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An approximate mean field model of an ensemble of delayed coupled stochastic Hindmarsh-Rose

bursting neurons is constructed and analyzed. Bifurcation analysis of the approximate system is

performed using numerical continuation. It is demonstrated that the stability domains in the

parameter space of the large exact systems are correctly estimated using the much simpler

approximate model. VC 2011 American Institute of Physics. [doi:10.1063/1.3619293]

Bursting is a neuronal activity such that a neuron fires two

or more spikes followed by a period of quiescence, which is

again followed by similar periods of spiking and quiescence.

This type of neuronal dynamics is quite common and has

been observed in the activity of single neuron as well as in

the activity of small parts of the brain cortex. Inter-neuro-

nal interaction time delay and noise are known to have pro-

found effects on the dynamics of few coupled neurons. Such

systems are mathematically described by a collection of

nonlinear stochastic delay-differential equations, where an-

alytical solutions are impossible and numerical treatment is

quite ineffective. In order to analyze the combined effects of

the time-delay and the noise on the dynamics of large

ensembles of neurons, one needs effective and sufficiently

good approximate models. We have analyzed a large set of

Hidmarsh-Rose bursting neurons modulated by noise and

coupled via the time-delayed electrical synapses. The global

coarse-grained dynamics of the system is described by the

collective averaged variables. We have used typical assump-

tions of the mean field approximation to derive the set of

nine deterministic delay-differential equations for the first

and the second moments of the collective variables. Bifurca-

tions due to variations of different parameters, characteriz-

ing the time-lag, interaction strength, and the noise

intensity, are observed in the dynamics of global variables

of the exact system with large number of units, and the

bifurcation values are compared with those predicted by

the approximate model with only nine deterministic equa-

tions. Domains in the parameter space corresponding to sta-

ble quiescent behavior or to the bursting of the collective

variables of the large exact system are correctly predicted

by the approximate model.

I. INTRODUCTION

Bursting is an important dynamical state of a real neuron

and of collections of such neurons. It is believed that a burst

of spikes is more reliable than a single spike in producing

responses in postsynaptic neurons.1 Small parts of the brain

cortex may contain thousands of morphologically and func-

tionally similar interconnected bursting neurons and each of

them is mathematically modeled by few nonlinear differen-

tial equations.1–3 Dynamics of such neuronal network is cru-

cially influenced by the interaction, i.e., synaptic delays4,5,7–10

(and6 the references therein), and by small perturbations of

various origins which are commonly treated as noise.11,16

It is clear that relatively detailed mathematical model of

a small part of realistic cortex should involve an extremely

large system of nonlinear stochastic delay-differential equa-

tions (SDDEs). Analysis of such complex models is impossi-

ble, even with the help of modern supercomputers, without

more or less severe approximations. Our main goal in this

paper is to develop an approximation of large ensemble of

coupled bursting neurons and to demonstrate that bifurcation

analysis of the approximate model is possible and provides

useful information about the exact large system.

Delay-differential equations (DDEs) with noise do not

satisfy the Markov assumption18,19 which complicates their

analysis. Stability of such SDDEs has been studied using

extensions of the Lyapunov method long time ago,18 but

with little influence in applications apart from models of me-

chanical devices. More recently, stability of synchronization

in systems with noise involving DDE was studied analyti-

cally in the context of coupled realistic and formal neural

networks. Liao and Mao20 (see also Ref. 19) have initiated

the study of stability in stochastic neural networks and this

was extended to stochastic neural networks with discrete

time-delays in Refs. 21 and 22. Some analytical techniques

relevant for delayed systems with noise have also been used

in the study of coupled bistable systems with delays23 and in

noisy oscillators with delayed feedback.24,29 Small world

and scale free networks of various neuronal models with

noise and synaptic delays have been studied numerically, for

example, in Refs. 30–35.

Our approximation is based on ideas and assumptions of

the mean field approach. The mean field approximationa)Electronic mail: buric@ipb.ac.rs.
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(abbreviated MFA) has been applied on systems of excitable

neurons with noise but with no time-delay, for example, in

Refs. 13 and 36–38 Otherwise a type of MFA was devised in

Refs. 39 and 40 and applied on large clusters of noisy neu-

rons with time-delayed interaction in Ref. 41. Global dynam-

ics of a system of delayed coupled noisy 1D elements was

recently studied using the mean field approach in Ref. 42.

Recently, an analytically tractable MFA for delayed-coupled

noisy excitable FitzHugh-Nagumo neurons was developed43

and used.44 The mean field approximate model developed

here, in Sec. II, is still too complicated for an analytic treat-

ment, but the numerical bifurcation analysis, presented in

Sec. III, is possible and the results of such analysis are the

main topic of our paper.

II. THE EXACT LARGE SYSTEM AND ITS
APPROXIMATE MODEL

Different types of bursting activity have been observed

in real single neuron and collections of neurons.1 Typical

example of bursting dynamics is provided by the three

dimensional model proposed by Hindmarsh and Rose

(HR),45

dx=dt ¼ Fx ¼ yþ 3x2 � x3 � zþ I;

dy=dt ¼ Fy ¼ 1� 5x2 � y;

dz=dt ¼ Fz ¼ �rzþ rSðx� CxÞ; (1)

where x is the membrane potential, y represents the fast cur-

rent, like Nþa or Kþ, and z represents the slow current, for

example, Ca2þ. r, S, and b are parameters which are in this

paper set to constant typical values, r¼ 0.0021, S¼ 4, and

Cx¼�1.6. The HR equations (1) describe the dynamics of a

single neuron subjected to an external stimulus I. Depending

on the values of the parameters r, S, Cx, and the current I, the

model can have qualitatively different attractors correspond-

ing to quiescent state, periodic firing, and bursting with regu-

lar or chaotic sequences of bursts.46,47 The bursting

dynamics is driven by the oscillations of the slow z variable

and occurs once they acquire sufficiently large amplitude,

which is preferably induced by supplying an appropriate

external stimulus I. The bursts of spikes endure during the

period when z is increasing and the stable quiescent state is

observed, while dz=dt< 0.

In this paper, we shall analyze the bursting dynamics of

collective variables in an ensemble of HR neurons. The

model explicitly includes the interaction delays and stochas-

tic perturbation represented by additive white noise and is

given by the following system of 3N SDDE:

dxi ¼ ½Fxðxi; yi; ziÞ �
1

N

XN

j

cðxi � xjðt� sÞ�dtþ
ffiffiffiffiffiffi
2D
p

dW;

dyi ¼ Fyðxi; yi; ziÞdt;

dzi ¼ Fzðxi; yi; ziÞdt; i ¼ 1; 2…N; (2)

where Fx, Fy, Fz are given by Eq. (1). There are two major

types of inter-neuronal couplings: the chemical and the elec-

trical synapses. Time-delay s is important especially in the

first type of synapses, but plays also an important role in the

electrical junctions and in the transmission of an impulse

through the dendrite. In Eq. (2), we use the electrical cou-

pling with the time-lag s and the strength c that is equal for

all pairs of neurons. The assumption that all internal neuro-

nal parameters and all coupling constants are equal is plausi-

ble if the neurons are found in a small patch of the brain

cortex. The collective dynamics of such an ensemble of

closely placed neurons would then be monitored by a single

electrode in an electroencephalographic (EEG) recording.

The terms
ffiffiffiffiffiffi
2D
p

dWi represent stochastic increments of

independent Wiener processes, i.e., dWi satisfy

EðdWiÞ ¼ 0; EðdWidWjÞ ¼ di;jdt; (3)

where E(�) denotes the expectation over many realizations of

the stochastic process. The intensity of the noise D and the

stochastic properties of the noise are assumed to be the same

for all neurons, but, of course, single realizations of the Wie-

ner processes in the equations for xi need not be the same

functions of t for all i. Noise could be added also in the other

equation of the fast subsystem. It is known that, in the case

of excitable systems, the noise in the dxi equation or in the

dyi equation produce different types of stochastic coherence

effects.50 The mean field approach, presented in this paper,

could be applied equally with almost no modification, if the

noise term was in the dyi equation or in both dxi and dyi

equations. Nevertheless, we arbitrarily decided to treat the

case with the noise in the dxi equation.

Before we start with the analysis of the system (2) with

a large number of units, it is instructive to recapitulate the

synchronization properties of the system with only two neu-

rons.5,26,48 Transition from the quiescent or simple oscilla-

tory state to bursting dynamics of two HR neurons can be

induced either by increasing the external parameter I, the

coupling strength jcj, the noise D, or the time-lag s. The

bursting of the two neurons can be exactly synchronous, i.e.,

x1(t)¼ x2(t), approximately synchronous x1(t) � x2(t), or

completely asynchronous. Sufficiently strong coupling with

zero or small delay usually induces synchronization, which

remains an approximate one as long as the noise is not too

large. Non-zero time-lag in a specific interval can induce

synchronization of weakly coupled deterministic bursters,

but the synchronization completely disappears with the addi-

tion of a very small noise if the coupling remains weak. As

for the synchronization in systems with a large number of

noiseless and instantaneously coupled bursters, it is known

that the synchronization can be achieved with weak coupling

if each of the neurons is connected with (equal) sufficiently

large number of other neurons.49 As we shall see, these facts

are reflected in the properties of global bursting dynamics of

the system with large N.

A. The mean field approximation

We are interested in the dynamics of the global averaged

variables of the large system (2). These are defined as the

space averages,
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mxðtÞ ¼ 1=N
XN

i

xiðtÞ � hxiðtÞi;

mxðt� sÞ ¼ 1=N
XN

i

xiðt� sÞ � hxiðt� sÞi;

my ¼ 1=N
XN

i

yi � hyii;

mz ¼ 1=N
XN

i

zi � hzii: (4)

In order to obtain a closed system of equations for the

spatial averages and correlations, we need several assump-

tions typical of the mean field approach. The assumptions

are formulated using the centered first moments,

nxi
ðtÞ ¼ mxðtÞ � xiðtÞ; nyi

ðtÞ ¼ myðtÞ � yiðtÞ;
nzi
ðtÞ ¼ mzðtÞ � ziðtÞ;

(5)

and assume that they are statistically independent in different

units. Next, mean square deviations,

sxðtÞ ¼ hn2
xi
ðtÞi; syðtÞ ¼ hn2

yi
ðtÞi; szðtÞ ¼ hn2

zi
ðtÞi;

(6)

and cross-cumulants,

uxy ¼ hnxi
nyi
i; uxz ¼ hnxi

nzi
i; uyz ¼ hnyi

nzi
i; (7)

are introduced.

Next, we shall assume that for sufficiently large N, the

global space averages (4) of local quantities, say mx(t), are

equal to the expectations with respect to distribution of the

corresponding variable E(xi(t)). Because of the assumed

Gauss distribution of each variable, the first and the second

order cumulants of the deviations (5) are equal to the first

and second order centered moments of the variables xi, etc.

Due to the same Gaussian assumption, cumulants of order

higher than second are equal to zero.

The well known formulas of the cumulant expansion up

to the fourth order17 are used to obtain, after some algebra, the

expressions for higher order auto-correlations. In particular,

hx2
i ðtÞi ¼ sxðtÞ þ m2

xðtÞ;
hxiðtÞ3i ¼ m3

xðtÞ þ 3mxðtÞsxðtÞ;
hx4

i ðtÞi ¼ m4
xðtÞ þ 6m2

xðtÞsxðtÞ þ 3s2
xðtÞ;

hxiðtÞyiðtÞi ¼ uxyðtÞ þ mxðtÞmyðtÞ;
hx2

i yii ¼ mysx þ mym2
x þ 2mxuxy;

hx3yi ¼ 3sxuxy þ 3sxmxmy þ 3m2
xuxy þ mym3

x ;

hxyzi ¼ Uxymz þ uyzmx þ uxzmy þ mxmymz;

hx2yzi ¼ sxmymz þ m2
xuyz þ m2

xmymz þ 2uxzuxy

þ 2uxzmxmy þ 2mxmzuxy þ sxuyz: (8)

Using the first three equations of Eq. (8) and the assumption

that the spatial average for large N is equal to the stochastic

average, the spatial average of Eq. (2) becomes

_mxðtÞ ¼ �ðm3
xðtÞ þ 3mxðtÞsxðtÞÞ þ 3ðsxðtÞ þ m2

xðtÞÞ
þ myðtÞ � mzðtÞ þ I þ cðmxðt� sÞ � mxðtÞÞ;

_myðtÞ ¼ 1� 5ðsxðtÞ þ m2
xðtÞÞ � myðtÞ;

_mzðtÞ ¼ rðSðmxðtÞ � CxÞ � mzðtÞÞ: (9)

In order to close the system (9), we need the evolution equa-

tions for sx(t). This involves other second moments, and the

corresponding evolution equations are obtained using the Ito

chain rule17 and Eq. (8). The second moments satisfy

_sxðtÞ=2 ¼ sxðtÞ½6mxðtÞ � 3m2
xðtÞ � 3sxðtÞ � c�

þ uxyðtÞ � uxzðtÞ þ D;

_syðtÞ=2 ¼ �10mxðtÞuxyðtÞ � syðtÞ;
_szðtÞ=2 ¼ SruxzðtÞ � rszðtÞ;

_uxyðtÞ ¼ uxyðtÞ½6mxðtÞ � 3sxðtÞ � 3m2
xðtÞ � 1� c�

� 10mxðtÞsxðtÞ þ syðtÞ � uyzðtÞ;
_uxzðtÞ ¼ uxzðtÞ½6mxðtÞ � 3sxðtÞ � 3am2

xðtÞ � r � c�
� szðtÞ þ rSsxðtÞ;

_uyzðtÞ ¼ rSuxyðtÞ � uyzðtÞð1þ rÞ � 10mxðtÞuxzðtÞ: (10)

Following the next step in the analogous, analysis of the

large system of excitable two dimensional FitzHugh-

Nagumo neurons43 (see also the analsis of the FitzHugh-

Nagumo neurons without the time-delay in Refs. 13 and 38)

would consists in substitution of the stationary values for the

second moments of Eq. (10) into the Eq. (9) of the first

moments. However, due to relatively complicated form of

the right-hand sides of Eq. (10), the resulting three equations

for the first moments would still be quite difficult to analyze.

Instead, we shall use the numerical continuation method to

perform bifurcation analysis of the system of 9 DDEs (9)

and (10). Predictions of this analysis will then be compared

with numerical solutions of the exact large system.

III. NUMERICAL STABILITY AND BIFURCATION
ANALYSIS OF THE APPROXIMATE SYSTEM

Our goal in Sec. IV will be to demonstrate that the quali-

tative agreement of the approximate and the exact system

extends over a large range of parameters I, c, s, and for rela-

tively small noise D, so that qualitatively different types of

the exact dynamics are correctly reproduced by the approxi-

mate system. Let us stress that our claim will not be that the

time series produced by the exact and the approximate equa-

tions are quantitatively similar, but we shall claim that the

approximate equations correctly predict the qualitative type

of dynamics for parameters in the specified domains.

Given that the complexity of the approximate model

seriously compromises, if not precludes an analytical treat-

ment, one is compelled to consider some means of numerical

bifurcation analysis. Before turning to details, let us point

out that the destabilization of equilibrium generically occurs

via the subcritical Hopf bifurcation. However, this does not

rule out the existence of the more subtle secondary bifurca-

tion phenomena in certain parameter domains, viz., the

Bogdanov–Takens point is indicated for very small weights
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under the moderate stimuli and delays. Focussing on the sub-

critical Hopf bifurcation, the destabilization scenario consists

in that an unstable limit cycle collapses on a stable fixed

point making it unstable, whereas passed the bifurcation pa-

rameter value the trajectory moves over to a stable limit

cycle, located further away in the phase space. Within this

setup, the onset of bursting coincides with a pair of conjugate

characteristic roots crossing the imaginary axes. The numeri-

cal analysis is carried out by implementing the DDE-biftool,

which is a package of flexible Matlab routines appropriate

for handling the systems of differential equations with con-

stant delays.52,53 The calculation of the stability-determining

characteristic roots itself involves two stages: the first, pos-

ing the approximation by the linear multi-step method, and

the correction one, which rests on the Newton iteration

method. Most notably, the software allows for numerical

continuation over the Hopf bifurcation point, making it pos-

sible to switch to an emanating branch of periodic solutions.

The derived bifurcation curves, displayed in Fig. 1, are

intended to demonstrate how the interplay of I, c, D, and s
affects the destabilization of equilibrium for the approximate

model, whereby the fixed point is stable (unstable) below

(above) each of the curves. For instance, from Fig. 1(a), one

reads that under the action of small stimuli, only excessive

delays give rise to destabilization if jcj is decreased. None-

theless, at moderate s, the bifurcation values of I show a

sharp rise for smaller c, whereas they virtually reach satura-

tion in the absence of noise (not shown) or exhibit a very

slow growth once a small amount of noise is introduced, see

Fig. 1(b). Finally, from Fig. 1(c), we learn that for intermedi-

ate I and s, the stronger the weights become, the larger D is

required to destabilize the equilibrium. To reiterate, the for-

mulation of the approximate model is justified if it yields the

correct stability behavior of the equilibrium as compared to

the exact system, a point witnessed later on by plotting the

corresponding factual time series for the parameter values

below and above the obtained bifurcation curves.

IV. NUMERICAL ILLUSTRATIONS

For most part of our computations, we have applied the

Euler method of numerical integration, though at some

instances, the Runge-Kutta fourth and fifth order routines for

the deterministic part of Eq. (2) have also been implemented.

The results are compared with those obtained by the ready-

made programs for solving SDDE provided in the XPP pack-

age.51 Many sample paths of Eq. (2) for the same parameter

values have been computed, but in figures, we represent the

global variable X(t) along the parts of only one typical sam-

ple path and compare these with numerical solutions of the

approximate system of DDEs (9) and (10).

A system of delay differential equations with the time-

lag s is an infinite dynamical system, and the corresponding

initial conditions are given by continuous functions on the

interval [�s,0]. In what follows, we shall always use as the

initial functions the solutions of Eqs. (2) or (9) and (10) with

FIG. 1. (Color online) Bifurcation diagrams for the approximate model reflecting the destabilization of equilibrium via the Hopf bifurcation. Subfigures (a),

(b), and (c) focus on the s(c), I(c), and D(c) dependencies, respectively. The fixed point is stable (unstable) below (above) each of the curves. The remaining

parameter values are I¼ 1.25, D¼ 0 in (a), s¼ 8 and D¼ 0.001 in (b), as well as I¼ 1.29, s¼ 10 in (c).
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c¼ 0 and with specified values of the variables at t¼ 0. If

the values of a given local variable at t¼ 0 are equal for all i,
we shall say that the initial data are equal, and if the local

values at t¼ 0 are Gauss distributed, we shall say that the ini-

tial data are Gauss distributed. In this case, the initial data

for Eqs. (9) and (10), i.e., the values of the first and the sec-

ond moments at t¼ 0, are fixed by the Gaussian distribution

of the local variables.

Of course, the dynamics of the global variables along

the sample paths of the exact system (2), which is stochastic

for D= 0, can not be exactly reproduced by the orbits of the

deterministic approximate models (9) and (10). However,

the qualitative dependence on the parameters and their bifur-

cation values are still well predicted. Furthermore, the differ-

ence between the values of the global variables on different

sample paths for the same values of the parameters is already

at D¼ 0.001 of the same order as the difference between the

values given by the approximate model and any of the sam-

ple paths.

Apart from the qualitative agreement between the exact

system and the approximate model in terms of equilibrium

destabilization, an additional gain would be to determine

whether there are parameter regions that warrant the close

quantitative match between the corresponding time series of

global potentials, designated X and Xapp in the remainder of

the paper. By common logic, one expects this to be fulfilled

in the absence of noise. However, the comparison of the data

obtained for the exact system extended to N¼ 200 neurons

and the approximate model (Fig. 2) under the analogous ini-

tial conditions shows the two series converging irrespective

of the large D. Here, it should be cleared out that the exhib-

ited tendency persists beyond the displayed time interval.

Such an outcome makes it explicit how the possible overlap

between X(t) and Xapp(t) is also influenced by the parameters

other than noise, notably the stimulation current. What mat-

ters about the particular value I¼ 1.3 is that it would be suffi-

cient to induce bursting in the noiseless case if the rest of

parameters were to remain as in Fig. 2.

In view of the stated above, we proceed to the analysis

of the sets of data provided by the exact system and the ap-

proximate model under the analogous initial conditions. The

results are compared for the parameter values lying below

and above the bifurcation curves from Fig. 1. The validity of

the s(c) dependence displayed in Fig. 1(a) is exemplified by

the time series in Fig. 3, where the delay is gradually

FIG. 3. (Color online) Destabilization

of equilibrium under the increase of s.

We argue for the qualitative agreement

between the approximate model and the

exact system in a sense that their time

series should reflect how the fixed point

is stable (unstable) for the parameter val-

ues lying below (above) the bifurcation

curve in Fig. 1(a). For sub-bifurcation

delay s¼ 2 in (a), the quiescent behavior

is asymptotically stable. Once above the

bifurcation value, the neurons first

engage in periodic bursting, as seen at

s¼ 9 in (b), whereas further enhancing

the delay gives rise to bursting shown

for s¼ 25 in (c) and s¼ 50 in (d). The

remaining parameters take values

I¼ 1.25, c¼�0.8, D¼ 0, and N¼ 70.

FIG. 2. (Color online) Examining whether there are parameter regions that

favor precise matching between X(t) and Xapp(t), provided the initial condi-

tions are analogous. Throughout the paper, we adhere to a representation

scheme where the exact series are shown by the black solid lines, while the

approximate data are displayed by the dotted lines, coded orange (light

gray). Contrary to the common logic, there are instances of close quantita-

tive agreement of the data sets even under large D. Here, the parameter val-

ues are N¼ 200, I¼ 1.3, c¼ 1, s¼ 10, and D¼ 0.04.
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increased keeping the remaining parameters fixed. For s
below the bifurcation threshold, there are only relaxation

oscillations of the global potentials X and Xapp, whereas just

above it, one encounters the fixed point destabilized, as the

regime of periodic spiking sets in. Further enhancement of s
leads to an onset of bursting. Aside from the fact that the ap-

proximate model reproduces all of the major regimes exhib-

ited by the exact system, it strikes that the approximate

series seem to best fit the exact one for very large s¼ 50.

Figure 4 illustrates the qualitative agreement between

the data obtained and the I(c) dependence from Fig. 1(b).

Again, we find the damped oscillations below the bifurcation

current and the bursting regime taking place above it. In the

former case, X(t) and Xapp(t) provide an excellent match

under the analogous initial conditions, whereas they are

slightly shifted in the latter. On the qualitative side, the

above argument also holds up for the displayed in Fig. 5 that

relates to the D(c) bifurcation diagram in Fig. 1(c). However,

the greatest departing so far between the approximate model

and the exact system deserves some additional attention. The

reason behind this lies in the stimulus value I¼ 1.29, which,

connoted with the remaining set of parameters, makes the

induced bursting exclusively noise-driven. With this in

mind, one cannot expect the deterministic approximate sys-

tem to replicate the exact dynamics of the stochastic one

with any significant fidelity. On a final note, the proposed ap-

proximate model is put to the test by considering the noise-

less and the delay-free case, where the perfect match with

the exact series should occur. To this end, we compared the

data obtained for the damped oscillations and the bursting re-

gime, recovering a complete agreement in either event (see

Fig. 6).

All the examples of the different dynamical phenomena

illustrated so far have been obtained for relatively strong

coupling c¼ 1 or c¼�0.8 between the neurons. Figure 7 is

intended to illustrate the changes introduced by decreasing

the coupling. Strong coupling prompts synchronization

between the neurons which is only slightly perturbed by

small noise. Thus, the local bursters discharge in an almost

synchronous fashion and the global averages also display

clear burst with large amplitude. This is illustrated in Figs.

7(a)–7(c) by showing only one burst in the exact dynamics

of X(t), the dynamics of its approximation Xapp(t) and x1(t)
versus x8(t). Xapp(t) is qualitatively similar to X(t), and all

pairs of local bursters xi(t), xj(t) are almost synchronous. On

the other hand, weak coupling also implies synchronous dy-

namics of local bursters with zero noise, but this synchrony

is completely destroyed by arbitrarily small noise. Because

of this noise induced de-synchronization, the global variables

only display dumped bursting as is illustrated in Fig. 7(d).

The stationary state is unstable, but the individual bursting is

de-synchronized, so that spatial averaging only produces

dumped bursting in global variables. The approximate model

correctly predicts that the stationary state is unstable, but it

undergoes clear bursting dynamics which is quantitatively

different from the exact system global variables. Figure 7(f)

shows that the weakly coupled local bursters are completely

de-synchronized by the small noise.

It is expected that the estimates of the critical parame-

ter values corresponding to different bifurcations that are

provided by the approximate models (9) and (10) become

more accurate as the number of units of the exact system is

increased. For example, consider the transition from the

bursting dynamics (with the unstable stationary state) that

occurs in the approximate system for the fixed parameter

values, s¼ 8, c¼ 1, D¼ 0.001, somewhere between

I¼ 1.275 (stable, no bursting) and I¼ 1.295 (unstable,

bursting). This transition occurs in exact system with

FIG. 4. (Color online) System dynamics

undergoes transition from asymptoti-

cally stable quiescence to bursting under

the increase of I in correspondence to

the bifurcation diagram displayed in Fig.

1(b). X(t) and Xapp(t) under the analo-

gous initial conditions are obtained for

I¼ 1.29 in (a) and I¼ 1.32 in (b), with

the rest of parameters being s¼ 8, c¼ 1,

D¼ 0.001, and N¼ 70.
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N¼ 70 for the same parameter values and in the indicated

interval of I. This is illustrated in Fig. 8. On the other hand,

the exact system with N¼ 65 for the same fixed parameters

and for I¼ 1.275 has an unstable stationary state and the

global dynamics displays bursting. For N¼ 65, the cessa-

tion of bursting and stabilization of the stationary state

occurs somewhere between I¼ 1.22 (stable, no bursting)

and I¼ 1.23 (unstable, bursting). The critical value of I for

N¼ 50 is between I¼ 1.2 (stable, no bursting) and I¼ 1.22

(unstable, bursting), which is even further away from the

value estimated with the approximate system than in the

N¼ 65 case. For N¼ 10 the transition occurs between

FIG. 5. (Color online) Prompted by the

increasing noise, the system dynamics

undergoes transition from stable quies-

cent behavior to bursting, as anticipated

by the bifurcation diagram in Fig. 1(c).

The noise values are D¼ 0.01 in (a) and

D¼ 0.057 in (b), with the remaining pa-

rameters set at I¼ 1.29, s¼ 10, and

N¼ 70. X(t) and Xapp(t) depart from

each other, in particular, for the ascend-

ing and the descending sections of bursts

being much sharper in the latter, as the

observed transition is exclusively driven

by noise.

FIG. 6. (Color online) Comparison

between X(t) and Xapp(t) under the anal-

ogous initial conditions in the noiseless

and the delay-free case. Increasing I,
there is an excellent agreement both for

the damped oscillations and the bursting

regime. The results are presented for

I¼ 1.265 in (a) and I¼ 1.272 in (b), with

the remaining parameters being c¼ 1

and N¼ 70.
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I¼ 1.15 (stable, no bursting) and I¼ 1.17 (unstable burst-

ing). We see that, as expected, the estimated critical value

becomes more accurate as the number of units in the exact

system is increased.

V. SUMMARY AND DISCUSSION

We have studied stability and bifurcations that induce

the bursting dynamics of the global variables of a large en-

semble of coupled bursting neurons. Each of the neurons is

represented by Hidmarsh-Rose model which is known to be

able to display the bursting dynamics for sufficiently strong

external perturbation. Influence of noise is modeled by addi-

tive white noise in each neuron. It is supposed that each neu-

ron is coupled to all other neurons by electrical junctions and

the synaptic delays are explicitly included. It is also assumed

that all neurons are equal and interact via synapses of equal

efficiency. This is justified if the neurons are assumed to

occupy nearby positions in the brain cortex. For example,

such a collection of similar neurons would be found in a

patch of the brain cortex monitored by a single electrode of

an EEG measurement. Another possibility, which could also

be analyzed by the methods of this paper, would be to

assume random uniform distributions with small fluctuations

of the internal parameters, the interaction constants, and the

time-lags.

FIG. 8. Illustrates that, for N¼ 70, the

bifurcation value of the parameter I,
which implies destabilization of the sta-

tionary state and the transition to the

bursting dynamics of the global varia-

bles in the exact system (a), is predicted

by the approximated model (b) with the

accuracy better than two percent. Accu-

racy for smaller N is commented in the

main text. The parameters are I¼ 1.275

(dotted), I¼ 1.295 (full), and c¼ 1,

D¼ 0.001, s¼ 8.

FIG. 7. Illustrates the influence of the coupling strength c on the bursting global dynamics in the case when the parameters I¼ 3, s¼ 0, D¼ 0.001 are such

that each individual neuron is bursting. In (a) (exact) and (b) (approximate), c¼ 1 and in (d) and (exact) (e) (approximate), c¼ 0.1. In (c) c¼ 1 and (f) c¼ 0.1,

x1(t) vs. x8(t) are shown.
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Thus, the model is given by a large set of stochastic

delay-differential equations. We have focused on the dynam-

ics of the collective variables represented as the spatial aver-

ages of the local ones.

Typical assumptions of the mean field approach are

used to derive the set of nine deterministic delay-differential

equations for the first and the second moments of the collec-

tive variables. The main assumption in the derivation is that

the system represents an ensemble of Gaussian distributed

independent random variables. One expects this to be a plau-

sible assumption if the intensity of the noise and the coupling

are not very large.

Various bifurcations due to variations of different pa-

rameters I, c, s, D are observed in the dynamics of global

variables of the exact system with large number of units, and

the bifurcation values are compared with those predicted by

the approximate model with only nine deterministic equa-

tions. It is observed that variations of any of the parameters

I, c, s, D can destabilize the quiescent global behavior and

introduce bursting. Domains in the parameter space corre-

sponding to stable quiescent behavior or to the bursting of

the collective variables of the large exact system are cor-

rectly predicted by the approximate model. The predictions

of the approximate model become more accurate as the num-

ber of units is increased. In this sense, the approximate

model represents a very useful tool for an efficient numerical

treatment of the global dynamics of the large system of

delayed coupled noisy bursters.

It would be interesting to extend this type of analysis on

the system of bursters coupled by some model of the chemi-

cal synapse.
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