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Abstract. A recently developed method systematically improved the convergence of generic
path integrals for transition amplitudes, partition functions, expectation values and energy
spectra. This was achieved by analytically constructing a hierarchy of discretized effective
actions indexed by a level number p and converging to the continuum limit as 1/Np. Here
we apply the above general method to numerical calculations using Metropolis Monte Carlo
simulations of energy expectation values and energy spectra. We analyze and compare the
ensuing increase in efficiency of several orders of magnitude.
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1. Introduction

In the middle of the last century Feynman introduced an alternate approach to quantum
mechanics known as the path integral formalism [1, 2, 3]. This approach provided us with a
new intuitive picture for understanding quantum mechanics, it enabled us to make connections
and analogies between different areas of physics, and it also provided a new mathematical
framework for calculating properties of physical systems. In particular, the formalism made it
easy to generalize quantum theories from one particle to many particles and finally to fields in
a relatively straightforward way. Unfortunately, the new formalism did not increase the number
of analytically solvable systems [4, 5]. The fact that it enabled us to treat models that were
previously inaccessible is due to its formulation in terms of discretized quantities, making it
directly amenable to numerical treatment.

In numerical simulations, our poor understanding of the inherent mathematical structure
of path integrals translates into the slow convergence of the sought-after physical quantities.
Substantial increase in efficiency of numerical algorithms for calculating path integrals, can,
therefore, come only through the input of new analytical information about path integrals into
the calculation schemes. A recent series of papers [6, 7, 8] has investigated the relationship
between discretizations of different coarseness in the case of a general quantum theory. The
new found analytical results were then used to construct a more efficient Path Integral Monte
Carlo (PIMC) SPEEDUP code [9] which increased convergence of generic path integrals from
1/N to 1/Np. For computational reasons, the level p is currently limited to p = 13, however,
there are no fundamental barriers to going to even higher levels. This substantial increase in
efficiency results in speedup of path integral calculations and has been applied to calculations of
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amplitudes, partition functions, expectation values, as well as low lying energy spectra [10, 11].
Direct numerical calculations of a variety of different models have confirmed the analytically
derived results.

All of the key properties of path integrals can be seen already on the example of one particle
systems in one dimension. For this reason the current paper limits itself to systems of this kind.
Let us note however that the generalization to more complex systems has also been investigated
and confirms that the previously derived increase in efficiency holds for general many particle
systems as well [12].

PIMC algorithms can be made more efficient either by getting better convergence to the
continuum limit through the use of above mentioned hierarchy of discretized effective actions,
or through better generation of relevant trajectories in the MC method. So far all the numerical
verifications of improved 1/Np convergence have been implemented using a PIMC code in which
paths were generated through a Levy construction. In this paper we numerically investigate
the derived speedup using Metropolis [13, 14, 15] method for generating relevant paths. In
general the Metropolis technique is optimally suited for calculating expectation values. We
have numerically verified the 1/Np convergence, showing explicitly coexistence of improvements
obtained through the use of effective actions and the Metropolis path generation method.

2. Path integrals

As previously stated, we focus on the motion of one particle in one dimension. The central
object is the (Euclidean) amplitude for the quantum system to go from initial position a to final
position b in imaginary time T . Feynman gave us three basic rules for calculating this transition
amplitude:

(i) the contribution of each path is determined by the action functional S[q], and is proportional
to e−S[q],

(ii) one needs to take into account the contributions of all paths consistent with the boundary
conditions,

(iii) contributions of different paths add up linearly, and the ensuing sum is called the part
integral.

For a majority of physically interesting cases the action is of the form

S =

∫ T

0
dt

(

1

2
q̇2 + V (q)

)

. (1)

Note that for simplicity we are working in units where h̄ and particle mass have been set to
unity. The only problem in the outlined procedure is the enumeration of all possible paths.
This is done by discretizing the time of propagation T into N equal time steps ε = T/N . The
contribution of each piecewise linear trajectory is then determined by a discretized action of the
form

SN =
N−1
∑

n=0

ε

(

(qn+1 − qn)2

ε2
+ V (q̄n)

)

, (2)

wherethe potential is evaluated at q̄n = (qn + qn+1)/2, corresponding to the mid-point or Weyl
ordering prescription of the usual operator formalism. The final transition amplitude is given
A(a, b;T ) is given as N → ∞ limit of the discretized amplitude AN (a, b;T )

A(a, b;T ) = (2πε)−N/2
∫

dq1 · · · dqN−1e
−SN [q] , (3)

where qn are the positions at discrete times nε, q0 = a, qN = b, and (2πε)−N/2 is the appropriate
normalization factor.
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The above discretized expression represents an N − 1-fold integral and is directly amenable
to numerical treatment. In general, for large N , such expressions are nest handled using Monte
Carlo techniques [13, 14, 15]. Before we proceed with this, however, let us note that the transition
from continuum to discrete theory is far from unique. Said another way, there exists an infinity of
discretized actions that, in the continuum limit, give the same transition amplitude. The naively
discretized action given in equation (2) is just the simplest representative. While the choice of
different discretized actions does not affect the final continuum amplitude, it may substantially
affect the speed of convergence to that continuum limit. The naive action typically leads to 1/N
convergence. In a previous series of papers [6, 7, 8] we have constructed an explicit procedure for
determining a hierarchy of equivalent discretized actions S(p) which lead to improved convergence
of generic amplitudes as 1/Np. Explicit expression for elements of the hierarchy has so far been
obtained for p ≤ 13 and are available on our web site [9]. There are no practical impediments
to going to higher values of p, the problem of determining the appropriate effective actions just
gets algebraically more complex and requires the use of some package for symbolic calculus (e.g.
MATHEMATICA).

Most often, however, one is interested in calculating not amplitudes but partition functions.
The relation between the two is made apparent in the coordinate basis. As a result, the partition
function can directly be written as a path integral. It is now an N → ∞ limit of discretized
partition function

ZN (T ) =

∫

dq0AN (q0, q0;T ) . (4)

Note therefore that Z(T ) is given as a limit of an N -fold integral over periodic piecewise linear
trajectories. The partition function contains all thee information about the statistical properties
of the system. In particular, we can use it to determine thermodynamic potentials, such as the
free energy F = − 1

T ln Z. The free energy is also the ideal starting point for evaluating the
energy spectrum of a given theory. From evaluating the partition function in the energy eigen-
basis it follows that, in the large T limit, the free energy tends to the ground state energy E0.
Similarly, one can introduce auxiliary functions F (n)

F (n) = −
1

T
ln

(

Z −
n−1
∑

i=0

di e−TEi

)

. (5)

Note that F (n) tends to En in the large T limit. In this way, it is possible to use the free energy
and the above auxiliary functions to numerically evaluate the low lying energy levels. The fact
that F (n) depends on all the lower energy levels and degeneracies results in an accumulation of
numerical error as one looks at higher and higher energy levels. This is illustrated in figure 1
on the case of a particle moving in the quartic potential V (q) = q2/2 + gq4/24.

In addition to amplitudes and partition functions, path integrals are also used to evaluate
expectation values of physical variables. The thermal expectation values of an observable O is
given by

〈O〉 = Tr
(

e−TĤÔ
)

/Tr e−TĤ . (6)

This can be directly written in the form of path integrals as the N → ∞ limit of the discretized
expectation values

〈O〉N = (2πεZN (T ))−N/2
∫

dq0dq1 . . . dqN−1ONe−SN [q] . (7)

In the above expression ON stands for the discretized estimator of the corresponding physical
variable. One needs to be careful in how one chooses estimators. They are not just simple
discretizations of the continuum expressions. In addition, the estimator must be consistently
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Figure 1. Metropolis implementation of PIMC algorithm for the calculation of low lying energy
levels of a quartic potential. The plot shows the dependence of the free energy and the auxiliary
function F (1) and F (2) as functions of T . The asymptotes are the corresponding energy levels
E0, E1 and E2. The parameters of the theory are g = 1, NMC = 107, N = 256. The simulations
were performed with p = 9 level improved effective actions.

paired with the discretized effective action used in order for expectation values to profit from
the same increase in convergence as transition amplitudes. As a particular example, let us look
at energy estimators. The continuum expression E = q̇2/2 + V (q) would naively be discretized
as EN = (qn+1 − qn)2/2ε2 + V (q̄n for any n. Al alternate, more symmetrical estimator would be
EN = N−1∑

[

(qn+1 − qn)2/2ε2 + V (q̄n)
]

, where we have made use of the fact that the energy is
a conserved quantity. Both of these estimators lead to problems in the continuum limit and give
divergent results. This is easily understood if we recall that for short times of propagation each
theory is well approximated by a free particle (random walker), satisfying the diffusion relation
〈(qn+1 − qn)2〉 ∼ ε. As a result, the above naive estimators have a dominant term diverging
as 1/ε. The source of the problem is in the T -dependence of the normalization of the above
expectation value. A better way to derive the energy estimator is to use the relation

〈E〉 = −
∂

∂T
lnZ(T ) . (8)

If we define the discretized energy expectation value to satisfy the same kind of relation with
the discretized partition function, it follows that the consistent energy estimator is given by

EN =
N

2T
−

1

N

N−1
∑

n=0

(qn+1 − qn)2

2ε2
+

1

N

N−1
∑

n=0

V (q̄n) . (9)

The first two terms in the above estimator (9) both diverge in the continuum limit. However,
taken together divergences cancel out and one obtains a finite result. Irrespective of this, the
above (so called kinetic) estimator does not represent a good choice, as it contains within it the
difference of two large numbers, making its standard deviation divergent and such numerical
calculations nontractable. The standard way around this problem is to use the virial theorem

〈

p̂2

2

〉

=

〈

1

2
x̂V ′(x̂)

〉

. (10)
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Using it we obtain what is called the virial energy estimator [16]

Evir
N =

1

2N

N−1
∑

n=0

q̄nV ′(q̄n) +
1

N

N−1
∑

n=0

V (q̄n) . (11)

Each term of this estimator is well behaved and has finite continuum limit and finite standard
deviation. It is important to note that the final form of the energy estimator used follows directly

from the form of the discretized action. As a result, by changing the discretized action to S
(p)
N

we immediately obtain the appropriate p-level generalization of the energy estimator. These
generalized estimators have been derived and studied in [11], where it was shown that they have
the correct improved 1/Np convergence.

3. Metropolis implementation

PIMC algorithms can be made more efficient either by getting better convergence to the
continuum limit through the use of above mentioned hierarchy of discretized effective actions,
or through better generation of relevant trajectories in the MC method. So far all the numerical
verifications of improved 1/Np convergence have been implemented using a PIMC code in
which paths were generated through a Levy construction. The Levy construction [15] samples
paths with 2s time steps through a recursive halving, starting with some boundary conditions
(representing the trajectory with 20 time steps). In the first step we generate one new node at
the moment T/2 and get a new trajectory, with 21 time steps. The procedure is then repeated
recursively for each segment of the trajectory. The new nodes are generated using the free
particle approximation: if the coordinates of the boundaries of the segment are R1 and R2, and
if the current time step is ε, the new node is selected from a Gaussian distribution centered at
(R1 + R2)/2 and with the standard deviation σ2 = ε/2. This method, although powerful and
simple, can sometimes require very long runs in order to give results with the desired precision.
The generated paths are sampled using a free particle approximation, and for models with strong
interactions this way of sampling is far from optimal.

In this section we investigate the analytically derived speedup of path integral calculations
within the framework of a PIMC code based on the Metropolis algorithm [13, 14, 15], a path
generating technique optimally suited for calculating expectation values. Metropolis rejection
algorithm is a special type of Markov process, enabling sampling of arbitrary probability
distributions. The desired probability distribution π(q) is obtained asymptotically, using a
series of transformations (Metropolis moves) of the state of the system. The transformations
are characterized by a transition matrix T (q → q′), and the trial configuration q′ is accepted
according to the following probability

A(q → q′) = min

{

1,
T (q′ → q)π(q′)

T (q → q′)π(q)

}

. (12)

Metropolis moves in PIMC implementations are usually chosen to represent random local
displacements (of given size) of individual nodes. The trajectories generated by the Metropolis
technique are not independent, and we can have large correlations between consecutive paths.
The correlations, however, depend on the physical quantity which is being calculated. The
measure of such correlations is described through the correlation coefficient

ck =
〈(O0 − 〈O〉)(Ok − 〈O〉)〉

〈(O0 − 〈O〉)2〉
, (13)

where Ok is the expectation values of the physical quantity calculated using each k-th
configuration. The correlation length is defined as a minimal value of k for which the correlation
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Figure 2. Correlation coefficient as a function of the correlation length k for the Metropolis
implementation of the quartic anharmonic oscillator with g = 100, T = 5, NMC = 106,
N = 1024. The simulations were performed with p = 9 level improved effective actions.

coefficient ck is sufficiently small (typically ck < 0.1). Figure 2 illustrates the usual behavior of
correlation coefficients for an anharmonic oscillator with quartic coupling.

The described method for correlation reduction is sufficiently good for accurate estimation of
expectation values of physical quantities [14]. However, the estimates of MC errors of numerical
results (standard deviations) can still be affected by the remaining correlations. This is caused
by the deviation of the distribution of MC samples from the Gaussian: the numerically obtained
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Figure 3. Standard deviation for Metropolis algorithm as a function of block size for a quartic
anharmonic oscillator with g = 1, T = 5, NMC = 106, N = 1024. The simulations were
performed with p = 5 level improved effective actions.
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distribution can be skewed, or have non-zero kurtosis, or both. This is dealt with by dividing
the generated set of MC samples into blocks of a chosen size, and then by using just the averages
over blocks as a new MC sample. By increasing the block size so that the skew and kurtosis
of the obtained new distribution can be neglected, we may correctly estimate the value of MC
errors. Note that this procedure does not affect the estimate for the expectation value. Figure
3 gives the dependence of the estimated standard deviation on the block size for a Metropolis
implementation of a PIMC calculation of the energy expectation value for a quartic anharmonic
oscillator. From this figure wee see that by using small enough block sizes the MC error can be
substantially underestimated.

In usual implementation of the Metropolis algorithm, the probability distribution that is to
be sampled is given by the exponential of the naively discretized action

πN [q(t)] ∼ e−SN [q(t)] . (14)

In our implementation, the naively discretized action is replaced by one of the improved effective

actions in the hierarchy S
(p)
N , trial paths were sampled using Levy construction, and acceptance

of new trajectories was done according to the Metropolis rule (12). Figure 4 illustrates the typical
behavior that one uncovers. As expected, the implementation of the Metropolis algorithm does
not interfere with the increased convergence obtained through the use of higher level effective
actions. Indeed, by using p level effective actions we again find that the numerical results of a
new PIMC code display improved convergence of the form 1/Np. In fact, far from interfering
negatively, the use of higher level effective actions brings about an improved efficiency of the
Metropolis algorithm per se through the generation of more relevant trajectories. This is seen
through the reduction of the variance of numerical results. A mode detailed investigations of
this would be reported elsewhere. In particular, there we will focus on effective actions with
p ≥ 10 and take into consideration the effects of the increased algebraic complexity of these
expressions on the computation time. For levels p ≤ 10 numerical investigations have shown
that this accumulated complexity does not have significant effects on the computation time.
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Figure 4. Metropolis implementation of the energy expectation value as a function of the
discretization coarseness N for the quartic anharmonic oscillator with g = 1, T = 1, NMC = 107.
The simulations were performed with level p = 1, 2, 3, 4 improved effective actions.
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4. Conclusions

We have given a brief overview of the current state of the research effort behind the construction
of more efficient PIMC algorithms leading to improved convergence of path integral calculations.
In particular, we have outlined how the developed hierarchy of effective actions may be used
to calculate transition amplitudes, partition functions and energy spectra. Particular emphasis
was given to the calculation of expectation values. We outlined a scheme for the derivation of
estimators consistent with the hierarchy of effective actions, i.e. leading to the same increase
in convergence. The second part of the paper centers around a new PIMC code encompassing
the effective actions and derived estimators, implemented using the Metropolis algorithm. The
new PIMC code displays the same 1/Np increase in convergence. Moreover, the use of higher
level effective actions brings about an improved efficiency of the Metropolis algorithm through
the generation of more relevant trajectories. In the future work we will focus on the detailed
investigation of the increase in efficiency of the Metropolis algorithm brought about by the use
of higher level effective actions.
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