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We study the onset and the adjustment of different oscillatory modes in a system of excit-
able units subjected to two forms of noise and delays cast as external or internal according
to whether they are associated with inter- or intra-unit activity. Conditions for stability of a
single unit are derived in case of the linearized perturbed system, whereas the interplay of
noise and internal delay in shaping the oscillatory motion is analyzed by the method of sta-
tistical linearization. It is demonstrated that the internal delay, as well as its coaction with
external noise, drive the unit away from the bifurcation controlled by the excitability
parameter. For the pair of interacting units, it is shown that the external/internal character
of noise primarily influences frequency synchronization and the competition between the
noise-induced and delay-driven oscillatory modes, while coherence of firing and phase
synchronization substantially depend on internal delay. Some of the important effects
include: (i) loss of frequency synchronization under external noise; (ii) existence of char-
acteristic regimes of entrainment, where under variation of coupling delay, the optimized
unit (noise intensity fixed at resonant value) may be controlled by the adjustable unit (var-
iable noise) and vice versa, or both units may become adjusted to coupling delay; (iii)
phase synchronization achieved both for noise-induced and delay-driven modes.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Generation of different oscillatory modes and their mutual adjustment constitute the basic paradigm behind the local and
cooperative dynamics in a wide variety of biological and inorganic systems. Modeling complex multi-scale systems often
consists in singling out the components showing typical and well controllable behavior into a few selected degrees of free-
dom, whereas their interactions incorporate explicit time-delays and different forms of noise. The stochastic component is
intended to approximate variations within the embedding environment, as well as the fluctuations due to processes taking
place at smaller spatial and temporal scales. The delays typically emerge due to complexity of interactions. In particular, the
origin of delay between a sending and a receiving element may be linked to (i) intrinsic times of signal generation in the
sending element, (ii) the finite propagation velocity of signals, and (iii) the latency in signal processing of the receiving ele-
ment [1]. By their characteristic spatial and time-scales, the delays and sources of noise can naturally be associated with the
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degrees of freedom pertaining to a single unit (‘‘internal’’ noise and delays) or those related to the interactions between the
units (‘‘external/interaction’’ noise and delays).

The existence of multiple noises and delays, together with the vast separation of characteristic time scales of the under-
lying processes, are inevitable features accompanying the modeling of many different biological systems. While the mere
presence of these ingredients may be though of as universal, the prevalence of one type of noise/delay over the other in re-
gard to impact on the system dynamics is an individual feature of any particular system. For instance, the external (synaptic)
noise is the dominant factor in the evolution of neuronal systems [2], whereas the internal (biochemical) noise, arising due to
small numbers of reactants’ molecules [3], is likely the most prominent form of noise for the dynamics of gene expression
regulatory networks [4,5]. Nonetheless, in neuronal systems the conduction delays of type (ii) are manifested more strongly
than the delays of type (iii), while in gene networks the coupling delays of types (i) and (iii) occur naturally due to multistage
synthesis of the reactants and the complex kinetics of intercellular signaling [5,6]. Regarding the photosynthesis and the re-
lated photo-respiration cycle, it has been indicated that the primary stochastic component comes from biochemical noise
due to small numbers of reacting molecules [7], whereas the delay may be associated with the multistage assembly of reac-
tants, the processes one would expect to naturally involve memory effects. Notably, there is ample evidence that in many
biological systems noise and delay, alone or combined, play a significant role. Apart from the well known impact of these
ingredients on neuronal systems [8–12], it has also been found that noise substantially affects the gene expression
[13–15]. Also, the delayed negative feedback loops induce oscillations in gene transcription networks [16,6], whereas the
interplay of randomness and delay has been demonstrated to accelerate signaling in genetic pathways [17,18,6]. As for
photosynthesis, it has been suggested that the optimal amount of noise may enhance efficiency of energy transfer at certain
stages of the process [19].

In this paper, the aim is to study in detail the interplay of internal and interaction delays and noise on formation and
adjustment of oscillatory modes. This issue is especially intricate if the system is not made up of autonomous oscillators,
but rather of excitable units [20]. Excitability rests on the point that equilibrium is poised close to a bifurcation toward
periodic activity, whereby a unit may produce oscillations under permanent perturbation. If additional ingredients, such
as delays, lead to coexistence of equilibrium and certain oscillatory states, then it becomes interesting to examine how excit-
ability feature is modified due to multistability. Note that the body of work referring to models involving coaction of noise
and delays is significantly less compared to those where either of them acts alone. Reluctance to consider nonlinear stochas-
tic models with delays is mainly caused by the fact that the underlying systems of nonlinear stochastic delay-differential
equations (SDDEs) are rarely tractable analytically [21,22].

The research here is focused on interaction of stochastic excitable units, whose dynamics is influenced by the coupling
and intrinsic delays. We consider a pair of Fitzhugh–Nagumo (FHN) elements, which may be viewed as a basic motif of some
complex network. While two distinct forms of perturbation are included as additive noise within the fast and slow subsys-
tems, the model also features two types of delays, one incorporated into the coupling terms and the other related to the
recovery mechanism of individual units. Our main goal is to study the particular roles and the co-effects of internal and inter-
action noise and delays on stability of equilibrium and the onset of different oscillatory modes, further examining regularity
of spiking and certain forms of coordinated behavior cast within the framework of stochastic synchronization. Note that the
combined effects of two types of noise on a single unit have been considered in [23,24], whereas synchronization of inter-
acting stochastic units in the absence of coupling delays has been analyzed in [25,26]. On the other hand, the results on bifur-
cations and stability of exact synchronization in the unperturbed system admitting interaction delays have been reported in
[27]. Compared to these studies, the novel points here concern (i) the presence of internal delays in each unit, (ii) application
of several analytical techniques on the underlying model, including calculation of the stability conditions for the linearized
system under perturbation and the method of statistical linearization, as well as (iii) putting emphasis on the competition
between the noise-induced and delay-driven oscillatory modes, especially in terms of how it is reflected on the frequency
and phase synchronization between the units.

The paper is organized as follows. Section 2 concerns the details of the model, specifying the background and the role of
the introduced stochastic terms and delays. Section 3 provides the analysis on stability of a single unit. Apart from consid-
ering the local and global bifurcations controlled by intrinsic delay in the deterministic system, we derive the appropriate
Fokker–Planck equation and determine stability conditions for the first two moments of the linearized system under pertur-
bation. Method of statistical linearization is applied to study how coaction of noise and delay affects the unit’s oscillatory
motion. In Section 4, a pair of interacting units is approached by performing bifurcation analysis for the noiseless case, which
demonstrates the prevalence of bistable regimes, either between equilibrium and the oscillatory states or between the dif-
ferent oscillation modes. Section 5 contains numerical results, intended to gain insight into the competition between the de-
lay- and noise-driven modes. The issues of spiking coherence and stochastic synchronization are systematically examined
under variation of delays, while letting the noise amplitudes take values below, about and above the resonant ones. Conclud-
ing remarks are provided in Section 6.

2. Details of the applied model

We consider a couple of identical excitable elements subjected to two types of noise and delay. In its most general form,
the model dynamics is given by



3204 I. Franović et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 3202–3219
�dxi ¼ ½xi � x3
i =3� yiðt � sinÞ�dt þ

ffiffiffi
�
p ffiffiffiffiffiffiffiffiffi

2Di
1

q
dWi

1 þ c½xjðt � sexÞ � xiðtÞ�dt;

dyi ¼ ðxi þ bÞdt þ
ffiffiffiffiffiffiffiffiffi
2Di

2

q
dWi

2; ð1Þ
where i; j 2 f1;2g; i – j denote unit indices. Parameter � ¼ 10�2 is set to a small value to ensure a sharp time scale separation
between the activator variables xi and the respective recovery variables yi. In the context of neuroscience, FHN model is re-
garded as phenomenological, but an analogy may still be drawn between the behavior of the fast variables and the evolution
of membrane potential [20]. One may further compare the action of slow variables to a group of complementing relaxation
processes, where the most salient is driven by the potassium gating channels. The terms dWi

1 and dWi
2 stand for the stochas-

tic increments of the independent Wiener processes. Their expectations and correlations satisfy hdWi
kðtÞi ¼ 0 and

hdWi
kðtÞdWj

lðt0Þi ¼ dkldijdt, having introduced k; l 2 f1;2g to distinguish whether noise acts within the fast or slow subsystem
of each unit. Extending the above arguments, the role of stochastic terms in xi dynamics may be compared to synaptic noise,
made up of random inputs continuously impinging on any given cell from its peer neurons. Note that the synaptic noise con-
stitutes by far the most important noise source in cortical neurons, arising due to the combination of sustained irregular
activity and the typically high connectivity of units [2]. As for the stochastic terms in yi dynamics, one may conditionally
interpret them as thermal noise triggering the random conformation changes of ion-gating channels in the neuron’s semi-
permeable membrane [23,28]. Since the random fluctuations introduced into fast-variable subsystems may be attributed to
the effects of surrounding, whereas the stochastic component in the yi dynamics may be associated with the intra-unit
sources, in the rest of the paper we refer to them as external and internal noise [2], respectively.

The form of interaction between the excitable units depends on the particular physical system the model refers to. The most
elementary interaction is given by the linear coupling, which in neuronal modeling conforms to electrical synapse. The differ-
ence between the characteristic time-scale of xiðtÞ and the one at which the interactions take place justifies the assumption
that the coupling terms should include an explicit time-delay sex. The latter corresponds to the time it takes an excitation
to travel between the two connected units at finite propagation speed. Parameter c characterizes the coupling strength. Fol-
lowing a more detailed analysis of (1), one may argue that there are three qualitatively different domains of c values. For suf-
ficiently small c, the units act as if they were independent. Nonetheless, in the noiseless and delay-free case, for comparably
large c the total system behaves as a single multidimensional oscillator. Adding noise and delay then induces only quantitative
changes in the properties of the multidimensional oscillations. Therefore, c is fixed to an intermediate value c ¼ 0:1, so that
variation of delay and noise may introduce qualitative changes in the system dynamics.

Our model also features the intrinsic time delay sin, which is an order of magnitude smaller than the characteristic time-
scale set by yiðtÞ. Its role is to modify the relaxation process by influencing the refractory stage after a spike has been elicited.
In terms of neuronal modeling, if the analogy between the dynamics of yiðtÞ and the ion-gating channels is accepted, one
should also appreciate the point that the channels themselves are composed of subunits which have to act in concert to reach
the open state. The time necessary to do so, accounted for by sin, effectively becomes prevalent in the ‘‘slope’’ describing
recovery of xiðtÞ to the rest state. In a broader sense, sin specifies an intermediate time-scale, nested between the ones de-
fined by xiðtÞ and yiðtÞ. Such a setup is not unlike the already considered scenario where the FHN units are exposed to colored
noise [29], whose correlation time lies betweenOð�Þ andOð1Þ. Note that though the internal delay and internal noise may be
conditionally associated with the dynamics of ion-channel gating, the mechanisms contributing them are independent. To
clarify this, one may invoke a comparison between a certain system influenced by inherent randomness, e.g. internal noise,
and a system where the stochastic component coexists with the memory effects. While the former would be described by a
set of stochastic differential equations, the dynamics of the latter would be represented by a system of stochastic delay-dif-
ferential equations, where the terms accounting for the noise and delay are not related.

To briefly explain excitability, let us temporarily confine the discussion to an isolated unit with sin ¼ 0. Excitability rests
on the proximity of equilibrium to a bifurcation toward the oscillatory state. FHN model belongs to type II excitability class,
which implies that the unit undergoes direct supercritical Hopf bifurcation at the critical threshold [20]. In our case, the
bifurcation parameter is b, whose critical value is given by jbj ¼ 1: for jbj > 1 the unit lies at equilibrium, whereas for
jbj < 1 there exists a limit cycle. Since (1) is invariant under the transformation ðxi; yi; bÞ�!ð�xi;�yi;�bÞ, it suffices to con-
sider only the case b > 0. For a slightly supra-critical b, say b ¼ 1:05, the value fixed throughout the paper, a unit is in the
excitable regime: under weak perturbation, it rapidly relaxes back to equilibrium, but an adequate perturbation may elicit
a spike, associated with the representative point making a large excursion in phase space before equilibrium is regained.

In model (1), the oscillation modes can be induced by any of the time delays or by any of the noise terms. It is well known
that sex introduces oscillatory motion via the local Hopf or by the global fold-cycle bifurcation, whereby a similar point will
be shown for sin. The modes derived from these two scenarios are rather different. Nonetheless, under permanent perturba-
tion, excitable units generate oscillations, which can become coherent at an optimal noise intensity. Two profoundly distinct
resonance mechanisms have been established for the additive noise influencing either the activator or the recovery variable.
In case of coherence resonance (CR), occurring under internal noise, the stochastic limit cycle is just the precursor of the
deterministic one [30,31]. Its phase portrait is akin to the those found in relaxation oscillators, with the two pieces of slow
motion Oð1Þ connected by the two fast transients Oð�Þ, see Fig. 1(a). The resonance mechanism is based on a trade-off be-
tween the durations of the activation and the relaxation times. Nevertheless, in case of self-induced stochastic resonance
(SISR), taking place under external noise, the phase portrait of the stochastic cycle is substantially different from the one
found in the supercritical deterministic system [31,24], especially with respect to escape from the refractory and the spiking
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Fig. 1. (a) and (b) show phase portraits typical for oscillations induced by internal and external noise, respectively. The noise intensities D2 ¼ 0:0021 and
D1 ¼ 0:0009 are close to resonant values. In the CR case, the orbit follows the refractory and the spiking branch given by the activator nullcline x� x3=3 ¼ y,
whereas the points of escape from the branches approximately coincide with the knees ðxl; ylÞ ¼ ð�1;�2=3Þ and ðxr ; yrÞ ¼ ð1;2=3Þ of the nullcline. Under the
SISR scenario, the stochastic limit cycle is not the precursor of the deterministic one. In the insets are displayed the corresponding xðtÞ series.
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branches, cf. Fig. 1(b). The resonance mechanism is much more intricate, and is based on keeping the phase point frustrated
at the refractory branch so it can never reach the branch’s knee. In qualitative sense, note that the action of internal noise has
a clear interpretation, as it modifies the position of the recovery variable’s nullcline, given by xi ¼ �b. This can make the
equilibrium unstable, temporarily pushing the system over the critical threshold. Role of external noise cannot be inter-
preted in a similar fashion.

Given the arguments above and the stated objective to understand the interplay of noise, sex and sin on systems of excit-
able units, we treat the cases with external and internal noise separately. This is done so because otherwise the co-effects of
noise terms and the co-effects of noise and delays become rather difficult to distinguish.
3. Analysis of the single unit’s dynamics

3.1. Derivation of the Fokker–Planck equation

Having made an overview of the dynamics exhibited by a single unit under the influence of noise, let us turn to the anal-
ysis of the co-effects of noise and the internal delay. Our intention is to first illustrate the obstacles one is faced with when
attempting to tackle this problem via the Fokker–Planck formalism. To this end, we derive the appropriate Fokker–Planck
equation assuming the general case of a unit subjected to both external and internal noise (c ¼ 0;D1 > 0;D2 > 0). Since
system (1) features only additive noise, the result is independent on whether Itō or Stratonovich interpretation has been
adopted [32]. To begin with, note that the probability distribution of x and y is defined by pðx; y; tÞ ¼ hd½xðtÞ � x�d
½yðtÞ � y�i, where h�i denotes averaging over the realizations of the stochastic processes, and the unit index has been dropped
for simplicity. Taking the time derivative of the above expression and using the properties of the Dirac delta function, one
arrives at
@
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@x
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where the notation ysin
� yðt � sinÞ; n1ðtÞ ¼ dW1=dt; n2ðtÞ ¼ dW2=dt, as well as f ðxðtÞ; ysin

Þ ¼ ½xðtÞ � x3ðtÞ=3� yðt � sinÞ�=�;
gðxðtÞÞ ¼ xðtÞ þ b has been introduced for shorthand. The averages containing stochastic terms can be handled by the Furu-
tsu–Novikov formula [21], which here results in
hd½xðtÞ � x�n1ðtÞi ¼
Z t

0
hn1ðtÞn1ðt0Þi

dfd½xðtÞ � x�g
dn1ðt0Þ

� �
dt0 ¼ dfd½xðtÞ � x�g

dn1ðtÞ

� �
ð3Þ
and the analogous relation for hd½yðtÞ � y�n2ðtÞi, having applied hn1ðtÞn1ðt0Þi ¼ dðt � t0Þ and hn2ðtÞn2ðt0Þi ¼ dðt � t0Þ. Employing
again the properties of the delta function, the functional derivative in (3) may be written as
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The results so far refer to the final two terms on the right side of (2). Regarding the first term, by using the law of total expec-
tation, it follows that
hd½xðtÞ � x�d½yðtÞ � y�f ðxðtÞ; ysin
Þi ¼

ZZZ
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Under general conditions, one cannot assume the statistical independence between xðtÞ and yðtÞ on one hand and yðt � sinÞ
on the other. Therefore, the probability pðx; y; ysin

Þ may only be written in the form pðx; y; ysin
Þ ¼ pðysin

jx; yÞpðx; yÞ, where
pðysin

jx; yÞ presents the conditional probability of finding ysin
at the moment t � sin, provided that ðxðtÞ; yðtÞÞ ¼ ðx; yÞ. Inserting

the expression for pðx; y; ysin
Þ into (7), we find
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where the last term on the right constitutes the so-called conditional drift [22,21,33]
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emerging due to non-Markovian character of the SDDE system (1). Collecting the above results and substituting them into
(2), we obtain the Fokker–Planck equation for a FHN unit subjected to external and internal noise, as well as internal delay
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The standard way to proceed would be to determine the stationary solution of (10), whereby the conditions for system’s sta-
bility should be inferred by calculating the parameter values under which the stationary distribution can no longer be nor-
malized [21]. The main obstacle for completing this task lies in the inability to resolve the conditional drift term (9)
analytically, which forces us to explore other means of estimating the co-effects of noise and internal delay on stability of
the stationary solution.

3.2. Deterministic system and stability of the linearized system under stochastic perturbation

To get a sense on the impact of sin on the dynamics of a single unit, we analyze its behavior in the deterministic case,
obtained from (1) by setting c ¼ 0;D1 ¼ 0;D2 ¼ 0. The index of the selected unit has again been dropped for simplicity. Sta-
bility of the stationary solution is determined by the roots of the characteristic equation. The first step in deriving the latter is
to linearize the system describing the isolated unit around the fixed point ðx0; y0Þ ¼ ð�b;�bþ b3

=3Þ. Assuming that the devi-
ations are of the form dxðtÞ ¼ Aekt

; dyðtÞ ¼ Bekt and dyðt � sinÞ ¼ Bekðt�sinÞ, one arrives at a system of algebraic equations over
the coefficients A and B. The condition for this system to possess a nontrivial solution is provided by the characteristic
equation
�k2 � kð1� b2Þ þ e�ksin ¼ 0; ð11Þ
whose transcendental form reflects the presence of time delay in the unit’s dynamics [34–36]. For the parameter values
ð�; bÞ ¼ ð0:01;1:05Þ kept throughout the paper, we have numerically found that the two complex-conjugate roots of (11)
cross the imaginary axes at sH

in ¼ 0:118, which indicates the onset of a limit cycle via Hopf bifurcation. Note that the roots

of (11) obtained for small sin; k� ¼ 1þsin�b2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þsin�b2Þ

2
�4�

p
2� , imply that the addition of intrinsic delay drives the system away

from the critical threshold of the Hopf bifurcation controlled by the parameter b, meaning that a unit becomes less excitable.
Nevertheless, it turns out that the complete knowledge on the system’s behavior with sin cannot be gained by performing

just the local bifurcation analysis. Apart for the Hopf bifurcation, sin gives rise to another oscillatory mode by inducing a



I. Franović et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 3202–3219 3207
global (direct) fold-cycle bifurcation in which an unstable and a large stable limit cycle are born. This global event occurs
around sFC

in ¼ 0:106, a value smaller than sH
in. Since the fold-cycle bifurcation does not affect the local stability of the fixed

point, a deterministic unit exhibits bistability, i.e. coexistence between the equilibrium and the limit cycle within the inter-
val sFC

in < sin < sH
in. However, we also report on an interesting interplay between the local and the global bifurcation for

sin > sH
in. It turns out that the incipient cycle, emerging around the position of the former equilibrium for sin ¼ sH

in grows only
until colliding with the unstable cycle born in the global bifurcation. These two cycles get annihilated in an inverse fold-cycle
bifurcation, such that the large cycle, created in the direct fold-cycle bifurcation at sin ¼ sFC

in , remains as the only attractor.
Phase portrait of the large cycle is substantially distinct from those of cycles emerging due to noise, cf. Fig. 2(a) and what
is shown in Fig. 1(a) and (b). The apparent differences in the relaxation stage are consistent with the role of sin, as explained
in Section 2.

Intuitively, adding external or internal noise to physical picture governed by sin could result in several effects. For
sin < sFC

in , a coherent noise-driven mode will emerge at an optimal noise-intensity, whereas rare spiking or fast incoherent
spiking will occur at small or large noise intensities, respectively. Within the interval sFC

in < sin < sH
in, the system is likely

to become monostable even for very small noise, because stability of equilibrium would be rather sensitive to its presence.
The similar point on the loss of bistability also applies to sin values slightly above sH

in, where the deterministic system dis-
plays coexistence between a small and a large limit cycle. For any sin > sFC

in , under increasing noise one is likely to first
encounter competition between the delay- and the noise-driven mode, whereas at some point, the stochastic component
would overwhelm the deterministic one. We point out that the period of the mode elicited by sin is typically larger than
the average ISI characterizing the noise-led oscillations, cf. T ¼ 4:44 for the cycle in Fig. 2(a) vs hTi ¼ 3:8 for that in
Fig. 1(a). This will prove useful in interpreting the outcome of the competition between the noise- and delay-driven modes
later on.

Before considering the effects of perturbation on stability, we make a brief qualitative remark on the interplay of internal
noise and sin. For small sin, one can expand the term yðt � sinÞ to first order yðt � sinÞ � yðtÞ � sin

dy
dt, which may be used to

transform the equations for a single unit into
Fig. 2.
former
the kne
setup w
�dx ¼ ðx� x3=3� yðtÞÞdt þ sinðxðtÞ þ bÞdt þ sin

ffiffiffiffiffiffiffiffiffi
2D2

p
dW2;

dy ¼ ðxþ bÞdt þ
ffiffiffiffiffiffiffiffiffi
2D2

p
dW2; ð12Þ
This reveals an interesting point that the co-effect of internal delay and internal noise may actually be treated by drawing an
analogy to a delay-free system subjected to noise in both the slow and the fast variable, whereby the latter is an order of
magnitude smaller than the former. Note that the system described by (12) can be fully analyzed within the Fokker–Planck
formalism.

As a final point on the stability of a single unit, we discuss the stability of the system linearized around the stationary
solution ðx0; y0Þ ¼ ð�b;�bþ b3

=3Þ under stochastic perturbation [21,38,37]. Given that the perturbation is provided by the
Gaussian distributed white noise with zero mean and a delta function autocorrelation, it is sufficient to consider the stability
of the first (hdxðtÞi; hdyðtÞi) and second moments (hdx2ðtÞi; hdy2ðtÞi; hdxðtÞdyðtÞi) of the solution [38,37], where dxðtÞ ¼ xðtÞ � x0

and dyðtÞ ¼ yðtÞ � y0. To derive the equations describing the dynamics of the first moments, one starts off from the linearized
system
(a) (b)

(a) and (b) show phase portraits corresponding to limit cycles born in global fold-cycle bifurcations induced by sin and sex , respectively. Note that the
does not follow the cubic nullcline during the declining stage of spike, whereas the latter’s orbit involves escaping the slow branches before reaching
es of the nullcline. In the insets are shown the corresponding xðtÞ series. (a) is obtained for a single noiseless unit at sin ¼ 0:4, while (b) refers to a
ith interacting noiseless units for ðc; sexÞ ¼ ð0:1;1:2Þ.
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ddxðtÞ ¼ 1
�
½ð1� b2ÞdxðtÞ � dyðt � sinÞ�dt þ

ffiffiffiffiffiffiffiffiffi
2D1

�

r
dW1ðtÞ;

ddyðtÞ ¼ dxðtÞdt þ
ffiffiffiffiffiffiffiffiffi
2D2

p
dW2ðtÞ: ð13Þ
Carrying out integration from 0 to t, taking the expectation and finally differentiating with respect to t, from (13) we arrive at
dhdxðtÞi ¼ 1
�
½ð1� b2ÞhdxðtÞi � hdyðt � sinÞi�dt;

dhdyðtÞi ¼ hdxðtÞidt; ð14Þ
which is completely analogous to the set of equations determining the stability of the unperturbed unit. Thus, stability of the
first moments is readily solved by applying the results reached for the deterministic system.

As far as the equations governing the dynamics of the second moments are concerned, we begin the derivation by taking
the Itō derivative [32,46] of dx2ðtÞ and dy2ðtÞ. If the steps from above are repeated, using the linearized system (12) and the
properties of the stochastic integrals in the Itō interpretation [32], one arrives at
d
dt
hdx2ðtÞi ¼ 2

�
ð1� b2Þhdx2ðtÞi � hdxðtÞdysin

i þ D1

h i
;

d
dt
hdy2ðtÞi ¼ 2hdxðtÞdyðtÞi þ 2D2;

d
dt
hdxðtÞdyðtÞi ¼ 1

�
ð1� b2ÞhdxðtÞdyðtÞi � hdyðtÞdysin

i
h i

þ hdx2ðtÞi: ð15Þ
Stability of the second-order moments can be analyzed by introducing the two-time correlation functions
Cxxðt; t0Þ � hdxðtÞdxðt0Þi, Cyyðt; t0Þ � hdyðtÞdyðt0Þi and Cxyðt; t0Þ � hdxðtÞdyðt0Þi. From (15) one finds that their stationary values

are determined by the noise amplitudes, as well as the parameters � and b : C0
xx ¼ �

D1þD2

1�b2 ; C0
yy ¼ �D2ð1� b2Þ � � D1þD2

1�b2 and

C0
xy ¼ �D2. The system (15) can be linearized about these stationary values, considering the perturbations of the form

Kxx ¼ Cxxðt; t0Þ � C0
xx ¼ Aektekt0 , Kyy ¼ Cyyðt; t0Þ � C0

yy ¼ Bektekt0 and Kxy ¼ Cxyðt; t0Þ � C0
xy ¼ Cektekt0 . For fixed b ¼ 1:05 and

� ¼ 0:01, the ensuing characteristic equation 2�2k3 � 3�k2ð1� b2Þ þ kð1� b2Þ
2
� ð1� b2Þe�ksin ¼ 0 indicates that the stability

of the stationary solution depends solely on sin. It may be shown numerically that the critical value of sin for the second mo-
ments is virtually indistinguishable from the critical threshold sH

in obtained for the first moments.

3.3. Method of statistical linearization

As a means of characterizing the co-effects of noise and sin on the behavior of a single unit, we invoke an approach that
belongs to a corpus of statistical linearization techniques [40,39]. Such methods have originally been developed to gain in-
sight into the interplay of noise and nonlinearity in stochastically perturbed systems. The general idea is to substitute the
nonlinear terms with their stationary values calculated in the self-consistent fashion, whereby the impact of noise on the
system’s dynamics is ultimately reduced to a dependence on the noise amplitude. Note that the latter property is reminis-
cent to what is typically obtained by the mean-field approaches [41–45].

The immediate goal is to translate the original dynamics of a single unit into an analogous two-dimensional Ornstein–
Uhlenbeck process, described by a system of linear SDDEs of the form [46]
dxsðtÞ ¼ �bAxsðtÞdt þ bBdWðtÞ; ð16Þ
where bold letters indicate vectors, bA and bB are the appropriate two-dimensional matrices, and the index s refers to the sta-
tionary process with a zero mean. Principal gain from the transformation is related to the point that the result for the sta-
tionary variance matrix r̂ of an Ornstein–Uhlenbeck process in two dimensions is well known and can be applied to calculate
the second moments of the fast and slow variables. In order to proceed, one is required to introduce two approximations: (i)
sin is small so that the expansion of the term containing delay yðt � sinÞ � yðtÞ � sin

dy
dt to the first order is sufficient, and (ii)

the nonlinear term x3ðtÞ is replaced by x3ðtÞ � hx2itxðtÞ, where the t index on angled brackets denotes a stationary, i.e. time-
averaged quantity.

As an example, we consider the scenario with external noise, which is also preferred given the approximation (i). Moving
to a new set of coordinates shifted for the position of the equilibrium ðx0; y0Þ and having implemented (i) and (ii), one finds
that
bA ¼ �l=� 1=�
�1 0

� �
; bB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D1=�
p

0
0 0

 !
; xs ¼

x

y

� �
; ð17Þ
with l ¼ 1� b2 þ sin � 1
3 hx2it . hx2it may be calculated in a self-consistent fashion by using the expression for the stationary

variance matrix of a two-dimensional Ornstein–Uhlenbeck process [46]



Fig. 3.
bottom

I. Franović et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 3202–3219 3209
r̂ ¼
ðDetbAÞbBbBT þ bA � TrbAbIh ibBbBT bA � TrbAbIh iT

2TrbADetbA ; ð18Þ
where the superscript T refers to a transposed matrix and bI denotes the identity matrix. In particular, one can demonstrate
that from (18) follows
r̂11 ¼ hx2it ¼ �D1=l ¼ �D1 1� b2 þ sin �
1
3
hx2it

� �	
; ð19Þ
which presents a second order equation over hx2it . Given that the solution has to be positive, we finally obtain
hx2it ¼
1
2

3ð1� b2 þ sinÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12D1 þ 3ð1� b2 þ sinÞ

2
q� �

: ð20Þ
Inserting this result into the above expression for l, it is easy to show that l < 1� b2 þ sin holds for any D1 and reasonably
small sin under b ¼ 1:05, the value kept throughout the paper. This is important because the stability of the equilibrium for

the linearized system given by (17) is determined by the characteristic roots k� ¼
l�

ffiffiffiffiffiffiffiffiffiffi
l2�4�
p

2� , where l plays a key role. What
the above point actually means is that the net effect of external noise, contributing via the hx2it term, is to drive the system
away from the critical threshold of the Hopf bifurcation controlled by b. In other words, presence of D1 makes the unit ‘‘less’’
excitable, which is the same type of influence already attributed to sin.

Nevertheless, our main result obtained by the method of statistical linearization concerns the interplay of external noise
and sin. To assess how these ingredients affect the unit’s oscillatory behavior, one may consider the dependence of correla-
tion time tcorr as a function of D1 and sin. The latter provides a useful measure for regularity of oscillations, and may indicate
how the competition between the noise- and the delay-driven mode is resolved for the given parameter set. Note that the
correlation time [29,39] is defined by
tcorr ¼
Z 1

0
jGxxðsÞjds; ð21Þ
where GxxðsÞ stands for the normalized autocorrelation function GxxðsÞ ¼ 1
r2

xx
hxðt � sÞxðtÞit , knowing that hxit ¼ 0. In general,

the expression for the time correlation matrix of a multivariate stationary Ornstein–Uhlenbeck process reads [46]
bGðsÞ ¼ hxðt � sÞ;xTðtÞit ¼ r̂exp½�bAT s�; ð22Þ
which may be applied to calculate tcorr from (21).
Skipping the more involved details of the calculation, here we just report on the results, given in Fig. 3 in terms of the

family of curves tcorrðD1Þ for a set of relevant sin values sin 2 f0;0:1;0:2;0:4g. One first learns that the applied method pro-
vides accurate qualitative predictions regarding the effects of sin: for sin ¼ f0;0:1g there is no delay-driven mode, so the cor-
responding curves lie below the ones for sin ¼ f0:2;0:4gwithin the entire range of D1 values. Also, for larger D1, all the curves
approach each other, indicating that the delay-led behavior is completely overwhelmed by noise. The values of tcorr for
sin ¼ f0:2;0:4g are very large only for small D1 	 10�4 and decay rapidly with increasing noise. The point that tcorr is three
orders of magnitude smaller at intermediate noise D1 	 10�3 than at D1 	 10�4 but is still above the curves for sin ¼ f0;0:1g
implies that some form of coherent motion exists, but is not prevailingly deterministic, i.e. it is not driven by the delay. This
is consistent with the numerical findings on the average ISIs, e.g. at sin ¼ 0:4, the average ISI for D1 ¼ 0:002; hTi ¼ 2:52, is
substantially distinct from hTi ¼ 4:29 obtained for D1 ¼ 0:0001.
Variation of correlation time tcorr with external noise D1 for a single unit, as obtained by the method of statistical linearization. The curves from
to top correspond to sin ¼ 0;0:1;0:2 and 0:4, respectively.
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4. Stability analysis for the system of interacting units

Having considered the issues related to stability of an single unit in presence of noise and sin, here we address the anal-
ogous problem for the system of two interacting FHN excitable elements, which involves coupling delay sex as an additional
ingredient. For the most part, the analysis is focussed on the deterministic version of (1) with c > 0;D1 ¼ D2 ¼ 0. This ap-
proach is taken for two reasons: (i) due to interplay of sin and sex, the deterministic system alone displays intricate behavior,
including bistable regimes between the different oscillatory modes in multiple parameter domains, and (ii), conditions for
stability of the unperturbed system coincide with those for the first moments of the linearized system influenced by noise.
Naturally, the bifurcation analysis to follow will provide a useful tool for interpretation of the numerically obtained results
on the competition between the noise- and the delay-driven modes, serving as the reference point to clearly isolate the sto-
chastic effects.

The characteristic equation describing local stability of equilibrium ðxi; yiÞ ¼ ð�b;�bþ b3
=3Þ; i 2 f1;2g for the determin-

istic version of system (1) reads
Fig. 4.
inverse
Couplin
k2 �k� ð1� b2 � cÞ
h i2

þ 2k �k� ð1� b2 � cÞ
h i

e�ksin � k2c2e�2ksex � e�2ksin ¼ 0: ð23Þ
Given the complexity of the above expression, local stability analysis has been carried out numerically by the DDE� biftool
[47,48], an adaptable package of MATLAB routines suitable for handling the sets of DDE with constant delays. The issue of
particular interest is how the behavior of coupled units is influenced by variation of sin and sex while c is kept fixed. It turns
out that the system undergoes a sequence of supercritical and subcritical Hopf bifurcations, whereby the former (latter) re-
sult in creation of a stable (unstable) limit cycle. Recall that both types of Hopf bifurcation can further be cast as direct or
inverse [49], which indicates whether an unstable two-dimensional manifold for the fixed point appears or vanishes when
crossing the bifurcation curve, causing the fixed point to unfold on the unstable or the stable side, respectively. In the fol-
lowing, we use the notation where the þ=� sign reflects the direct/inverse character of bifurcation, whereas the numerical
indices refer to the order in which the successive branches of bifurcation curves are encountered as sex is increased.

Bifurcation diagram in the sex � sin parameter plane for the moderate coupling strength c ¼ 0:1 is shown in Fig. 4. We
stress that the complete knowledge on the system’s behavior cannot be gained by performing the local bifurcation analysis
alone, since sex and sin each give rise to a global fold-cycle bifurcation as well. Due to global character of such events, the
fashion in which the observed dynamics is shaped may be interpreted as if the effects of coupling were just superimposed
on the behavior governed by the intrinsic properties of units, which results in multistable regimes for most of the relevant
parameter domains. Focussing first on the case sex ¼ 0, we note that the scenario for the onset of oscillations exactly matches
the one that holds for an isolated unit. In brief, under increasing sin, the system first undergoes fold-cycle bifurcation at
sFC

in ¼ 0:106, see the point denoted by an open circle in Fig. 4, and then displays a subtle interplay between the local Hopf
and the global bifurcation around s0

in ¼ 0:118. The latter rests on the fact that the incipient cycle emerging from the Hopf
bifurcation lies enclosed by the saddle-cycle left over from the global bifurcation, which for some weakly supercritical sin

leads to their collision and disappearance following an inverse fold-cycle bifurcation. Consequently, after a small interval
of bistability, the system’s unique attractor for sex ¼ 0 and sin 
 s0

in is the large cycle, whose existence is unaffected by
the local bifurcations.

On the other hand, for sin ¼ 0, one finds that a fold-cycle bifurcation controlled by sex occurs around sFC
ex ¼ 1:16, cf. the

black circle in Fig. 4. Therefore, in terms of stability, the system lies in the stationary state for sex < sFC
ex ; sin < sFC

in , whereas
the domain sex J sFC

ex ; sin < sFC
in is characterized by a coexistence between the fixed point and a limit cycle, whose basins of

attraction are separated by the saddle-cycle created in the global bifurcation. Note that the large cycles emerging from
the global bifurcations evoked by sex or sin have very distinct phase portraits, cf. Fig. 2. The orbit of the former mostly follows
Bifurcation diagram sex � sin for the two interacting units in the noiseless case. Stability of equilibrium is influenced by a sequence of direct and
supercritical and subcritical Hopf bifurcations. Critical values for the global fold-cycle bifurcations are indicated by an open and solid circle.
g strength is set to c ¼ 0:1.
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the cubic nullcline, whereas the latter one’s traverses a large section away from the nullcline. Furthermore, the period asso-
ciated with oscillations at sFC

ex ; T� ¼ 2:42, is significantly smaller than T� ¼ 3:96.
Let us now turn to the sequence of local bifurcations occurring under increasing sex for sin J s0

in. In the domain indicated
by an open up-triangle in Fig. 4, stability of equilibrium is regained as a result of an inverse subcritical Hopf bifurcation
which the system undergoes at s1;�. This means that the region s1;� < sex < s2;þ admits a bistable regime where the large
cycle and the stationary state coexist. Note that the unstable cycle born in the Hopf bifurcation acts like a threshold switch-
ing between the two stable solutions. Stepping into the area marked by a solid up-triangle in Fig. 5, the equilibrium becomes
unstable due to a direct supercritical Hopf bifurcation at s2;þ. However, one finds that another bistable regime is established,
which involves coexistence between two limit cycles, a large one created in the fold-cycle bifurcation and the other emerg-
ing from the Hopf bifurcation. Crossing the curve s3;� from below, cf. the domain marked by an open down-triangle in Fig. 5,
the fixed point loses an unstable plane due to an inverse subcritical Hopf bifurcation, thus becoming stable again. In the re-
gion bounded by s3;� and s4;þ, bistability between two oscillatory states is replaced by a regime where the stationary state
coexists with an oscillatory solution. Above s4;þ, the most important point is that the equilibrium is no longer stable for any
sex. Apart from the direct supercritical Hopf bifurcation which the system undergoes at s4;þ, this is further linked with the
fact that the increase of sex gives rise to a global fold-cycle bifurcation, as explained earlier. Just below sFC

ex , it is difficult to
discern between the modes arising from the local bifurcation and the global bifurcation induced by sin, with the associated
periods becoming barely distinguishable. Above sFC

ex , one could in principle expect a multistable regime characterized by
three oscillations modes, one elicited by the local, and the remaining two by the global events. Nevertheless, it turns out that
the structure of phase space may support only two coexisting oscillatory states. Apparently, the limit cycle born via Hopf
bifurcation vanishes by a scenario involving an inverse fold-cycle bifurcation, where it collides with one of the saddle cycles.
(a) (b)

(c) (d)

Fig. 5. Indication on competition between the noise-induced and delay-driven modes. Average ISIs hT1i for the adjustable unit are plotted as a function of
its noise intensity and sex . The top row refers to setup with internal, and the bottom row with external noise. The left and right columns show the fields
obtained for sin ¼ 0 and sin ¼ 0:4, respectively.
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As a result, a bistable regime is established, such that the two large cycles from the global bifurcations coexist, with the cor-
responding attraction basins separated by the remaining saddle cycle. For sin J s0

in, the given oscillation modes have clearly
distinct periods.

Detailed analysis on the deterministic system has mostly been motivated by its specific feature that the dynamics is sub-
stantially influenced by the global, rather than local bifurcations. A question that naturally arises is how is this point re-
flected in the stability of the system influenced by noise. As explained in case of an isolated unit, conditions for the
stability of the deterministic system exactly match those associated with the first moments of the perturbed system. The
dynamics of second moments is given by a complex set of equations, which are best treated numerically. However, judging
by the above findings, even the complete knowledge on the stability of the linearized system would be insufficient to fully
understand the behavior displayed by the interacting units under stochastic perturbation. On the other hand, note that the
results obtained for the deterministic system also hold for the perturbed system in the limit of small noise, though some of
the bistable regimes, especially those involving the equilibrium, are likely to be highly sensitive to stochastic effects. Apart
from disturbing the stability of equilibrium, stronger noise may affect the attraction basins of coexisting attractors thereby
modifying the asymptotic dynamics, or can give rise to certain transient phenomena, such as mixing between the different
oscillatory modes. Analysis on these issues, as well as coherence and synchronization properties of interacting units under a
wide range of noise amplitudes has been performed by numerical means.

5. Numerical results on the interplay of noise and the delays

In this section, the goal is to demonstrate how is the competition between the delay- and noise-driven modes reflected in
the coherence of individual firing series and the units’ synchronization. Since oscillatory motion is either induced or per-
turbed by noise, a quantity appropriate to characterize the degree of coherence over a long series xiðtÞ is the ratio of the
time-averaged ISI and the standard deviation of the ISI distribution [50]
Si ¼
hTi;kitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hT2
i;kit � hTi;ki2t

q : ð24Þ
In (24), i specifies the particular unit, Ti;k ¼ ti;kþ1 � ti;k refers to the kth interspike interval, and the spike time ti;k is defined as
the moment of crossing the threshold xiðtÞ ¼ 1 under condition x0iðtkÞ > 0. Note that Si, often referred to as regularity, may be
interpreted as a signal-to-noise ratio [25], in a sense that it compares the recorded noisy signal to a periodic one, whose
PðTi;kÞ distribution would conform to a delta-function. In neuroscience, quantity Si is deemed relevant because it can be
linked to the timing precision of information processing [51].

Given the noisy nature of oscillations, coordinated activity between the units is considered within the framework of sto-
chastic synchronization. This concept comprises frequency synchronization, where the time-scales characterizing oscillatory
motion of the involved systems are adjusted, or phase synchronization, which refers to scenario where an approximately
constant phase difference between the units is maintained. On the former, note that the appropriate time-scale for each unit
is associated with the average ISI, whose reciprocal value can be viewed as the firing frequency. Therefore, as a measure of
frequency synchronization one may use the ratio of time-averaged ISIs, r ¼ hT1;kit=hT2;kit [29]. The case of special interest
concerns frequency entrainment between the units where r � 1. We stress that the latter condition does not imply per se
that the oscillatory motions of the two units take place on the same attractor. In particular, r merely refers to adjustment
of time-scales between oscillatory motions regardless of their specific features, such as the oscillation amplitudes or phases.

To examine coordination of units’ spiking at an arbitrary moment of time, we define the phase [52,53]
/iðtÞ ¼ 2p t � ti;k�1

ti;k � ti;k�1
þ 2pðk� 1Þ; ð25Þ
where the notation is analogous to that in (24). For systems comprised of coupled autonomous oscillators, phase synchro-
nization, or rather phase locking, would imply that the phase difference D/ðtÞ ¼ /1ðtÞ � /2ðtÞ remains constant during the
evolution. In presence of noise, D/ðtÞ cannot maintain a stationary value, but its fluctuations may appear nearly stationary
for most of the time if perturbation is weak. Nevertheless, even then the abrupt jumps are bound to occur due to phase slips
[29,53], where D/ðtÞ changes by �2p. Consequently, better phase synchronization between the units effectively implies that
the intervals with nearly constant relative phase last longer. The degree of phase synchronization is quantified by the syn-
chronization index c [53,29]
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos D/ðtÞi2t þ hsin D/ðtÞi2t

q
; ð26Þ
which can vary within c 2 ½0;1� interval, such that values approaching 1 describe approximate phase synchronization. Note
that c by construction refers only to adjustment of phases between the oscillating units, independent on the potentially dif-
ferent oscillation amplitudes [53]. This is convenient, because we encounter instances where the two units lie on distinct
limit cycles, but the associated characteristic time-scales are closely matched.

The strategy adopted to systematically examine the co-effects of noise, sex and sin on behavior of two interacting excitable
units is as follows. We distinguish between two basic setups, characterized by whether perturbation derives from external or
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internal sources. In both instances, action of noise is analyzed by having an ‘‘adjustable’’ unit (index i ¼ 1) with variable noise
amplitude D1

1 or D2
1, and a unit that is ‘‘optimized’’ (i ¼ 2) in a sense that D1

2 or D2
2 are kept at the appropriate resonant value,

be it the CR or the SISR case. Coupling delay spans the interval sex 2 ½0:4;2:5�, selected such that the lowest value is an order
of magnitude less than the typical ISI, whereas the highest value is comparable to it. Coupling strength is fixed to an inter-
mediate value c ¼ 0:1, which is sufficient to facilitate coordinated activity between the units, rather than let their dynamics
remain independent. Qualitative impact of intrinsic delay is outlined by comparing the system’s behavior for domains where
sin lies below or above sFC

in , having them represented by sin ¼ 0 and sin ¼ 0:4, respectively.
In the discussion below, the aim is to numerically demonstrate four points, conditionally divided into primarily stochastic

and primarily deterministic effects. Regarding the first group, one finds that the distinction between external/internal char-
acter of noise crucially influences (i) the ability of entrainment to a single frequency and (ii) the fashion in which the com-
petition between the delay- and noise-driven modes is resolved. As for the second group, sin is established to substantially
influence (i) regularity of firing and (ii) the properties of phase synchronization between the units. Note that the dependen-
cies of Si and c on D1

1 or D2
1 and the delays are obtained by performing time-averages over long xiðtÞ series, as well as the

stochastic averages over an ensemble of 	 102 realizations, making certain that the transients have been eliminated and that
further increasing of the ensemble size does not significantly affect the results stated. Numerical integration has been carried
out by the Euler integration scheme with time step 0:001. We have adopted the standard and physically plausible initial
functions, based on the assumption that the units evolve independently within the time interval t 2 ½�smin;0�, where
smin ¼ minfsin; sexg. In effect, for the specified interval, the system (1) has been integrated by setting aside the interaction
terms, with the initial conditions lying in close vicinity of equilibrium.
5.1. Frequency synchronization and the competition between the delay-driven and noise-induced modes

Regarding frequency entrainment, a qualitatively different picture emerges for the setups involving external or internal
noise. In the latter case, one finds that the units exhibit frequency synchronization within all the considered parameter do-
mains. This has been verified by determining that r � 1 holds for all the plausible values of sin under variation of sex and D2

1.
On the other hand, under external noise, for sin ¼ 0 or any relevant sin > 0, frequency synchronization is gradually lost with
D1

1, whereby the decline of r becomes marginally steeper at higher sin. In other words, frequency entrainment is more sen-
sitive to external than the internal perturbation. Note that by increasing external noise at adjustable unit, its average firing
frequency is enhanced, but it fails to control the optimized unit, so the two eventually act as if they were independent. Nat-
urally, existence of a prevailing mode in the system’s behavior can only be considered if there is frequency entrainment.

The point on the prevailing oscillatory modes is best illustrated by examining variation of the average ISIs in the sex � D1
2

(sex � D1
1) plane for internal (external) noise. In Fig. 5, and Fig. 5(b) are shown the fields hT1iðsex;D

1
2Þ referring to the cases

sin ¼ 0 and sin ¼ 0:4, respectively. Given the frequency synchronization, nearly identical results would be obtained by plot-
ting hT2iðsex;D

1
2Þ instead. For sin ¼ 0, one learns that three qualitatively distinct regimes are clearly discernible under increas-

ing sex, which may be explained by invoking the arguments from Section 4. In the domain below the fold-cycle bifurcation
(sex K sFC

ex ), the adjustable unit is able to entrain the optimized one, which is corroborated by the fact that the average ISI
strongly depends on D1

2. Once the global bifurcation has occurred (sFC
ex � 1:16), there is an interval of sex values where the

units’ oscillatory motion is dominated by the coupling delay. This point is verified by the rather weak dependence of hT1i
on D1

2. Note that the characteristic time-scale of oscillations in this region is described by an approximate relation hT1i � 2sex.
Fig. 6. Noise may induce stochastic switching between different oscillatory modes. The phase portrait corresponds to the adjustable unit under internal
noise, with the parameters set to D1

2 ¼ 0:001;D2
2 ¼ 0:00255; sex ¼ 1:7; sin ¼ 0. In the particular instance, noise causes mixing between the mode driven by sex

and the noise-induced mode derived from the optimized unit. The cubic nullcline is drawn to indicate the distinction between the two types of orbits more
clearly.
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Entrainment with coupling delay is gradually lost as sex further departs from sFC
ex . Before the third regime actually sets in,

one encounters an interval of coupling delays (sex � 1:7), where the distributions of ISIs PðTi;kÞ are not unimodal even for very
small D1

2. In particular, a typical PðTi;kÞ for long xiðtÞ series in this sex range indicates strong mixing between the sex-driven
mode and the noise-induced mode of the optimized unit, whereby the latter component eventually prevails. Stochastic
switching between the limit cycles characterizing the two modes is illustrated in Fig. 6. Note that despite the mixing, in sta-
tistical sense the units display the same average behavior, such that the ratio r � 1 is maintained. The delays sex J 1:9 admit
the regime where, at variance with the case sex K sFC

ex , the optimized unit is able to entrain the adjustable one. Naturally, such
form of motion is likely to be susceptible to noise if D1

2 > D2
2, which is confirmed by the shape of the field hT1iðsex;D

1
2Þ, cf.

Fig. 5(a).
The picture described so far is substantially modified by the non-trivial sin > sFC

in , see Fig. 5(b). For this setup, there are two
qualitatively different regimes, but the one where the characteristic time-scales of both units are controlled by sin prevails
for most of the ðsex;D

1
2Þ parameter values. It is interesting that the coupling term is able to suppress such a behavior only for

sex 2 ð1:6;1:9Þ. Within this interval, the characteristic time-scale for the sex-driven mode approximately matches the one for
the noise-driven mode at the optimized unit. Above sex � 1:9, the mode owing to sin wins over again, such that the units
display longer average ISIs, cf. Fig. 5(b).

Now let us turn to the scenario involving external noise. Given the loss of frequency synchronization for larger D1
1, the

average dynamics of units 1 and 2 is considered independently. In Fig. 5(b) and (d) we have plotted the fields hT1iðsex;D
1
1Þ

corresponding to sin ¼ 0 and sin ¼ 0:4, respectively. The behavior of unit 1 is illustrated rather than that of unit 2, because
it is more strongly affected by the change from internal to external noise. Note that below sFC

in , the prevailing dynamics of the
optimized unit conforms to the paradigm involving three characteristic regimes, similar to what is shown in Fig. 5(a). As for
the adjustable unit, once D1

1 becomes sufficiently strong ðD1
1 
 D2

1Þ, it completely overwhelms all the other influences, imply-
ing that the unit 1 can no longer be entrained either by sex or the optimized unit. This is reflected by the virtual independence
of hT1i on sex for larger D1

1, cf. Fig. 5(c). For sin above sFC
in , it turns out that the effects of coupling are felt even less than for the
Fig. 7. Families of curves Smax
i ðsexÞ, whereby open circles (triangles) refer to unit i ¼ 1ði ¼ 2Þ. The presentation scheme is such that the top and bottom rows

concern the scenarios with internal and external noise, respectively, whereas the left column illustrates the case sin ¼ 0, and the right one the case sin ¼ 0:4.
The profile of curves suggests that firing coherence is substantially influenced by sin .
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analogous scenario with internal noise. This may be attributed to the point that the coupling term itself attains a noisy com-
ponent, at variance with the previous setup. While the dynamics of unit 2 is completely controlled by sin, the data in Fig. 5(d)
demonstrate that unit 1 exhibits a sin-driven mode only for smaller D1

1, approximately given by the condition D1
1 < D1

2. In line
with the results derived in subSection 3.3, for larger D1

1 the characteristic time-scale of oscillations at unit 1 is set by noise.
This is corroborated by the fact that hT1i strongly changes with D1

1, but remains unaffected by the increase of sex, see Fig. 5(d).
5.2. Regularity of firing and phase synchronization

In order to isolate the key ingredients influencing regularity, one first performs a kind of coarse-graining over the effects
of noise. The latter consists in determining Smax

i ðsex; sinÞ, which present the largest values of signal-to-noise ratio over the
considered range of noise amplitudes (D1

1 or D1
2) acting on unit 1 under the fixed pair of delays ðsex; sinÞ. In Fig. 7 are illus-

trated the dependencies Smax
i ðsexÞ for external (top row) and internal noise (bottom row), whereas the left and right columns

refer to cases sin ¼ 0 and sin ¼ 0:4, respectively. At first sight, it becomes apparent that the prevailing behavior is determined
by the intrinsic delay, while variation with the type of noise is only a secondary effect. For sin below sFC

in , the peak in Smax
i ðsexÞ

reflects the onset of the fold-cycle bifurcation controlled by sex. Nevertheless, the peak’s profile and the position of its max-
imum relative to sFC

ex is influenced by the form of noise. In particular, it seems likely that the peak’s maximum coincides with
the sex value where the noise-induced oscillations at unit 2 provide the weakest perturbation to the sex-driven mode.

For intrinsic delays above sFC
in , both Smax

1 ðsexÞ and Smax
2 ðsexÞ exhibit a sharp peak around sex � 2. Nonetheless, motion of the

adjustable unit is further characterized by the secondary peak or peaks, contingent on the external/internal character of
noise. Note that Fig. 7 refers only to coupling delays that satisfy sex > sin, so the regularity peak corresponding to oscillations
induced by the sin-controlled global bifurcation is not visible. The primary peak itself in Fig. 7(c) and (d) can be linked to
scenario where the characteristic time-scales of the sex-induced mode and the noise-driven mode at the optimized unit
are most closely matched, such that the stochastic effects are minimized. On the other hand, increase of Smax

1 at smaller
sex values actually reflects the adjustable unit’s motion for very small D1

1 or D1
2, which warrant that the sin-driven mode is

perturbed the least.
The latter point suggests one should examine in greater detail how much the maximal regularities represent the general

tendencies in system’s behavior, taking into account both the character of noise and its magnitude. It turns out that the
above description is more accurate if the perturbation is due to internal, than the external sources. In the latter instance,
the provided picture is valid only for small D1

1, where the frequency synchronization is still maintained. In this context,
one should also make it explicit how the coaction of non-trivial sin > sFC

in and noise affects Si at specific sex values. For sex

below sFC
ex , it is readily seen that the deterministic component emerging due to sin > sFC

in improves the firing coherence of both
units compared to what is found at sin < sFC

in . Such a behavior is illustrated in Fig. 8(a) showing families of curves SiðD1
2Þ for

sin ¼ 0 and sin ¼ 0:4 at fixed sex ¼ 0:8. On the other hand, for sex > sFC
ex the stochastic effects come into play more strongly. In

the domain sex 2 ð1:2;1:9Þ, the intrinsic delay above sFC
in may promote or suppress regularity for small noise, depending on

whether it derives from external or internal sources. Under larger perturbation, regularity tends to decrease due to stochastic
switching between the two deterministic modes, one driven by sex, and the other by sin. An example where setting intrinsic
delay above sFC

in is accompanied by the nontrivial dependence of Si on noise is illustrated in Fig. 8(b), which shows how Si vary
with D1

2 for sin ¼ 0 and sin ¼ 0:4 at fixed sex ¼ 1:7.
Fig. 8. Whether and how much setting sin above sFC
in contributes to spiking coherence depends nontrivially on sex and noise at unit 1. (a) and (b) show SiðD1

2Þ
families of curves for sin ¼ 0 (solid symbols) and sin ¼ 0:4 (open symbols), obtained under fixed sex ¼ 0:8 and sex ¼ 1:7, respectively. The circles (triangles)
are reserved for unit 1 (2). The data in both instances refer to setup including internal noise with D2

2 ¼ 0:00255.



3216 I. Franović et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 3202–3219
As announced at the beginning of this section, we address the issue of phase synchronization by considering variation of
the synchronization index c. Adhering to the scheme of analysis so far, in Fig. 9 are illustrated the dependencies cðsex;D

1
2Þ

(top row) and cðsex;D
1
1Þ (bottom row) obtained for internal and external sources of noise, whereas the left and right columns

refer to cases sin ¼ 0 and sin ¼ 0:4, respectively. In the insets are shown the auxiliary plots cmaxðsexÞ, intended to help in iden-
tifying the domains supporting phase synchronization. Note that cmax follow from the same coarse-graining procedure as Smax

i

introduced earlier on.
For sin below sFC

in , one finds three sex domains admitting approximate phase synchronization independent on the source of
noise. It is interesting that each domain coincides with one of the characteristic regimes identified when discussing Fig. 5(a).
In particular, at small and large sex, there is phase synchronization between the oscillations prevailingly influenced by noise,
see Fig. 10(a), whereas at intermediate sex a nearly stationary relative phase is maintained for the sex-driven mode at both
units, cf. Fig. 10(b). The actual phase shift for sex < sFC

ex is small, while for intermediate and larger sex the units are almost
perfectly synchronized in anti-phase. The source of noise is only reflected in the point that the corresponding c values at
sex � 1 and sex � 2 are slightly higher in Fig. 9(c) than in Fig. 9(a), which is a consequence of the known fact that the oscil-
lations under optimal noise in the SISR case are more regular than those in the CR case.

For sin above sFC
in , there are more apparent secondary effects reflecting the external/internal character of noise. Under

internal noise, an almost constant relative phase is achieved at sex � 2, where the prevailing behavior corresponds to a mode
driven by sin. In particular, coupling delays from the interval sex 2 ð1:9;2:1Þ seem to affect the units’ behavior in a stabilizing
fashion, suppressing the noise-induced fluctuations around the typical orbit, which facilitates the establishment of a nearly
stationary relative phase. One may show that the units in this domain are synchronized in anti-phase. On the other hand, the
co-effects of coupling delay and external noise lead to a different picture within the interval sex 2 ð1:6;2:3Þ. At variance with
Fig. 9(b), their interplay is found to promote phase synchronization, cf. Fig. 9(d). The important contribution from the sto-
chastic effects is corroborated by the point that the cmax values in the inset of Fig. 9(d) correspond to non-negligible noise
amplitudes at unit 1. Note that such D1

1 values are not large enough to disturb the adjustment between the units’ character-
istic time-scales. As for the actual phase differences, around sex � 2 the units are approximately synchronized in anti-phase,
whereas the in-phase synchronization sets in closer to the boundaries of the sex 2 ð1:6;2:3Þ interval.
Fig. 9. The main frames display synchronization index c as a function of sex and noise intensity at the adjustable unit. The top (bottom) row refers to setup
with internal (external) noise, whereas the left and right columns are obtained for sin ¼ 0 and sin ¼ 0:4, respectively. In the insets are shown the
corresponding dependencies of the coarse-grained index cmax on sex .



Fig. 10. (a) and (b) refer to scenarios where phase synchronization is achieved between the noise-induced oscillations and oscillations controlled by the
coupling delay, respectively. xiðtÞ series in both cases are obtained for external noise with sex ¼ 0:9 in (a) and sex ¼ 1:5 in (b). Remaining parameters are
D1

1 ¼ 0:0002;D2
1 ¼ 0:00087; sin ¼ 0.
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6. Conclusion

In this paper, we have examined how the behavior of a typical class II excitability model is altered by incorporating an
intermediate characteristic time-scale, nested between the ones defined by the activator and the recovery variable. Intro-
duced in the FHN model, such a time-scale is associated with intrinsic delay sin, whose role is to modify the relaxation pro-
cess, affecting both the declining stage of spike and the slope describing how the rest state is regained. Drawing analogy to
neuroscience, the former may partly be motivated as means to approximate the gross effects of certain microscopic pro-
cesses in the ion-gating channels of neuron membrane. For the paradigmatic cases, including a single unit under additive
noise from external or internal sources, as well as a pair of delay-coupled noisy units, the main goal has been to understand
how the competition between the noise-induced and the delay-driven (noise perturbed) oscillation modes is resolved, fur-
ther considering its impact on regularity of units’ firing and their synchronizability.

Given the additional ingredient in the single unit model, its stability and the onset of oscillations have been addressed in
detail. Apart from carrying out the bifurcation analysis of the unperturbed system and determining the conditions for the
stability of the linearized system under perturbation, we have also extended the method of statistical linearization to gain
further insight into the interplay of noise and sin in light of competition between the different oscillatory modes. Regarding
the role of sin, the key result on the deterministic system is that the equilibrium loses stability via the direct supercritical
Hopf bifurcation at sH

in, but the unit’s oscillatory motion is primarily shaped by the global fold-cycle bifurcation occurring
for sFC

in < sH
in. In effect, a sophisticated interplay between the local and global events renders the large cycle emerging from

the latter as the unique attractor already for sin slightly above sH
in. An interesting qualitative point on sin in relation to excit-

ability is that it shifts the system away from the Hopf bifurcation controlled by b, making the unit less excitable.
Stability of the perturbed unit cannot be treated within the Fokker–Planck formalism due to inability to resolve the con-

ditional drift term. Nevertheless, in case of the linearized system it is demonstrated that the critical sin values for the first two
moments of the solutions are only marginally different, though the respective characteristic equations are distinct. Focussing
on the setup admitting external noise, the method of statistical linearization has proven useful for two reasons. First, one
infers that the time-averaged effect of external noise D1 consists in suppressing the unit’s excitability, quite similar to the
impact of sin. The other result concerns families of curves obtained for the correlation time as a function of D1 at different
sin. These dependencies provide indirect evidence on the prevailing factor in the unit’s oscillatory motion, such as the point
that the sin-driven mode is strongly susceptible to external perturbation, giving way to the noise-induced mode already at
intermediate D1.

In the noiseless case, we have shown that the system of coupled units displays bistability in most (sex; sin) domains, which
is a corollary of an intricate interplay between the local and global bifurcations. While the equilibrium undergoes a sequence
of direct and inverse supercritical and subcritical Hopf bifurcations with increasing sex at any sin > sH

in, the sin-controlled fold-
cycle bifurcation inherited from the single unit is complemented by the fold-cycle bifurcation due to sex. For any sin > sH

in,
there exists a coupling delay sex slightly smaller than the fold-cycle threshold sFC

ex , above which the fixed point is no longer
stable. As for the oscillatory state, the large cycles elicited in global bifurcations typically survive, whereas the cycles emerg-
ing from Hopf bifurcations get annihilated in scenarios involving inverse fold-cycle bifurcation. Adding stochastic terms af-
fects asymptotic dynamics (novel oscillatory modes, certain bistable regimes lost), but also leads to some transient
phenomena (stochastic switching between oscillatory modes).

Interaction of noisy units is examined for two basic setups involving perturbation from external or internal sources. In
both instances, the impact of sin is assessed by comparing two representative cases, characterized by sin lying below or above
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sFC
in . While regularity of firing is quantified by the signal-to-noise ratio S, coordination of activities has been treated within the

framework of stochastic synchronization. The latter refers to frequency synchronization, described by the ratio of average
ISIs r, and the adjustment at an arbitrary moment of time, measured by the synchronization index c.

We have numerically demonstrated that the external/internal character of noise crucially influences (i) the ability of
entrainment to a single frequency and (ii) the fashion in which the competition between the delay- and noise-driven modes
is resolved. Regarding (i), note that frequency synchronization turns out to be resilient against intrinsic noise, whereas it is
violated by external noise if the adjustable unit is sufficiently perturbed. On the prevailing oscillatory mode, both forms of
noise yield a similar paradigm for sin < sFC

in , whereas the differences become apparent for non-trivial sin > sFC
in . Below sFC

in ,
under increasing sex the characteristic scale of oscillations is first controlled by the adjustable unit, then by the coupling
delay and finally by the optimized unit. Above sFC

in , the scenarios with different noise terms are manifestly distinct because
the sin-driven mode is more susceptible to external perturbation.

Deterministic effects due to intrinsic delay have been shown to strongly influence (i) regularity of firing and (ii) the
properties of phase synchronization between the units. With respect to (i), for sin < sFC

in , maximal regularity reflects the onset
of the fold-cycle bifurcation controlled by sex, whereas above sFC

in , regularity peaks if the characteristic time-scale of the
noise-induced oscillations at the optimized unit matches that of the sex-driven mode. On (ii), note that for sin < sFC

in three
characteristic regimes admitting phase synchronization may be found. At small and large sex, phase synchronization arises
between the modes prevailingly influenced by noise, whereas at intermediate sex a nearly stationary relative phase is
achieved for the sex-driven modes. Above sFC

in , stochastic effects are more expressed under external noise, as its coaction with
sex can give rise to phase synchronization.

In this paper we have examined how introducing an intermediate characteristic time-scale affects the regularity and
phase synchronization of class II excitable units subjected to external and internal sources of noise, as well as coupling
delays. The fashion in which the competition between the noise-induced and delay-driven (noise-perturbed) oscillation
modes is resolved can also have merit from the aspect of controlling the noise-induced oscillations through coupling delay.
It would be interesting to study the similar set of issues in case of type I excitable units, represented by the Morris–Lecar
model.
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