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Hamiltonian theory of hybrid quantum–classical systems is used to study dynamics of the classical
subsystem coupled to different types of quantum systems. It is shown that the qualitative properties
of orbits of the classical subsystem clearly indicate if the quantum subsystem does or does not have
additional conserved observables.
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1. Introduction

Linear Schrödinger equation of any quantum mechanical system
is equivalent to an integrable Hamiltonian dynamical system [1–6].
As such, the linear Schrödinger equation of a bounded system has
only periodic or quasi-periodic orbits. However, integrable systems
are exceptional [7]. Typical Hamiltonian system has also plenty of
irregular, i.e. chaotic orbits [7], but these do not appear in standard
quantum mechanics. Integrability, or the lack of it, of Hamilto-
nian dynamical systems is related to the symmetries of the model
and to the existence of a sufficient number of integrals of motion.
The difference between integrable and non-integrable systems is
clearly manifested in the qualitative properties of orbits. The for-
mer have only regular, periodic or quasi-periodic orbits, and in the
latter the chaotic orbits dominate. Classification of quantum sys-
tem into regular or irregular such as ergodic or chaotic, is possible
using different plausible and variously motivated criteria without
reference to the orbital properties. Usually, the criteria are formu-
lated in terms of the properties of the energy spectrum, and the
connection with the classical, well developed, notions of regular
or chaotic dynamics, formulated in terms of orbital properties, is
obscured.

The purpose of our work was to investigate qualitative prop-
erties of orbits of a hybrid quantum–classical system, where the
classical part is integrable when isolated and the quantum part is
characterized as symmetric or non-symmetric by the existence of
constant observables. In particular, we want to see if the symme-
try, or the lack of it, might be displayed in the qualitative proper-
ties of orbits of the classical part. To this end we utilized recently
developed Hamiltonian hybrid theory of quantum–classical (QC)
systems [8–12]. Our main result is that indeed quantum systems,
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characterized as non-symmetric imply chaotic orbits of the clas-
sical degrees of freedom (CDF) coupled to the quantum system.
On the other hand, CDF show regular dynamics if coupled to a
symmetric quantum system, i.e. a quantum system with sufficient
number of constant observables.

One of the first to introduce some sort of dynamical distinc-
tion between quantum systems was von Neumann [13] with his
definition of quantum ergodicity based on the properties of the
Hamiltonian eigenspectrum. Further developments and different
approaches to the problems of quantum irregular dynamics can be
divided into three groups. The literature on the topic is enormous,
and we shall give only a few examples or a relevant review for
each of the approaches. The most popular was the type of studies
analyzing the spectral properties of quantum systems obtained by
quantization of chaotic classical systems (see the reviews collected
in [14]). Still in the framework of systems whose classical ana-
log is chaotic, there were studies of semi-classical dynamics [14]
and phase space distributions [14]. The second group of studies
consists of those works where an intrinsic definition of quantum
chaoticity is attempted [15]. Neither the works in the first nor
those in the second group rely on the topological properties of
pure state orbits of quantum systems. The third group originates
from the studies of open quantum systems, and here the proper-
ties of orbits of an open quantum system are important. Classical
property of chaoticity defined in terms of orbital properties was
analyzed in quantum systems interacting with different types of
environments [16–18]. It was observed that orbits of such open
quantum systems in the macro-limit might be chaotic.

In the next section we shall briefly recapitulate the Hamilto-
nian theory of hybrid systems. In Section 3 we present the hybrid
models consisting of qualitatively different pairs of qubits as the
quantum part and the linear oscillator as the classical part. Sec-
tion 4 will describe numerical computations of hybrid dynamics
and our main results. Brief summary will be given in Section 5.
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2. Hamiltonian hybrid theory

There is no unique generally accepted theory of interaction be-
tween micro and macro degrees of freedom, where the former are
described by quantum and the latter by classical theory (see [8]
for an informative review). Some of the suggested hybrid theories
are mathematically inconsistent, and “no go” type theorems have
been formulated [19], suggesting that no consistent hybrid theory
can be formulated. Nevertheless, mathematically consistent but in-
equivalent hybrid theories exist [8,20–23].

The Hamiltonian hybrid theory, as formulated and discussed for
example in [8,11,12], has many of the properties commonly ex-
pected of a good hybrid theory, but has also some controversial
features. Its physical content is equivalent to the standard mean
field approximation, but it is formulated entirely in terms of the
Hamiltonian framework, which provides useful insights such as
the one presented in this communication. The theory is based on
the equivalence of the Schrödinger equation on HN and the corre-
sponding Hamiltonian system on R

2N . The Riemannian g and the
symplectic ω structures on the phase space Mq = R

2N are given
by the real and imaginary parts of the Hermitian scalar product on
HN : 〈ψ |φ〉 = g(ψ,φ) + iω(ψ,φ). Schrödinger equation in an ab-
stract basis {|n〉} of HN

ih̄
∂cn

∂t
=

∑

m

Hnmcm (1)

where |ψ〉 = ∑
n cn|n〉 and Hnm = 〈n|Ĥ|m〉 is equivalent to Hamil-

tonian equations

ẋn = ∂ H(x, y)

∂ yn
, ẏn = −∂ H(x, y)

∂xn
(2)

where cn = (xn + iyn)/
√

2h̄ and

H(x, y) = 〈ψxy|Ĥ|ψxy〉, (3)

where (x, y) stands for (x1, x2 . . . xN , y1, y2 . . . yN). Only quadratic
functions A(x, y) of the form A(x, y) = 〈ψxy | Â|ψxy〉 are related to
the physical observables Â. In particular, the canonical coordinates
(x, y) of quantum degrees of freedom (QDF) do not have such in-
terpretation.

Hamiltonian hybrid theory uses the Hamiltonian formulations
of quantum and classical dynamics, and couples the classical and
quantum systems as they would be coupled in the theory of
Hamiltonian systems. The phase space of QC system is given by
the Cartesian product

Mqc = Mq ×Mc, (4)

and the total Hamiltonian is of the form

Hqc(x, y,q, p) = Hq(x, y) + Hcl(q, p) + Hint(x, y,q, p). (5)

The dynamical equations of the hybrid theory are just the Hamil-
tonian equations with the Hamiltonian (5).

Observe two fundamental properties of the Hamiltonian hybrid
theory: (a) There is no entanglement between QDF and CDF and
(b) the canonical coordinates of CDF have the interpretation of
conjugate physical variables and have sharp values in any pure
state (x, y,q, p) of the hybrid. Hamiltonian theory of hybrid sys-
tems can be developed starting from the Hamiltonian formulation
of a composite quantum system and imposing a constraint that
one of the components is behaving as a classical system [11].
3. Qualitatively different quantum systems coupled to the
classical harmonic oscillator

We shall consider the following three examples of quantum
system with different symmetry properties. All three examples in-
volve a pair of interacting qubits, where σ 1,2

x,y,z denote x, y or z
Pauli matrix of the qubit 1 or the qubit 2, and ω, μ and β are
parameters. The simplest is given by

Ĥs = h̄ωσ 1
z + h̄ωσ 2

z + h̄μσ 1
z σ 2

z . (6)

The system has two additional independent constant observables
σ 1

z and σ 2
z corresponding to the SO(2) × SO(2) symmetry of the

model. Next two models are examples of non-symmetric systems.
The system

Ĥns1 = Ĥs + h̄βσ 1
y (7)

has only σ 2
z as the additional constant observable, and in the sys-

tem

Ĥns2 = h̄ωσ 1
z + h̄ωσ 2

z + h̄μσ 1
x σ 2

x , (8)

there are no additional dynamical constant observables. Let us
stress that the Hamiltonian systems with the Hamiltonian func-
tions given by 〈ψ |Ĥ |ψ〉 are integrable with only the regular (non-
chaotic) orbits irrespective of their symmetry properties.

The Hamilton functions corresponding to the three quantum
systems (6), (7) and (8) are given by the general rule (3). In
the computational basis |1〉 = |1,1〉, |2〉 = |1,−1〉, |3〉 = |−1,1〉,
|4〉 = |−1,−1〉, where for example |1,1〉 = |1〉 ⊗ |1〉 and |±1〉 are
the eigenvectors of σz , the Hamilton functions are

Hs(x, y) = ω
(
x2

1 + y2
1 − x2

4 − y2
4

)

+ μ

2

(
x2

1 − x2
2 − x2

3 + x2
4 + y2

1 − y2
2 − y2

3 + y2
4

)
, (9)

Hns1(x, y) = ω
(
x2

1 + y2
1 − x2

4 − y2
4

)

+ μ

2

(
x2

1 − x2
2 − x2

3 + x2
4 + y2

1 − y2
2 − y2

3 + y2
4

)

+ β(y3x1 + y4x2 − y1x3 − y2x4) (10)

and

Hns2(x, y) = ω
(
x2

1 + y2
1 − x2

4 − y2
4

)

+ μ(x2x3 + x1x4 + y2 y3 + y1 y4). (11)

Observe that, due to the 1/
√

2h̄ scaling of the canonical coordi-
nates (x, y), h̄ does not appear in the Hamilton functions (9), (10)
and (11) nor in the corresponding Hamilton equations and their
solutions x(t) . . .. Of course, h̄ reappears in the functions 〈σ 1

x 〉 . . . .
The classical system that we want to couple with quantum sys-

tems (9), (10) or (11) is one-dimensional linear oscillator with the
Hamiltonian

Hcl(q, p) = p2

2m
+ kq2, (12)

which of course has only regular periodic orbits.
The QC interaction term is taken to be such that it does not in-

terfere with the existence of operators commuting with the Hamil-
tonian of the quantum part. In other words, the operator Ĥq + Ĥint
has the same additional constant observables as the quantum
part Ĥq . Furthermore, Ĥint must depend on observables of the
qubit 1 and of the qubit 2. For example Ĥint = q(c1h̄σ 1

z + c2h̄σ 2
z )

implying Hint(x, y,q, p) = q(c1h̄〈σ 1
z 〉 + c2h̄〈σ 2

z 〉) or explicitly
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Fig. 1. Figures illustrate the time series q(τ ) (a, c) and the corresponding amplitudes
of the Fourier spectra (b, d), of the classical oscillator subpart of the hybrid system
with the quantum subpart given by symmetric (9) (a, b) and non-symmetric (11)
(c, d) systems. The values of the parameters are ω = 1, μ = 5, m = k = 1, c1 = 15,
c2 = 1.

Fig. 2. Figures illustrate the time series (a, c) and the corresponding amplitudes of
the Fourier spectra (b, d), of the x1 canonical coordinate of the quantum subpart of
the hybrid system given by symmetric Hs(9) (a, b) and non-symmetric Hns2(11) (c,
d) systems. The values of the parameters are the same as in Fig. 1.

Hint = c1q

2

(
x2

1 + x2
2 − x2

3 − x2
4 + y2

1 + y2
2 − y2

3 − y2
4

)

+ c2q

2

(
x2

1 − x2
2 + x2

3 − x2
4 + y2

1 − y2
2 + y2

3 − y2
4

)
. (13)

The total Hamiltonian is given by the sum of (12), (13) and one
of (9), (10) or (11). Observe that the functions 〈σ 1

z 〉 and 〈σ 2
z 〉 are

constants of motion for the hybrid Hs + Hint + Hcl , as is the func-
tion 〈σ 2

z 〉 constant for the hybrid Hns1 + Hint + Hcl . Thus, Hint given
by (13) satisfies the general condition that we impose on the QC
interaction.

4. Numerical computations and the results

Hamiltonian equations are solved numerically and the dynam-
ics of CDF, illustrated in Fig. 1 and Figs. 3a, b and of QDF illustrated
in Fig. 2 and Figs. 3c, d, is observed in the cases corresponding to
the symmetric or non-symmetric quantum parts for different val-
Fig. 3. Figures illustrate the time series q(τ ) (a) and x1(τ ) and the corresponding
amplitudes of the Fourier spectra (b, d). The Hamiltonian is non-symmetric Hns1

(10). The values of the parameters are the same as in Fig. 1.

ues of the parameters μ and c. Let us first stress again that if there
is no classical system then all orbits are regular for either of the
quantum systems. On the other hand the hybrid system displays
different behavior. Consider first the time series generated by the
CDF. Figs. 1a, b, c, d and Figs. 3a, b show the time series q(τ )

(Figs. 1a, c and Fig. 3a), where τ = ωt is the dimensionless time,
and the corresponding Fourier amplitude spectra (Figs. 1b, d and
Fig. 3b). Figs. 1a, b are obtained with the quantum symmetric
system (9), Figs. 1c, d with quantum non-symmetric system (11)
and Fig. 3 with quantum non-symmetric system (10). Obviously,
the orbits of the CDF are periodic, with single frequency, in the
symmetric case, and chaotic with a broad-band spectrum in the
non-symmetric cases. We can conclude that the qualitative proper-
ties of orbits of a classical system coupled with a quantum system
are excellent indicators of the symmetries of the quantum system.

Consider now the dynamics of QDF illustrated in Figs. 2a, b,
c, d and Figs. 3c, d by plotting the time series generated by x1(t)
and the corresponding Fourier amplitudes spectra. Qualitatively the
same properties are displayed by dynamics of other canonical coor-
dinates x2, x3, x4, y1, y2, y3, y4 or, for example, by the dynamics of
expectation values 〈σ 1

x (t)〉, . . . . Again, the time series are regular if
the quantum systems are symmetric and are chaotic in the quan-
tum non-symmetric case. The same conclusion is obtained with
Hns2 replaced by Hns1. We can conclude that the orbits of the hy-
brid system, are regular or chaotic, in the sense of Hamiltonian
dynamics, depending on the quantum subpart being symmetric
or non-symmetric. Thus, the relation between symmetry and ex-
istence of independent constants of motion on one hand and the
qualitative properties of orbits on the other, which is the character-
istic feature of classical mechanics and is not a feature of isolated
quantum systems, is restored by appropriate coupling of the quan-
tum and a classical integrable system.

Observe that such behavior cannot be obtained by coupling two
quantum systems (instead of quantum–classical coupling). In this
case, and even for the simplest quantum system in place of the
classical one, the phase space of the quantum composite system
is much larger than Mqc because of the degrees of freedom corre-
sponding to the possibility of entanglement, and the total system is
always linear. All degrees of freedom of a quantum–quantum sys-
tem in the Hamiltonian formulation display only regular dynamics,
independently of the symmetries of the quantum Hamiltonian. On
the other hand, the hybrid systems are nonlinear, due to the QC
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coupling and the phase space of the form (4), and the relation be-
tween the symmetries and the qualitative properties of orbits is
like in the general Hamiltonian theory.

Explanation of the observed properties relies on the fact that
the five degrees of freedom hybrid Hamiltonian system with quan-
tum symmetric subpart has enough independent constants of mo-
tion in involution. These are given by H(x, y,q, p), Hs(x, y), 〈σ 1

z 〉,
〈σ 2

z 〉 and the norm of the state of the quantum subpart. On
the other hand Hns1 + Hint + Hcl , or Hns2 + Hint + Hcl do not
have enough such constants of motion since the quantum part
Ĥns2 does not commute with σ 1

z and σ 2
z and Ĥns1 with σ 1

z .
Only Hs + Hint + Hcl is integrable while those obtained with non-
symmetric quantum subparts are not and thus have some chaotic
orbits.

5. Summary

In summary, we have shown that the orbits of an integrable
classical system when coupled to a quantum system in an appro-
priate way remain regular or become chaotic depending on the
presence or lack of symmetries in the quantum part. To this end
we used the Hamiltonian theory of quantum–classical systems and
examples of qubit systems. The first fact is an important restric-
tion on our work. On the second point, the nature of our results
is qualitative and is therefore expected to be valid generically, and
not only for the considered examples. Considering the choice of
Hamiltonian theory to describe QC interaction, we were motivated
by the mathematical consistency of the theory and the fact that
the theory describes orbits of pure states of a deterministic Hamil-
tonian system. There are other consistent hybrid theories, but they
are either formulated in terms of probability densities [21,22] or
in terms of stochastic pure state evolution [20,23]. Of course, the
significance of our result could be properly judged only after the
status of Hamiltonian hybrid theory is sufficiently understood.
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