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Coarse-grained quantum systems and symmetries

N. Buric, S. Prvanovic and M. Radonjic
Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

E-mail: buric@ipb.ac.rs

Abstract. Constrained Hamiltonian dynamics is exploited to provide the mathematical
framework of a coarse-grained description of the quantum system of two interacting qubits and of
nonlinear interacting oscillators. The coarse-graining is treated as an equivalence relation on the
set of quantum states resulting in the emergence of the classical phase-space. The equivalence
relation imposes constraints on the Hamiltonian dynamics of the quantum system. It is seen that
the evolution of the coarse-grained system preserves constant and minimal quantum fluctuations
of the fundamental observables. This leads to the emergence of typical classical properties, like
the relation between symmetry and integrability, and in the case of oscillators in the macro-limit
implies the emergence of the classical system.

1. Introduction
It has been realized many times that some sort of coarse-graining is necessary in order that
typically quantum features of a system (with finite number of degrees of freedom) do not
dominate its appearance. The coarse-graining enters differently in different theories of quantum
to classical relation (QCR), and is not always equally strongly emphasized. In the theories of
decoherences [1] the emphasis is on the influence of the environment, but the description of
the environment must be coarse-grained to fulfill the desired decoherence effects. On the other
hand, authors like [2] and [3, 4] emphasize the primary role of the coarse-graining, associated
with limited precision of the devices used to observe the quantum system.

In this paper we shall study the emergence of classical properties in two typical examples
of quantum systems: a) a pair of qubits and b) a system of nonlinear oscillators. We shall
clearly distinguish two independent steps that are necessary for the emergence of classical
properties of a quantum system: a) system specific coarse graining and b) the macroscopic
limit. Implementations of the two steps are analogous for different systems but the details of the
implementations depend on the system. First we shall analyze the particular coarse-graining
which is necessary for the classical behavior of the basic observables and then analyze the
macroscopic limit of these observables if such limit is appropriate like in the case of oscillators.
The classical model will be constructed using formalization of the coarse-grained description
via an equivalence relation imposed on the quantum states and the corresponding constrained
dynamics.

2. Geometric formulation of coarse-grained quantum systems
2.1. Hamiltonian form of quantum dynamics with constraints
It is well known (please see [5] or [6] and references therein) that the evolution of a quantum
pure state in an n dimensional Hilbert space H (where n is finite or infinite) as given by the
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Schroedinger equation can be equivalently described by a Hamiltonian dynamical system on
the real manifold M with Riemanienn and symplectic structure. If H is finite n-dimensional
then M≡ R2n, but in general M is an infinite dimensional Euclidean manifold. The evolution
equations on M are in the Hamiltonian form:

Ẋ = Ω(∇X,∇H), (1)

where X is the vector of coordinates qi and momenta pi. The Hamilton’s function H(x) is
given by the quantum expectation of the Hamiltonian H in the state |ψ >: H =< ψ|Ĥ|ψ >,
the symplectic form Ω is given by the imaginary part of the scalar product in H, and ∇ is the
gradient on M.

The Hamiltonian framework for quantum dynamics enables one to describe the evolution
of a dynamical system generated by the Schroedinger equation with quite general additional
constraints [6, 7, 8]. Suppose that the evolution given by the Hamiltonian H is further
constrained onto a submanifold Γ of M given by a set of k independent functional equations

fl(X) = 0, l = 1, 2, . . . , k. (2)

Equations of motion of the constrained system are in general obtained using the method of
Lagrange multipliers. In the Hamiltonian form, developed by Dirac [9], the method assumes
that the dynamics on Γ is determined by the following set of differential equations

Ẋ = Ω(∇X,∇Htot), Htot = H +
k∑

l=1

λlfl, (3)

that should be solved together with the equations of the constraints (2). The Lagrange
multipliers λl are functions on M that are to be determined from the following, so called
compatibility, conditions

0 = ḟl = Ω(∇fl,∇Htot) (4)

= Ω(∇fl,∇H) +
k∑

m=1

λmΩ(∇fl,∇fm) (5)

on the constrained manifold Γ. We shall not go into the details of the standard Dirac’s procedure
that stress on the distinction between the first and the second class constraints. In order to apply
the standard procedure, the constraints have to be regular. A set of constraints is irregular if
there is et least one such that the derivative of the constraint with respect to at least one of the
coordinates is zero in at least one point on the constrained manifold. Otherwise the constraints
are regular. If the constraint (2) is irregular the Dirac’s classification into the first and the
second class is blurred and the straightforward application of Dirac’s recipe is not possible. It
will turn out that the cases of interest here involve precisely irregular constraints that must be
described in the most convenient way.

2.2. Constraints as a coarse-graining of the quantum system
Consider a system with the dynamical algebra g. The manifold Γ of g-coherent states α ∈ Γ is
determined by the condition that ∆g(ψ) is minimal on Γ:

∆g(ψ) ≡
∑

l

< L2
l > − < Ll >2≡

∑

l

(∆Ll)2 = min. (6)
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where Ll are the generators of the algebra. Expressions for the minimal value of ∆g(ψ) in terms
of the simple roots of g are known [10] and read

∆q(ψ) ≥
∑

l

kl < αl, αl >≡ min, (7)

where the highest weight vector λ =
∑

l klαl in terms of simple roots αl.
The generators of the algebra can be used to define an equivalence relation on M: ψ1 and

ψ2 are equivalent iff: < Ll >ψ1=< Ll >ψ2 for all Ll. The two examples considered in this paper
are such that there is a single coherent state in each equivalence class.

The Hamiltonian system with the additional constraints equivalent to (6) that constrain the
evolution on Γ preserves the equivalence classes, i.e. the classes evolve like single units and
could be considered as states of the coarse-grained i.e. constrained system . This is the coarse-
grained description. Such constrained Hamiltonian systems also preserve minimal the quantum
fluctuations (6).

However, the constraint (6) is not regular and needs to be replaced by more convenient
equivalent constraints.

3. Examples
3.1. Two qubits
Consider the dynamical algebra of local observables g = su(2) ⊗ su(2). The quantum phase
space is the projective space M = S7/S1.

As for the Hamiltonian we consider two typical examples

Hs = σ1
z + σ2

z + µσ1
zσ

2
z (8)

Hns = σ1
z + σ2

z + µσ1
xσ2

x. (9)

The constraint (6) is equivalent to c1c4 = c2c3 where c1, c2, c3, c4 are coefficients of |ψ > in
the computational basis, and the equation of this constraint is equivalent to two real equations

√
2p3 = p2q1 + p1q2,

√
2q3 = q1q2 − p1p2. (10)

These are regular and of second class.
The constrained manifold is Γ = S2 × S2, and there are the corresponding (constrained)

Hamilton equations on Γ [6].
Constrained dynamics of the symmetric Hamiltonian Hs is regular, while that of the

Hamiltonian Hns with no such symmetry displays typical properties of the Hamiltonian chaos [6].
Thus appropriately coarse-grained description of the quantum system has the typical classical
relation between integrability and symmetry.

3.2. System of oscillators [11]
The Hilbert space of the system is H = L2(Rn). The fundamental observables are represented
by 2n operators (Q̂i, P̂i), i = 1, 2, . . . n, satisfying [Q̂i, P̂j ] = iδi,j . The Hamiltonian is of the
form

Ĥ =
n∑

i=1

1
2mi

P̂ 2
i + V (Q̂1, Q̂2, . . . , Q̂n)

=
n∑

i=1

1
2mi

P̂ 2
i +

miω
2
i

2
Q̂2

i + . . . , (11)
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The symplectic phase space M of the Hamiltonian formulation of the quantum oscillators
system is given as the product of n infinite dimensional symplectic spaces. The canonical
coordinates of this infinite dimensional symplectic space can be written using the continuous
index as: φ(q1, . . . , qn), π(q1, . . . , qn) (qi ∈ R)

The constrained system defined by the Hamiltonian (11) and the following set of 2n
constraints

f i
q(X) = (∆Q̂i)2 − h̄

2miωi
= 0, (12)

f i
p(X) = (∆P̂i)2 − miωih̄

2 = 0, (13)

should preserve the dispersions of all fundamental quantum observables. However, the
constraints (12) are irregular The conservation of minimal dispersions is achieved by a more
suitable set of constraints.

To formulate the primary constraints in the alternative procedure, we associate with each
point from M denoted Xψ a point α(ψ) on the coherent state manifold Γ such that

α(ψ) = (〈Q̂〉ψ, 〈P̂ 〉ψ). (14)

We formulate the following two constraints

Φq = 〈V (Q̂)〉ψ − 〈V (Q̂)〉α(ψ) = 0, (15)

Φp = 〈P̂ 2〉ψ − 〈P̂ 2〉α(ψ) = 0. (16)

The role of the constraints is to preserve during the evolution the association of the set of points
ψ(t) with the corresponding single coherent state α(ψ(t)).

The total Hamiltonian assumes the standard form

Htot = 〈Ĥ〉ψ + λqΦq + λpΦp, (17)

and the compatibility condition

{∆(f(Q̂), P̂ ),Htot} = 0, (18)

yields the values of Lagrange multipliers

λq = −1, λp = − 1
2m

, (19)

independently of the function f(Q̂), leading to

Htot =
1

2m
〈P̂ 2〉α(ψ) + 〈V (Q̂)〉α(ψ) ≡ 〈Ĥ〉α(ψ). (20)

Noting that 〈P̂ 2〉α(ψ) = 〈P̂ 〉2α(ψ) +mωh̄/2 and dropping irrelevant constant we finally obtain the
total constrained Hamiltonian

Htot =
1

2m
〈P̂ 〉2α(ψ) + 〈V (Q̂)〉α(ψ), (21)

that preserves the evolution on the manifold of the coherent states Γ.
The total Hamiltonian (21) is up to additive constant equal to the initial Hamiltonian

H ≡ 〈Ĥ〉ψ on the constrained manifold Γ. However, Htot preserves constant and minimal
quantum fluctuations of fundamental observables, while the evolution with H can in general
make them quite large.

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012018 doi:10.1088/1742-6596/343/1/012018

4



3.3. Macro-limit of the oscillators system
The total Hamiltonian in a point α ≡ (q, p) on the constrained manifold is

Htot =
p2

2m
+ V (q) +

∞∑

k=1

1
2kk!

h̄kV (2k)(q)
(2mω)k

≡ hcl +
∞∑

k=1

1
2kk!

h̄kV (2k)(q)
(2mω)k

. (22)

In the macroscopic limit, represented as h̄ → 0 the terms in the sum in (22) tend to zero yielding

Htot → hcl, h̄ → 0. (23)

To summarize: We see that the classical system emerges because of: a) the coarse-grained
description of the quantum system and then b) the macroscopic limit. It is important to note
that the two factors, i.e. the coarse-graining and the macro-limit, are independent and both are
necessary

For the system with more than one oscillators, that might be nonlinear and interacting, the
condition that ∆Q̂i and ∆P̂i are simultaneously minimal implies that each of the oscillators is
always in some pure H4 coherent state |αi(t)〉. Thus, the total state |ψ(t)〉 is always given by
the tensor product of the single oscillator’s pure coherent states |ψ(t)〉 = ⊗i|αi(t)〉, implying for
example

〈ψ(t)|Q̂1 ⊗ Q̂2|ψ(t)〉 = 〈Q̂1〉α1(t) × 〈Q̂2〉α2(t)

= q1(t)× q2(t). (24)

4. Summary
We have used the formulation of quantum dynamics in the form of a Hamiltonian dynamical
system to study the relation between a quantum system and its coarse-grained description.
The type of coarse-graining is dictated by the systems dynamical algebra and determines the
classical model of the quantum system. Kinematical and dynamical properties of the classical
model are obtained from the quantum one via the two step procedure consisting of: a) coarse-
graining and b) macroscopic limit if appropriate. The coarse-graining is mathematically treated
as an equivalence relation on the set of quantum states, and as a result emerges the classical
phase-space. The equivalence relation imposes a constraint on the Hamiltonian dynamics of the
quantum system. The effect of the constraints is to preserve constant and minimal quantum
fluctuations of the canonical observables. The formulation of the most appropriate finite set
of constraints that fulfil the goal is not straightforward, and involves the nonlinear potential.
Resulting constrained Hamiltonian system on the constrained manifold represents the coarse-
grained description of the quantum system. In the case of the quantum system obtained by
quantization of classical oscillators systems the emergent coarse-grained system differs from the
classical one with the same potential only in the terms that are arbitrary small in the macroscopic
limit.

The procedure can be generalized to obtain other classical systems from the coarse-grained
quantum systems in the corresponding macroscopic limit.
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