the J region below the deterministic threshold, one may
estimate this range by noting that the effective bifurcation
diagram in Fig. 8(a) indicates that noise-induced macroscopic
oscillations emerge for o &~ 0.003. Since this point is not
adequately represented by the effective model, cf. Fig. 8(c),
one may state that the Gaussian approximation breaks down
around o & 0.003 within the given J region. Nevertheless, for
J above the deterministic threshold, the validity of the MF
model appears to depend rather strongly on particular J, with
the o values where the Gaussian approximation effectively
fails spanning the range o € (0.002,0.006).

A

0.780 0. 008

0.624
0.006

0.468

0.004]

0312l

0.156 0.002

005y 01 005 g 01

FIG. 8. Panels (a) and (b), respectively, refer to A(J,0) and
T(J,0) dependencies for the network of N = 100 neurons under
fixed B = 0.4. The results in (a) are obtained by averaging over a
sufficiently long time series, whereas data in (b) derive from averaging
over an ensemble of 20 different stochastic realizations. In (c) and
(d) are provided the A(J,0) and T'(J,0) dependencies determined by
numerical simulations of the MF model.
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FIG. 9. R(J) dependencies for increasing N under fixed (8,0) =
(0.2,0.05). The squares, circles, and diamonds correspond to cases
N =100, N =500, and N = 1500, respectively. The results pre-
dicted by the MF model are indicated by crosses connected via dashed
line.

So far, we have investigated the impact of noise by
comparing the results for the network of size N = 100 to
those obtained for the effective system. Nevertheless, within
Sec. III, it has already been emphasized that the MF model,
deterministic in character, refers to the system’s behavior
in the thermodynamic limit N — oo, whereas the explicitly
stochastic terms could only be incorporated as finite-size
effects. This makes it relevant to examine how the behavior
of the exact system within the J domain around deterministic
threshold changes for large and fixed o under increasing N. To
this end, we have plotted in Fig. 9 the R(J) curves calculated
for N = 100 (squares), N = 500 (circles), and N = 1500
(diamonds) atfixed 8 = 0.2,0 = 0.05. The curve for N = 100
evinces that the given o value is quite large in a sense of being
sufficient to induce collective oscillations within the excitable
regime. Apart from the dependencies for the full system, we
also show the R(J) curve associated to the MF model (dashed
line with crosses). An interesting point regarding the latter is
that the J threshold for the emergence of the collective mode
is shifted toward a larger value compared to the case o ~ 0.01.
While the given transition itself appears quite sharp, the curves
corresponding to the exact system approach it with increasing
N, both in terms of the J threshold and the R values above the
transition. This corroborates that the (J,0) domain where the
Gaussian approximation behind the MF model fails expectedly
reduces with the increasing system size.

V. RESPONSE TO EXTERNAL STIMULI

The aim of this section is to investigate the extent to which
the MF model can be used to predict the stimulus-response
relationship of an assembly exhibiting different macroscopic
regimes, including the excitable state, as well as the spiking
and bursting collective modes. Let us first focus on the two
latter instances and examine the sensitivity of a population to
an external pulse perturbation within the framework of phase
resetting theory [61-64]. In order to compare the behavior
of the exact system and the effective model, we determine

PHYSICAL REVIEW E 96, 012226 (2017)
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FIG. 10. Assembly phase resetting. Panels (a) and (b) show the
PRC:s for a population in spiking regime (J = 0.055, 8 = 0) under
excitatory (a = 0.008) and inhibitory stimulation (@ = —0.008),
respectively. Results for the exact system (N = 500) are indicated
by the solid line, whereas the data for the MF model are denoted
by circles. The bottom row illustrates the PRCs for an assembly
exhibiting macroscopic bursting (J = 0.06, 8 = 0.1), whereby (c)
describes the effect of an excitatory (@ = 0.01) and (d) of an inhibitory
pulse perturbation (¢ = —0.01). The insets in (a) and (c) demonstrate
how the phases are assigned to the points within the spiking and
bursting cycles, respectively. Phase is expressed in units of 7.

the corresponding PRCs, which describe the phase shift Ag,
induced by the perturbation, in terms of the phase ¢, when the
perturbation is applied. The considered stimulus has a form
of a short pulse current I, = a,H(n — n;)H(n — ny), whose
magnitude a, and width A = n; — n; are small compared to
the amplitude and duration of the spiking (or bursting) cycle Ty,
respectively. In case of the exact system, the same pulse current
is delivered to each neuron i, adding the term /,, to x; dynamics,
whereas in the effective model, stimulation is administered via
the m, variable. The phase ¢, is defined in reference to Ty by
¢, =n,/Ty. The associated phase difference following the
reset is calculated as Ap = 1 — T,/ Ty, where T} denotes the
duration of the perturbed spiking or bursting cycle.

The PRCs characterizing the assembly response in the
spiking regime are provided in Fig. 10(a) and Fig. 10(b),
whereby the former is obtained under the action of an excita-
tory (a, > 0), and the latter under the influence of inhibitory
stimulation (a, < 0). We stress that, in both instances, the
results derived from the effective model, denoted by circles,
show excellent agreement with the data for the exact system
(solid lines). In qualitative terms, one observes that excitatory
stimulation may advance the phase of the spiking cycle if
it arrives sufficiently close to the spike but still before the
sharp rising stage. However, an excitatory perturbation acting
during the spike or within the effective refractory period has
a suppression effect, reflected in delaying of the next spike.
In contrast to excitatory stimulation, the inhibitory pulse
postpones the next firing time if it is introduced within the
interval close to the rising stage of spike.
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FIG. 11. Stimulus-response relationship in the excitable regime (J = 0.02). The top (middle) row refers to the response of the full system
(MF model), whereas the bottom row shows the profile of the external stimulation. In panels (a)—(c), the system parameters are 8 = 0.4, o = 0,
while the perturbation is characterized by a, = 0.4,A = 200. Panels (d)—(f) concern the response of an assembly (8 = 0.1, o = 0.001)
subjected to a rectangular pulse a, = 0.4, A = 200. Panels (g)—(i) illustrate the response of a population (8 = 0.4, o = 0.001) influenced by
the external stimulation a,, = 0.1, A = 50. The considered network is of size N = 500.

The PRCs determined for an assembly exhibiting collec-
tive bursting show qualitatively analogous effects to those
described so far, see Fig. 10(c) and Fig. 10(d). This especially
refers to impact of perturbation delivered sufficiently close to
a moment of burst initiation. An apparent difference compared
to Fig. 10(a) and Fig. 10(b) emerges during the bursting stage
itself, where the associated PRCs expectedly exhibit strong
fluctuations. Apart from that, one finds an interesting effect
that both the excitatory and the inhibitory stimulation have
a facilitatory role, i.e., cause phase advancement during the
relaxation stage of the bursting cycle.

For a population in the excitable state, we consider
scenarios where the system is influenced by a rectangular pulse
perturbation of finite magnitude and duration, in a sense that
the latter are comparable to corresponding features of typical
spiking or bursting cycles. Note that the selected J value
J = 0.02 lies sufficiently away from the interval admitting the
subthreshold oscillations. Again, our objective is to determine
whether the MF model correctly anticipates the response of the
exact system, now in the presence of small to moderate noise.
Some of the illustrative examples concerning the stimulus-
response relationship under the finite perturbation are provided
in Fig. 11. The top and the middle rows refer to X and
corresponding m, time series, respectively, while the bottom
row shows the profile of the applied stimulus. We find that in
the absence of noise or for sufficiently small o, the effective
model reproduces the evoked behavior of the full system quite
accurately. This also refers to some highly complex forms of
responses, as corroborated in Figs. 11(a)—11(c), which concern
relatively large a, and A. Under increasing o, the ability of
the MF model to predict the dynamics of the exact system
gradually reduces but in a fashion that involves a nontrivial
dependence on B. In particular, for smaller 8 ~ 0.1, which
would facilitate macroscopic spiking mode for supercritical
J, it turns out that the dynamics of the MF model lies in close
agreement to the one of the exact system even for moderate
noise o = 0.001, cf. Figs. 11(d)-11(f). However, for higher
B, such an analogy between the responses of the exact and
the MF system is lost, see Figs. 11(g)-11(i). Naturally, the
validity of the predictions given by the MF model deteriorates
if the stimulation amplitude a, and the duration A are large,
especially in the presence of non-negligible noise.

VI. SUMMARY AND DISCUSSION

We have developed an MF approach in order to system-
atically analyze the emergent dynamics and the input-output
relationship of a population of stochastic map neurons. The
reduced low-dimensional model has been derived within the
framework of Gaussian approximation, formally introduced
in a form of a closure hypothesis. In physical terms, such
an approximation suggests that the local variables at an
arbitrary moment of time are independent and conform to
a normal distribution centered about the assembly mean and
characterized by the associated assembly variance. Validity of
such an approximation cannot be established a priori, but has
been systematically verified by numerically corroborating that
the MF model reproduces the behavior of the exact system
with sufficient accuracy.

In particular, we have first demonstrated that the effective
model can qualitatively capture all the bifurcations of the exact
system leading to the onset of different generic regimes of
collective behavior. As far as the quantitative agreement is
concerned, we have established substantial matching between
the parameter domains admitting the respective dynamical
regimes for the exact and the approximate system. More-
over, the typical features of the associated regimes, such
as the average interspike interval or the average bursting
cycle, exhibit analogous changes with parameter variation
and in many parameter domains display numerically similar
values.

An important issue has been to explicitly examine how
the effects of noise are reflected in the behavior of the MF
model. For the noise-perturbed activity, where the sufficiently
small noise weakly influences the deterministic attractors of
the system, the obtained results indicate that the Gaussian ap-
proximation holds. Nevertheless, the physical picture changes
in case of noise-induced collective behavior. In particular,
for different scenarios of stochastic bifurcations, typically
corresponding to transitions from subthreshold oscillations,
which involve generalized excitability feature, to spiking
or bursting regimes, the exact system undergoes a gradual
(smooth) change of collective dynamics, whereas the MF
model exhibits a standard deterministic bifurcation with a
sharp bifurcation threshold. In such instances, the collective
variables of exact system manifest large fluctuations, which
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explicitly violate the Gaussian approximation behind the
effective model. Note that the loss of Gaussianity property for
asymptotic distribution of relevant variables, which accompa-
nies the described stochastic bifurcations, does not imply per
se that our Gaussian approximation fails in the supercritical
state. This point is evinced by the fact that the dynamics
of the effective model shows qualitatively and quantitatively
similar features to those of the exact system if the considered
parameters lie sufficiently above the stochastic bifurcation. In
fact, the Gaussian approximation applied in the derivation of
the MF model breaks down only in vicinity of such transitions,
where the finite-size effects neglected in Eq. (A1) become
most prominent. We have numerically verified the prevalence
of finite-size effects in these parameter domains, showing that
the change of the appropriate order parameter, such as the
spiking frequency, becomes sharper as the size of the neural
assembly is increased. Nevertheless, the validity of Gaussian
approximation is regained once the system is sufficiently above
the bifurcation.

Apart from considering asymptotic dynamics, we have
verified that the MF model is capable of capturing the
stimulus-response features of the exact system. For short
pulse-like perturbations, it has been found that the approximate
system reproduces the PRCs of the exact system for both the
spiking and bursting regimes of collective activity with high

J

PHYSICAL REVIEW E 96, 012226 (2017)

accuracy. Substantial analogies have also been observed in
case of macroscopic excitable regime for scenarios where the
assembly is stimulated by rectangular pulse perturbations of
finite amplitude and duration.

Having developed a viable MF approach, the present
research has set the stage for a more systematic exploration
of collective dynamics of assemblies of map neurons by
analytical means. We believe that the introduced techniques
can be successfully applied for treating the emergent behavior
of populations in case of chemically and delay-coupled
neurons [41]. Moreover, the method may likely be used to
explore the effects of parameter inhomogeneity, as well as to
study the impact of complex network topologies [41,43]. Our
ultimate goal will be to extend the MF approach to account
for collective behavior of interacting populations of map
neurons [41,42].
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APPENDIX

In the following, we provide the remaining details concerning the calculation of the S, dynamics, which is the most complex
part of the derivation of the effective model. Following some algebra, Eq. (9) can be transformed to

Senit = (L= 0)Se 4+ Sy + 0% —2(1 — U, + ((G(xin)?) — (G(xi,))®) +2(1 — &)(xin G (Xi ) — My (G (xi0)))

Var(G(x;,))

= 2(YinG(xin)) — myn(G(xin))) = 2B(1 — O(xin H (xin—d)) — myn(H(Xin—d))] — 2B((G (xin) H (Xin — d))

— (G (H@ip = ) + B> (H(xin — d)*) = (H(xiy — d))). (A1)
Var(H (x;,,—d)))
The partial results required for completing the calculation are given by
(xiG(x))) — my(G(x;)) = G'(m,)Sx — 3S;
(A2)
<in(-xi)> - my(G(xi)) = _3Sx ny - 3m)2(ny + 2(1 + a)mexyv
where G'(my) = —3m§ + 2(1 + a)m, — a. Note that the time indexes have been omitted for simplicity. After some tedious
work, it may also be shown that the expression for variance Var(G(x;)) reads
Var(G(x;)) = G*(my)Sx + S;[36m% — 24(1 + aymy + 2(1 + a)* + 6a] + 158;. (A3)
Let us now explicitly calculate the terms containing the threshold function. First, we have
=281 = oO)l(x; H(x; — d)) — (x;)(H(x; — d))]
1 1
=-28(1 — c)|:/ dxldxz...deN Zx,-H(x,- —d)p(X1,..0,Xy) — My / dxldxz...deﬁ Z H(x; — d)p(xl,...,xN)i| =..
Sx (d - mx)2
= =2 —o)| [ dxi(xi —m)H(x1 —d)p(x1) | = =2p(1 —¢) ol ey (A4)

Note that the second term containing the threshold function has been evaluated in the main text, cf. Eq. (10).
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Finally, let us address the term B2Var[H(x; — d)], which can be estimated by considering the associated expectation
B*Var[H (x; — d)] ~ B>[(H(x; — d)*) — (H(x; — d))?]. Applying the technique introduced in Sec. III, we obtain

1
E[ﬁzH(x,- —d)? = ,32/dx1/dxz.../de[mZZH(xi —d)H(x; —d):|p(x1,x2,...,x1v)
J

i

’32
FN/dle(xl —d)p(x1) +

2

%N(N _ / dx, / dxyH(x1 — dYH(xs — d)p(x)p(xs)

N cases where i=j
d— n /32

r + —
V28, 4N?

|
1
[y
|
™
—

: 2 2 _ B d—my 12 .
Given that 8~(H (x; — d))” = 7-[1 — Erf( )], one arrives at

V25,

2
B*Var[H(x; — d)] = — [1 - Erf(

4N

N(N—1) cases where i#j

N(N — 1)[1 —Erf(d _m*’)T (AS5)
V28, '
d—my d—m,
N )Ml *Erf( N )} (A6)

This shows that the variance of the threshold function ultimately contributes to a finite-size effect which can be neglected in the

thermodynamic limit.
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