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Abstract. We discuss the relationship between the two most important types of intersublevel
coupling in the polar semiconductor based quantum dots (QDs), namely Frölich electron-
longitudinal optical(LO) phonon coupling and electron-light coupling. We further parametrize
the Frölich coupling, giving its quantitative description in terms of QD geometric and
composition parameters.

1. Introduction

Electron-longitudinal optical phonon interaction was found to be the most important intrinsic
interaction in the conduction band of self-assembled QDs based on polar semiconductors. Either
considered as a weak interaction modelled by Fermi golden rule [1] or as a strong interaction
leading to the formation of finite-lifetime polarons [2, 3], it is responsible for the decay of excited
carriers from p-like first excited state to s-like ground state [4, 5]. Therefore, understanding this
interaction and its relations to other relevant quantities is of great importance for understanding
the physics of conduction band electrons in QDs. In the following sections we show that this
coupling can be parametrized so to relate it to optical matrix elements, giving a clear relationship
between these two types of coupling of the electronic degrees of freedom, and providing a
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simple intuitive picture of the dependance of Frölich coupling on QD geometric and composition
parameters.

2. Initial Considerations

Consider a simple case of one spinless electron in the conduction band of a QD. At low
temperatures the electron predominantly occupies s-like ground state. The strongest resonance
from that state via optical excitation is with the p-like first excited state [6, 7]. In this
reduced space of only two relevant electronic levels an optical LO phonon mode k couples

electron wavefunctions via Hamiltonian matrix element Hph
ab (k) = K〈ψa

∣

∣

∣

eik·r

k

∣

∣

∣ψb〉, where

K =

√

e2h̄ωLO

2V

(

1
ǫ∞

− 1
ǫst

)

. This matrix element will be called Frölich coupling function (FCF)

for a wavevector k. The most important parameter describing this interaction in both weak
coupling and strong coupling regime, for such a two-level system, is the integral over the mode
space k of the Frölich matrix element [3, 8], C2

ab =
∫

d3
k |Hab (k)|2, which will be denoted as

Frölich coupling constant.
The electron-photon interaction is described within the dipole approximation. The optical

matrix element coupling these two states in the dipole approximation is Rab = 〈ψa |r|ψb〉.

3. The Relationship

Due to confinement, only LO-phonons with small wavevectors can significantly interact with
electrons. By expanding the exponential term in FCF in Taylor series around k = 0 one obtains

Hk

ab = K

∫

d3
rψ(a)∗ cos k · r

k
ψ(b) + iK

∫

d3
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k
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rψ(b) −

−
k

2
K

∫

d3
rψ(a)∗ (ek · r)2 ψ(b) − i

k2

6
K

∫

d3
rψ(a)∗ (ek · r)3 ψ(b) + · · · ,

where the second equation represents the Taylor series of sine and cosine functions, and ek = k

k
.

In the case of well defined and opposite parity for |ψa〉 and |ψb〉 we have

Hk

ab = iK

(

ek · Rab −
k2

6

∫

d3
rψ(a)∗ (ek · r)3 ψ(b) + · · ·

)

. (2)

In the limit k → 0 the expression (2) becomes:

Hk

ab = iKek · Rab. (3)

Hence, the maximum of the scalar field Hk

ab is proportional to the intensity of the dipole coupling
vector, and occurs at k → 0.

FCF is not well defined at k = 0 where the vector k does not have a defined direction,
and therefore the expression ek · Rab is not defined. Strongly anisotropic behaviour of the
distribution Hk

ab arises from the factor ek · Rab. For k pointing in the direction of the dipole
coupling vector, the FCF exhibits the weakest negative slope. This slope is increasing with
increasing angle between k and the FCF, and decays rapidly to zero when k becomes almost
perpendicular to the dipole coupling vector, and in the limit where k is exactly perpendicular
the FCF equals zero. All these features prove that the FCF has a p-orbital like shape. This was
indeed expected, since the FCF is essentially the Fourier transform of an odd function.

Therefore, the Frölich coupling function has been parameterized by a bell-shaped distribution
function, with the maximal value at k → 0 proportional to the intensity of the dipole coupling
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vector and multiplied by the ki

k
, where i denotes the direction of the dipole coupling vector.

This model gives:
∣

∣

∣Hk

ab

∣

∣

∣ = |Rab|K
kz

√

k2
x + k2

y + k2
z

I (k) , (4)

where I (k) is the anisotropic distribution function with maximum I (0) = 1.
The general shape of the distribution function I (k) reduced to two dimensions with HWHMs

σx and σz is shown in Fig. 1. The maximal value is always I (k = 0) = 1. The exact lineshape
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Figure 1. The distribution function for a parabolic QD. The figure is reduced to two dimensions
(z and x) without losing generality. Linewidths σx and σz are inversely proportional to dot sizes
in the corresponding directions.

depends on the particular QD and its geometric and composition parameters. A more extended
dot in a particular direction has a narrower distribution function in that direction, i.e. σx and σz

are decreasing functions of the dot sizes in x and z directions. This is clear from the fact that FCF
is a Fourier transform of the product of the s-like and p-like wavefunction divided by k. It is well
known that the transform of an expanded function shrinks, and vice versa. For the parabolic
potential QD the distribution function is a Gaussian with HWHMs inversely proportional to
the extensions of the parabolic confinement. By changing the QD material composition, i.e.
increasing the dot depth, one inreseas the confinement of the bound wavefunctions. Therefore,
for the same reason as above, the HWHM is an increasing function of the dot depth.

The FCF has been parametrized via two factors, namely the dipole coupling vector Rab,
which is a well known spectroscopic quantity, and the distribution function with the property
I (0) = 1. Using this approximaton Frölich coupling constant becomes:

C2
ab =

e2h̄ωLO

16π3

(

1

ǫ∞
−

1

ǫst

)

|Rab|
2
∫

d3
k

k2
z

k2
x + k2

y + k2
z

I2 (k) (5)

In calculating the Frölich coupling constant, the exact lineshape of the distribution function
loses its significance due to the integration. The HWHM of the distribution function and the
dipole coupling vector pre-factor remain as the main factors affecting the value of Frölich coupling
constant. The integral in the last equation is affected directly by variations of QD geometric
and composition parameters. Being the Fourier-transform-like image of the product of s-like and
p-like wavefunctions, it shrinks and expands by expansion and reduction of the QD size. The
dipole coupling vector can, at the same time, exhibit different behaviour, preventing the entire
FCF to change significantly. However, this will still influence the QD optical properties. The
larger the magnitude of the dipole coupling vector, the stronger is the s-p-like optical resonance.
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4. Conclusion

In summary, we have parameterized the FCF via the dipole coupling vector (optical matrix
element) and the distribution function whose widths were related to geometric and composition
properties of the QD. There are a number of advantages of such parameterization. By using the
expansion formula for Hab (k) one can significantly reduce the numerical effort in calculation of
all coupling constants relevant to electron-phonon interaction. The presented model can be used
as the basis for estimating the ratio between radiative and non-raditive lifetimes as a function
of the dot geometric and composition parameters, which is very important in future designs of
QD based intersublevel emitters. By measuring the absorption one can extract the values of the
dipole coupling vector and the level separation, which can be further used in combination with
the presented model to get an insight into the electron-LO phonon interaction.
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