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Abstract—The aim of this paper is to use theoretical 

models of coupled microring resonator filter to show its 
operation and to apply those calculations in order to 
maximize drop port power. Coupled microring resonators are 
one of fundamental elements in photonic devices. They have 
good resonator characteristics useful for filter applications, 
because arbitrary -3dB bandwidth and FSR(Free Spectral 
Range) are easily designed. Theoretical models include T-
matrix (Transfer Matrix) and CMT (Coupling of Modes in 
Time). A comparison of those models is shown. CMT model is 
applied in optimization of transmission to the drop port.  

Key words-model; transfer matrix; coupling of modes in 
time; microring; resonator; filters;  

I. INTRODUCTION 

INTEGRATED silicon based photonics has many 
promising applications in optical telecommunications, 
optoelectronics and optical signal processing [1]–[4]. The 
integration of silicon photonics and electronic circuits 
offers the prospect of low energy devices, circuits and 
systems for applications including on-chip and processor-
to-memory interconnects [3], [4], as well as photonic 
analog-to-digital converters [5]. Other applications include 
nonlinear and quantum devices for applications in quantum 
information and computing [6]. An important photonic 
device, and one of the earliest concepts realized in 
integrated photonics, is the resonant channel add-drop 
filter. Microring resonators are particularly well suited for 
add-drop filter applications [7], [8] because of their 
traveling wave structure that allows for a natural separation 
of the four ports (in, through, drop, add). 
 

II. TRANSFER MATRIX  MODEL 

In the Fig. 1. schematic drawing of a ring resonator 
coupled to two bus waveguides is shown. In transfer matrix 
model we have two linear systems. First one has optical 
signal amplitude inputs of 1a and 2a , and outputs of 1b and 

2b . It represents coupling of the first bus to the ring with 

coupling coefficient of ik , while the other linear system 
represents coupling of the second bus to the ring with  

 
 

Fig. 1. Schematic of a microring-resonator add-drop filter showing 
the parameters used in the T matrix model 

 
coupling coefficient of 0k , where optical amplitude inputs 

are 3a  and 4a  while outputs are 3b  and 4b .  In transfer 
matrix model we want to solve next matrix equation 
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Optical signals 1a  and 2a are coming from input ports, 1b  
leaves the system at through port and optical signal 

4b leaves the system at drop port. The goal is to determine 
transfer matrix T . We solve it using next three matrix 
equations. First two stand for the linear systems that model 
couplings of the buses to the ring while third one is about 
the phase constraint for the signals propagating in the 
microring resonator [2], [9].  
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In Eq. 4 j is imaginary one, Rβπ is the product of 
propagation constant and half of the circumference of the 
ring and term R is inner radius of the ring. The expression 
for beta is 

                                
λ
πβ 2×= gn                                (5) 

where gn is group refractive index. We use notation: 
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When matrix equations are written in developed form, we 
obtain 
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Together with the phase constraints 
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The algorithm is to solve Eq. 7.4 for 3a and to obtain 2b in 

terms of 4a and 4b using Eq. 8.1. Then plug in 3a to Eq. 

7.3  which leads to an expression of 3b in terms of 

( 4a , 4b ). We were using Eq. 8.1, Eq. 7.3 and Eq. 7.4. In 
similar way using Eq. 8.2, Eq. 7.1 and Eq. 7.2 we solve 

2a and 2b in terms of ( 1a , 1b ). Then we have to combine 
expressions obtained by this separate solvings using 

constraint equations (Eq. 8.1 and Eq. 8.2) which leads to 
this solution 
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like in Eq. 1, where expressions for transfer matrix 
elements are 
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Here 12T represents normalized drop port power and 22T  
represents normalized through port power. Now we apply 
those expressions from Eq. 10 to calculate spectral 
response of a filter made of two bus waveguides that are 
coupled to the microring-resonator. We have chosen free 
spectral range of 2 THz and -3dB bandwidth of 40 GHz. It 
is known that free spectral range of a microring-resonator 
is determined by ring’s radius [2]. 
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Taking the Eq. 12 from reference [1] and using 
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f
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gives us the relation for -3dB bandwidth 
                        FSRkf dB 22

3 ⋅=Δ⋅ −π                       (13) 
 
Therefore we define normalized coupling                                  
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2
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Delay in group time is calculated using this formula                                

       
df
dtg
Φ−=

π2
1

                         (15)   

where Φ is the phase and f is the frequency.       
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                 Symmetric coupling ξ== oi kk  
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(c) 

Fig. 2. Frequency spectra of T-matrix elements’  
amplitude, phase and group time delay -  (a), (b), (c) 

        Assymetric coupling ξξ 3,2 == oi kk  

193 194 195 196 197 198 199
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f (THz)

A
m

pl
itu

de
 o

f T
-m

at
rix

 c
om

pl
ex

 e
le

m
en

ts

Transfer matrix method

 

 
T11
T21
T12
T22

 
(a) 

193 194 195 196 197 198 199
-5

0

5

10

15

20

f (THz)

P
ha

se
 o

f T
-m

at
rix

 c
om

pl
ex

 e
le

m
en

ts
 (r

ad
)

Phases of transfer matrix complex elements

 

 
T11
T21
T12
T22

 
(b) 

193 194 195 196 197 198 199
-3

-2

-1

0

1

2

3

4

f (THz)

G
ro

up
 ti

m
e 

de
la

y 
(p

s)

Delay in group time

 

 
T11
T12
T21
T22

 
(c) 

Fig. 3. Frequency spectra of T-matrix elements’  
amplitude, phase and group time delay -  (a), (b), (c) 
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In Fig. 2 and Fig. 3 frequency spectra of T-matrix 
elements’ amplitude, phase and group time delay are given, 
in symmetric and chosen asymmetric case, respectively. 
We can notice that symmetric coupling affords 100% 
transmission to the drop port. In the phase and group time 
delay plots we can notice differentiation of the bus lines, 
caused by the asymmetric coupling.  
 

III. COUPLING OF MODES IN TIME (CMT) MODEL  

 Coupled-mode theory in time (CMT) provides a 
simple model that affords all necessary physics of the 
resonant add-drop filter problem, including resonance, loss 
and coupling to input and output ports [1,2,6].  The system 
of equations that describes a single-resonator filter excited 
by a monochromatic input wave at angular frequency ω is 

 

)(2)(

)(2)()(

)(2)()()()( 0

tarjts

tarjtsts

tsrjtarjtajta
dt
d

dd

eit

ie

−=

−=

−−== ωω

 (16) 

where a(t) is energy amplitude of the ring resonant mode, 
si, st, sd, are the power-normalized amplitudes of input, 
through and drop port waves [2].  With input wave si 
incident, some excitation is picked up by the resonator, and 
the remaining field interferes with that leaving the 
resonator in the through port and is carried away by 
through-port wave st.  The energy stored in the resonator is 
|a(t)|2 and according to Eqs. (16) the energy amplitude a(t) 
decays at a total rate r, comprising decay rates describing 
external coupling to the input port, re, to the drop port, rd, 
and to loss mechanisms, ro: 

 r = re + rd + ro  (17) 

The coupling rates re and rd are determined in the 
evanescent-coupling geometry in Fig. 8 by the size of the 
ring-waveguide coupling gaps [1,9].  The decay rates are 
related to decay time constants as ri = 1/τI, for i = {e,d,o}. 
Since τ is a field time constant, the associated photon 
lifetime of the resonant cavity (which measures decay of 
intensity) is τ/2. 

The through-port and drop-port responses of the device 
can be found from Eqs. (16) as 

 st

si

2

= (ω −ω0 )2 + (r0 + rd − re )2

(ω −ω0 )2 + (r0 + rd + re )2
 (18) 

 sd

si

2

= 4rerd

ω −ω0( )2 + r2
 (19) 

The drop-port response is Lorentzian, with a full 3dB  
bandwidth Δω3dB = 2r. 

Unlike a full scattering model (T matrix model) using 
transfer matrices, the CMT model addresses only one 
resonant mode of the ring and does not include geometry 
information that can define a free spectral range (FSR).  

Resonant frequencies are determined by the resonant 
condition 

 
eff

m Rn
cmf

π2
=  (20) 

where c is the speed of light in vacuum, R is the ring 
resonator radius, and neff is the (frequency dependent) 
effective index of the guided mode.  The FSR is given by 

                            
ΔfFSR = c

2π Rng                          
(21) 

where gn  is group effective index of the guided mode. 
 

    
 

Fig. 4. Schematic of a single microring-resonator add-drop filter showing 
the parameters used in the CMT model. 

 
 

IV. CORRESPONDENCE OF CMT AND T-MATRIX 
MODELS 

We have derived T-matrix and CMT models of 
coupled microring resonator filters. Now we will compare 
those models. In Fig. 5 we show wavelength spectra of 
amplitude in linear and db scale. The task is to connect 
coupling coefficients oi kk ,  from T-matrix model with 

decay rates de rr , . There is a direct relation [1] 

                                   
FSRkr nm ×= 22                             (22) 

for m = {e,d} and n={i,o}. Using normalized couplings 
from Eq. (14) we obtain expression for decay rates as 
 

                                    
dBfr 3−Δ⋅= π                              (23) 

 
We are showing the results of comparison for symmetric 
coupling, with zero losses. One disadvantage of T-matrix 
model is that it does not model losses while CMT model 
includes losses. On the other side, T-matrix shows free 
spectral range and multiple resonances while CMT model 
has only one resonant wavelength. In Fig. 5(b) we can 
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notice that deviation of CMT Lorentzian from T-matrix 
trace is bigger on dB scale than on linear scale in Fig.5 (a). 
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Fig. 5. Comparison of CMT and T-matrix models (wavelength spectra of 
amplitude) linear (a) and dB scale (b) 
 

V. OPTIMAL AND CRITICAL COUPLING 

We apply CMT model in order to optimize drop port 
transmission. Fixing the bandwidth means fixing the total 
rate r, according to Eq. (17) and, together with a fixed loss 
rate, there is only one degree of freedom left. Taking the 
first derivative of Eq. (19) in respect to er and setting this 
to zero gives 

 
2

0rrrr de
−

==  (24) 

From setting Eq. (18) to zero on-resonance, we derive the 
couplings of critically coupled filter 

 0rrr de +=  (25) 
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Fig. 6. CMT transmission (drop port, through port and losses) in optimally 
and critically coupled filters – (a), (b) 

 
In Fig. 6 transmission spectra of through and drop port is 
given for optimally and critically coupled filters. A 
comparison of the transmission efficiency of the optimal 
symmetric [Eq. (24)] and critical coupling [Eq. (25)] 
designs is given in Fig. 7, showing that the symmetric 
design is indeed optimal for maximizing dropped on-
resonant power.  We define a normalized bandwidth, α , 
by normalizing the 3dB bandwidth Δf3dB by the intrinsic 
linewidth Δfo due to the loss rate ro, i.e. loss Q, Qo.  
Substitution of the solutions of Eq. (24) and Eq. (25) into 
Eq. (19) provides the normalized efficiency of the 
symmetric and critically coupled designs given in Eq. (26). 
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VI. CONCLUSION 

Transfer matrix model of a photonic microring-
resonator channel add-drop filter has been solved and 
applied to design a filter with chosen free spectral range 
(FSR) and -3dB bandwidth ( dBf3Δ ). The results of those 
calculations are given for symmetric and asymmetric 
coupling. CMT model was solved and applied in order to 
maximize drop port power of a single ring filter. We have 
determined how to choose optimal couplings and then 
compared this to the case of critical coupling. This 
comparison is useful in the design process to determine the 
narrowest bandwidth that supports a desired transmission 
to the drop port, or the maximum transmission achievable 
at a certain bandwidth, given known linear losses. Fig. 7 
and Eqs. (26) show that the optimum symmetric design has 
a minimum bandwidth limit of Δfo, while the critically 
coupled design has a minimum bandwidth of 2Δfo.  In the 
limit of a large bandwidth α, the loss plays a negligible role 
and the two solutions can be verified by a first-order Taylor 
series expansion of Eqs. (26) to be equal.   
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Fig. 7. Minimizing the impact of loss on a single filter stage:  comparison 
of symmetric (optimal) and critically coupled single-ring filter designs for 
different normalized bandwidths, � (ratio of total bandwidth to loss-
limited, intrinsic bandwidth). Ref. [12] 
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