
VI CHMII03DJYM IiHWCTPHJCKA EJIEKTPOHHKA UH,LlEJI 2006, 6AlhA JlYKA, 10-11. UOBE."~b:..i\~:::I.

GLITE WORKLOAD MANAGEME T SYSTEM PERFORMANCE MEASUREM

Neda Svraka, Antun Balaz, Aleksandar Belie, Aleksandar Bogojevie
Scientific Computing Laboratory, Institute ofPhysics, Belgrade, Serbia

Abstract - In this paper an introduction to the Lite Grid
//liddleware and one of its //lost important components,
Workload Management System (WMS), re.sponsible for
management ofuser jobs is iven. Usejid pellormance metries
of gLite WMS are defin d from a Grid application point of
view, and preliminary results ofpelformance measurements
are presented and briefly analyzed.

1. INTRODUCTION TO GRIDS

Many scienc experiments generate enormous amounts of
data. The proc ssing of this data requires huge computational
and storage resources and associated human resources fi r
operati n and support. Sci nti ts also face problem requiring
vast computing power, i.e. number crunching problems. We
can roughly cathegorise these tasks into: tasks with large
amounts of distributed data; numb r crunching tasks; tasks
wbjch require simultaneous work of a group of
re earchers/develop rs, accessing the same resources at the
same time. Please note that typical problems may consist of
overlapping tasks from different identified categories, i.e.
they may contain computing-intensi e analysis of a large
amount of di tributed data etc. Often a single computer, a

lu ter of computers or even a pecial-purpose
supercomputer is not enough for solving challenging science
or development problems today.

In order to avoid these obstacles, middleware concept is
intr duced - layer of software that is able to interconne t
di tributed computing and storag resources, and make them
interoperate, prov'ding us rs with the unified access to all
resources, even if the und r1yin software (e.g. batch system on
individual clusters) or hardware (e.g. different types of storage
elements, ranging from tape robots to generic P s witil sev ral
HODs attached) is different. Of course, this middleware layer is
built on top of the existing network infrastructure, which is
essential for the proper functioning of rids.

This approach is in some way similar to the World Wide
Web (WWW), and people expect that what WWW has done
for the infonnation exchange and sharing, the Grids wiH do for
computin re ources sharing. However, there are some
substantial differences between WWW and rids: while on the
Internet the basic idea is to provide infonnation and we usually
have client-server interaction, in Grids the resources are
valuable assets and their use should be governed according to
the policies of resource providers. In addition, in order to have
most efficient use of computing resources available, complex
alg rithms and intemal infonnation system need to be
developed and deployed, and a set of new services that will
allow simple usage by the end users provided.

There are many kinds of Grids with different purposes,
such a national Grid infrastructures (aiming to couple high
end resources across a nation, e.g. AEGIS [I] in Serbia, or
the UK e-Science program), project Grids (funded by certain
funding agencies, goodwill Glid infrastructures provided by
individuals aiming to help in solving important common

problems (e.g. in finding drugs for diseases), co
established by commercial companies, etc.

Project rids are currently the main provld >

middleware distributions, some of which are fr
thus enabling general public to join the rid, r t
their own needs. Project Grids are created to m
of variety of multi-institutional research grou _
company "virtual teams", to pursue short- or
projects (scientific collaborations, engine rin
Such a project is World Wide LH Computing
(WLCG)[3], which was created to prepare the
infrastructure for the simulation, processing and
the data of the Large Hadron Collider (LHC) e.
The LHC, which is being constructed at the
Laboratory for Particle Physics (CERN), will be
largest and most powerful particle accelerator.

The WLCG project shares a large part of its infr'__ :::::::::::::::l!I!'
and works in conjunction with the Enabling Gn
Science (E EE-II) project [4], large Eur
infrastructure project with the main goal is
researchers with access to a geographically d
computing Grid infrastructure, available 24 ho
SEE-GRID-2 [5] is the regional project aiming t

Grid infrastructure in the South East urope regi n..
new regional communities, and stimulate develo
new Grid-aware applications.

2. INTRODUCTION TO MIDDLEWARE

The essence of the Grid is the software that en
u er to access computers distributed over the netw
software is called "middleware", because it is distinct
operating systems software that makes the compute
Linux) and also different from the applications sofl\\
solves a particular problem for a user (e.g. a ~~._-
visualization programme). The tenn "middleware" re
the fact that it is conceptually in between these two _
software.

The middleware's task is to organize and integ a
distributed computational resources of the Grid
coherent structure. This means the objective 0

middleware is to get the applications to nm on th
computers, wherever they may be on the Grid, in an effi
and reliable way. it also provides users with a single inte
to the Grid.

Different distributions of middleware exist today - GI
LCG, gLite, UNICORE, GAT. The gLite [6] is succes
the LCG-2 middleware, and is most widely used.

The EGEE-II project focuses on maintaining the gl
middleware and on operating a large complll
infrastructure for the benefit of a vast and diverse resear.
community. The gLite middleware hide~ much of
complexity of tbis environment from the user, giving
impression that all of these resources are available in
coherent virtual computer centre.

\

I

294

We wil! now in brief describe basic entItIes ("building
locks") and available interfaces which allow user to run jobs
nd manage data [7].

The access point to the WLCGIEGEE-I1JSEE-GRID-2
.lrid is tbe User Interface CUI). his can be any machine wher
, ers have a p rsonal ace unt and where their u er digital
_ertiticate is installed. From a UI a user call be authenticated
nd authorized to ust: the WLCGIEGEE/SEE-GRID-2
esources, and can access the functionalities offered by the
nfonnation, Workload and Data managem nt systems.

A Computing Elem nt (C) is a set of computing
-~ ource 10 alized at site (often referred to as a cluster, r a

mputing fann).
A Storage Element (E) pro ides uniform access to

lorage resources at a certain site. The Storage Element may
.:ontro! simple di k servers, large disk arrays or tapc-ba ed

1a s tordge System.- (M S). Most WLC /EGEE/SEE
JRJD-2 sites provide at least one SE. Storage lements can
. upport different data acc ss protocols and interfaces.

The Informati n Servic (IS) provides infomlation about
he Grid resource and their status.

In a Grid environment, tiles can have replicas at many
different sites. Ideally, the u ers d not need to know where a
ilt: is I cated, as they u e logical names for the files that the
ata Management services will use to locate and access them.

The Workload M nagcment System (WMS) [4) accepls
Jser jobs, assigns them to the m . t appr priate Computing
Element, records tbeir status and retrieve their output. The

esource Broker (RB) is the machine where the WMS
,ervlces run.

Final! , the Logging and Bo kkeeping servi e (LB) tracks
obs managed by the WMS. It collects events from man WMS
'omponents and records the sta.tus and history ofthe job.

J. HOW DOES THE WM WORK'!

This paper is d voted to the measurement of the
'"lCrformance of th WMS [8]. As mentioned before, the
'lurpose of WMS is to accept request for job submission
and manag ment coming from its clients and take the
.1ppropriate actions to satisfy them. The complexity of the
management of applications and resources in the grid is
hidden b the WMS to the users. Their interaction with the
\VMS is ltmited to the description of the characteristics and
requirements of tbe request via a high-lev I, user-oriented
speciticatlOll language, the Job De cription Language (JDL)
.md to the submission of it through the provided interfaces.
The WM is respunsible for translation these abstract
resource requirement' into a set of actual resources, taken
from the overall grid resource pool, to wh ich the user has
access permission.

The JDL allows the description of the following request
types supported by the WMS:

• Job: a simple application
• DAG: a direct acyclic graph of dependent jobs
• Collection/Bulk: a set of independent jobs

There is a et of client tools, refened to as WMS-Vl,
which allows the user to access the main services (job
management services). These client tools include a command
line interface, a graphIcal interface and an API, providing
hoth C-H- and Java bindings, which allow the requests to be
submitted and manag d programmatically. Through the
WMS Ul user can find the Ii t of resources suitable to run a

specific job, submit a job/DA fi r execution on a remote
Computing Element, check the status f a ubmitted
job/DAG, cancel one or more submitted j bs/DAG , retrieve
the output files f a completed job/DAG (output sandbox)
retrieve and display logging and bookkeepin lnformation
about submitted jobs/DAGs.

After submis ion, the request passes thr uah several
components f the WMS, before it completes its xecution.
The internal architecture of the WMS is given in Fig. I.
There are two approaches for acceptan e of incoming
requests. one is based on a generic daemon and the other on
the eb S rvices based interface. These two modules are th
key subject of measurements performed in this paper.

The Network Server (S) is a generic network daemon
that pr vides support for tl e job control functionality. It is
responsibl for ac epting incoming requests from the WMS
VI (e.g. job submission job removal), which, if valid, are
then passed to the Workl ad Mana er.

The Workload Manaaer Proxy (WMPr xy) is a sel ice
providing access to WMS functionality through a Web

rvices based interface. Besides being the natural
replacement of the S in the pa sag to th SOA approach
for the WMS architecture, it pro ides additional features such
as bulk submission and the support for shared and
compressed sandboxes for compound jobs.

...--_...---....."-. ~.....---......-'

j
r'"[',WM'n;,',) ,

'---'r-'!'--

: :r-·~:::::':._._....· ,

,

I
!
,.

i
,
,

.
t ={

,

Fig. J: Overview olthe WMS architecture.

The Workload Manager (WM) is the core component of
th Workload Management System. Given a valid request, it
has to take the appropriate actions to satisfy it. It coordinates
other modules that provide a matchmaking service (R ource
Broker), the actual job management operations (CondorC),
preparation of the ondor submission file and creation the
appropriate execution environment in the CE worker node
(Job Adapter).

The Lugging and Bookkeeping (LB) service provides
support for job monitoring functionality: it stores all
infomlation concernin events generated by the various
components of the WMS.

For a generic job there are two main types of request:
submission and cancellation. The submission requ~t passes

295

the respon ibility of the job to the WM. The WM will then
pass the job to an appropriate CE for execution, taking into
account the requirements and the job preferences expressed
in the job description file. The decision on which resource is
to be used is the outcome of the matchmaking process
between the submission requests and the available resources.

he job can also be cancelled by the user at any time after it
is submitted using the job 10 that uniquely identifies each
job.

4. WMS PERFORMANCE

In order to assess performance of the WMS, especially
the process of submitting a lung eries of jobs (which is a
typical use-case scenario for an application that requires vast
computing resources and is for this reason ported to the
Grid), we developed a cries of WMS tests. In our kst
environment long rie of jobs with different requirements
have been submitted and timing of critical job events has
been recorded and analyzed.

The teo tbed environment included a single User
lnterfac .. and a single WMS collocated with a top-level
BDll, which provides database on available resources, used
in the matchmaking process by WMS. User lnterface was a
laptop machine (Pentium M, 1.8 GHz, 512 MB RAM, 100
Mbps network card), while the WMS/BDn node was double
Xeon 2.8 GHz with hyperthreading enabled, 2 GB of RAM, I
Gbps network card. Both machines were connected to the
same high-quality 3Com Gigabit network switch. The latest
gLite 3.0.2 middleware was installed on both nodes.

In the first series of tests, jobs have been sent via a
Network Server, and in the second one via Workload
Manager Proxy. Information associated with each job status
was obtained from Logging and Bookkeeping service for
both cases. The Logging and Bookkeeping service is
collocated with the WM service. We were interested to find
out how the typical submission time per job changes with the
change of type of submission: sequential (thread) submission
of jobs to both NS and WMProxy, as well as for buLk
submission to WMProxy. We also investigated if changing
the overall number of submitted jobs will influence the
frequency of submission, and the dependence of the
submi'sion frequency on the size of job Input Sandboxes
(5les associated with each job that need to be uploaded to the
WMS during the job submission). The client p rforms action
running scripts based on tbe Command Line Interface (CLI)
commands from the User Interface.

For the 5rst measurement, client instantiates a number of
threads and ea h thread executes sequentially a given number
of job submissi n commands. The jobs were just self
c ntain d .rDLs (n sandboxes). Numbers of jobs used in
such submis ions were 100, 500 and 1000. The second type
of measurement assumes the same approach, but jobs were
de, cribed with JDLs containing small Input Sandboxes, with
the size of approximately 8 kB.

Also, it was interesting to examine a new feature,
introduced by WMProxy, bulk submission of jobs, i.e.
parallel ,ubmission of a collection of jobs using a single
command lin . Tests were performed with different number
of jobs in collection (l00, 500 and 1000) and diffi r nt size of
s ndbox (no sandbox, as well as a sandbox of 8 kB). R suIts
of measurements are shown in Fig. I.

100 200 300 400 500 600 700 800 90~_

Fig.2· Time (in seconds, on y-axis) neededfor a Sill n
ofa lmJ!,c number o[johs (on x-axis) for iOO, 500, ant
jobs. Thejobs were submitted through the Netlvork

intcrj21ce, without (NS) and with a smelll input Sondho.
IS), and through the WMProxy intel/ace without (WMP

with a smal/Input Sandbox (WMP, IS).

The three graph in Fig. 2 represent the dependence
submission time on the number of jobs. The overall n
of ubmitted jobs is 100 on the top plot, 500 on th mid
and LOOO on the bottom onc. Comparing the performan
Network Server and WMProxy. we see that WMPr
outperfomls the cOITcsponding etwork Server m as
men!. in both cases considered (no sandbox, small sand
The fact that each of these curves is actually a linear funct
sho that there i. no saturation in WM performance.
that it can accept large number of jobs without having
perfomlance reduced. The slope of each curve in Fi .
repr 'ents typical submission time per job.

296

Therefore, we see tbat tbe usage of WMProxy consume
much les time for submi ion of a single job then the usage of
Network Server. For the thread of 100 jobs tbe submission with
WMProxy takes about 2.2 ec nds per job with no sandbox, and
about 4.5 seconds per job with small sandbox. On the other
hand, Network erver need 4.9 seconds in th first case, and 6.5

conds in th second one. We also see that tile presence ofev n
a small sandbox affects performance of WMProxy service
drastically (two times longer submission time), while the
increase in the submission time is not so prominent with ilie

etwork S rver (I.3 longer submission time). The submission of
longer tbre~ds of jobs (500, 1000) does n t give substantially
diITerent a erag job submi sian tim .

The other interesting quantity we investigated is the
average frequency with hich jobs can be submitted using
either service. This is the inverse value of slopes for Fig. 2.
This way we can compare performance ofNS and WMProxy
services with the perfonnance of a bulk (collection) jobs
submissi n. Th results are pre ented in Fig. 3.

3,---------.--------.,r------,---,

8,
2.5 WMP

lS
..

I:. - ..tiPf

2
 NS -a-
.--e-.

1.5

l .///

f'"
0.5
 • .OIl.

e,,··
a

100 500 1000

Fig. 3: The average job submission frequency (Oil the y-axis)
achieved during submission ofdifferent numbers ofjobs (on

the x-axis). Thejobs were submitted through the Network
Server interjace. Wil/lOut (NS) and with a small Input

Sandbox (NS, IS). and through the WMProxy interface
without (WMP) and with a small Input Sandbox (WMP, IS).
as well as /Ising the Bulk submission lVithout (B) and with a

small Input Sundbox (B. IS)

While the average frequency of non-bulk submission
ranges from approximalely 0.20 jobs per second (no sandbox)
to 0.16 jobs per second (small sandbox) for S, or 0.46 job:
pCI' second (no sandbox) to 0.20 jobs per second (small
sandbox) for WMl)roxy the bulk submission has much better
perform, nee. As we see from Fig. 3, bulk submission
frequency ranges from approximately 2.5 jobs per second (no
sandbox) to around I job per second (small sandbox).

Tbe perfomled measurements represent just tbe
preliminary results, and we are planning to do a more
complex in e tigation of WMS pClformance and stability,
such as parallel submission of threads of jobs from two or
more User Interfaces, transferring larue Input andboxes

(~MB), etc. Insights gained from such measurements n be
very useful not anI to the middleware developers aiming to
improve the perfonnance of Grid services, but also to tbe most
important group of people - Grid users - which must take iuto
account these results when planning gridification 0 their
applications. uch knowledge enablec them to choose the most
efficient approach <pop porting applications to Grids.

5. CONCLUSIONS

We present d preliminary results of gLite Workload
Management System perfonnance measurements. For job
thread of different s' es (100, 500, 1000) we measured the
average submission time per job and frequency of j b
submissions for Network S I' er, WMProxy, and bulk
submission. We found that WMProxy outperforms etw rk
Server service in all considered case (2 to 1.5 times,
depending on the size of sandbox), with WMProxy
performance being more sensitive to the ize of the sandbox.
We also found that the bulk submission of jobs is far superior

rvice, giving consistently 10 times faster response than the
NS, and 5 times fa tel' response than the WMProxy.

6. AC OWLEDGMENTS

This work was supported in part by the Ministry of Science
and Environmental Protection of the Republic of Serbia
under project no. 01141035. The presented numerical results
were obtained on the AE IS GRID e-infrastructure[5] wh se
operation is supported in part by EC FP6 projects EG E-ll
(lNFSO-Rl-031 88) and EE-GRID-2 (INFSO-RI-031775).

7. REFERENCES

[J] http://aegis.phy.bg.ac.yu/
[2] http://lcg.web.cem.ch/LCG/
[3] http://www.cu-egec.org/
(4] http://www.see-grid.eu/
[5] http://glite.web.cem.chL
(6] gLit 3.0 User Guide,

https://edms.cern.ch/documentI722398/1/
[7] WMS Guide, https:!ledms.cem.ch/document/572489/1

Ca,l\p",aj - OnucaH je gLite Grid middle,vare /I je()Ha 00
IbeZ0611X lIojeQ:>/c/llIjux KOolf1701lCHmu - Workload A1anagement
System (WA1S), OOzolwplia 3a ynpa6/bU7-bC KOPUCNlP-IKIO.1
nOG7061Wa U nooa1llwa. npuKa3allu cy u YKpmm<o
al-laRU3Upm"IU npeJllLlIlIHap'lU pC3yRmalll1l ~\lepel-bQ

neprjJopollaNcu WAfS-a, r)erjJuNucaNu ca flW'lKC 2.'1eOUlUma
onmUollU30eal-bQ Grid an.wKGlIITje.

MEPElhE nEPI1>OPMAHCH GLITE W KLOAD

MANAGEMENTCHCTEMA

He.D.a WBpaKa, AHTyH EaJla)f(,

AJleKcaH.uap emlD, AJIeKcaH.uap E rojeBHn

297

