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and N M Švrakić1,2
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Abstract. The random sequential adsorption (RSA) approach is used to analyze
adsorption of spherical particles of a fixed radius on nonuniform flat surfaces
covered by rectangular cells. The configuration of the cells (heterogeneities) was
produced by performing RSA simulations to a prescribed coverage fraction θ

(cell)
0 .

Adsorption was assumed to occur if the particle (projected) center lies within a
rectangular cell area, i.e. if sphere touches the cells. The jammed-state properties
of the model were studied for different values of cell size α (comparable with the
adsorbing particle size) and density θ

(cell)
0 . Numerical simulations were carried out

to investigate adsorption kinetics, jamming coverage, and structure of coverings.
Structural properties of the jammed-state coverings were analyzed in terms of the
radial distribution function g(r) and distribution of the Delaunay ‘free’ volumes
P (v). It was demonstrated that adsorption kinetics and the jamming coverage
decreased significantly, at a fixed density θ

(cell)
0 , when the cell size α increased.

The predictions following from our calculation suggest that the porosity (pore
volumes) of deposited monolayer can be controlled by the size and shape of
landing cells, and by anisotropy of the cell deposition procedure.
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1. Introduction

Recent developments in new and emerging technologies have generated increased demand
for nano and micro-sized particles with carefully tailored properties for use in applications
such as photonics, micro-electronics, plasmonics, biosensors, bio-medical devices, etc. In
many applications, such nanoparticles are often integrated onto surfaces in the form of
deposits in order to achieve improved performance and/or new functionalities of the final
product. Thus, in addition to specific requirements for particles of definite shape, size,
internal structure, surface properties or chemical composition, it is also important to be
able to manipulate collective arrangements of such particles with firm control over the
morphology and structure of their surface layers. To achieve this goal, the supporting
surfaces are frequently prepatterned to form the templates favoring particle attachments
at specific locations [1,2], or dimples, or along specified shapes, regular or otherwise [3,4].
With the use of photolithographic techniques, high-power lasers [1], chemical treatments,
etc, such surface modifications are routinely realized on the microscale, but the trend is
towards the nanosize patterning [1–4].

In contrast with homogeneous surfaces, the prepatterned heterogeneous substrates are
designed with preferential attachment sites, or regions [4]. Thus, it is of theoretical and
experimental interest to understand and analyze how specific surface modifications affect
the morphology of deposited layers, late-stage kinetics of attachment, etc. Our analysis,
described below, focuses on structural properties of particle deposits and is applicable
to the presence of randomness in surface patterning on the scales comparable to particle
size.
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Specifically, in the present work, we report a study of the irreversible deposition of
spherical particles on flat nonuniform substrates covered by rectangular cells onto which
the particles can adhere. The adsorption sites (landing cells) have finite size, comparable
with the adsorbing particle size. We consider the process of the irreversible random
sequential adsorption (RSA) of fixed size disks (projection of spherical particles). RSA is
a process in which the objects of specified shape are randomly and sequentially deposited
onto a substrate [5–10]. The particle-particle interaction is incorporated by rejection
of deposition overlap (the hard sphere model), while the particle-substrate interaction
is modeled by the irreversibility of deposition. Adsorption attempt of a particle at a
randomly chosen cell is abandoned if there is an overlap with a previously adsorbed one,
at the same or at a neighboring cell. Since the dominant effect in RSA is the blocking
of the available surface area, after sufficiently long time a jammed state is reached when
there is no more possibility for a deposition event on any landing cell. In this work we
focus on the jammed-state properties.

There is a well-developed literature on irreversible adsorption on heterogeneous
surfaces where particles are represented as hard spheres that bind to adsorption sites
[10–15]. Our present model represents a generalized version of deposition on a random
site surface (RSS), where the sites are represented by randomly distributed points [11,13].
Adamczyk et al [14] has extended the RSS model to the situation where the size of the
landing sites, in the shape of circular disks, is finite and comparable with the size of
adsorbing spheres. The available surface function, adsorption kinetics, jamming coverage,
and the structure of the particle monolayer were determined as a function of the site
density and the particle/site size ratio.

The motivation of our present work comes from Margues et al [16] and Araújo et
al [17], who investigated the adsorption of disk-shaped particles on a patterned substrate.
The pattern consisted of equal square cells centered at the vertices of a square lattice. They
studied the effect of the presence of a regular substrate pattern and particle polidispersity
on the deposit morphology and density, as well as on the in-cell particle population. A
specific distribution function was used to describe the degree to which the cell pattern
affects the overall structure of the adsorbed layer for various values of cell size and cell–cell
separation parameters. It was found that the structural organization of the deposit could
be latticelike, locally homogeneous, and locally oriented.

The present work is focused on the effect of the presence of randomness in substrate
pattern on the structural properties of the disordered jammed state. Our aim is to quantify
structural changes of the jamming covering associated with different cell size and density.
Analysis at the ‘microscopic’ scale is based on the Voronöı tessellation [18]. Voronöı tessel-
lation divides a two-dimensional region occupied by disks into space filling, nonoverlapping
convex polygons. Further, the Delaunay triangulation is used to quantify the volume dis-
tribution of pores P (v) for disk monolayers deposited on a heterogeneous substrate. This
quantity has been widely used to characterize the structure of disordered granular pack-
ings and to quantify the structural changes during compaction process [19–23]. We choose
as our additional tool of exploration the shape of radial correlation function g(r) [24].
This is because this function provides a simple yet powerful encoding of the distribution of
interparticle gaps. We also study the effect of the presence of a regular substrate pattern
on the temporal evolution of the coverage fraction θ(t) and the pore distribution P (v).
The pattern consists of an array of cells centered on the vertices of a square lattice [16,17].
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The following section 2 describes the details of our numerical simulations. We present
simulation results and discussions in section 3. Finally, section 4 contains some additional
comments and concluding remarks.

2. Model and numerical simulation

We study irreversible monolayer deposition of identical disks (sphere projections) with
hard-core exclusion on a prepared flat nonuniform substrate. The substrate heterogeneities
are represented by non-overlapping rectangular cells that are randomly placed and fixed
on the substrate surface. The basic assumption of our model is that a particle can only
be adsorbed if it is in contact with one of the cells, i.e. if the center of its disk-shaped
projection lies within one of the rectangles. The substrates can be prepared in a number of
ways by arranging the rectangles to form different patterns, e.g. by placing the midpoint
of rectangles at the vertices of a square or triangular lattice (regular pattern), or by
performing random deposition (random pattern), the procedure adopted in our work. We
consider particles of fixed radius, comparable with the typical geometrical cell length.
Moreover, we assume that the size of the particles is much larger than the length scale
between binding sites, so that adsorption over the length scales of cell linear dimensions
can be regarded as an off-lattice process. We impose the condition that deposited particles
can neither diffuse along, nor desorb from the substrate on the time scales of the dense
coverage formation. These assumptions are typical of the RSA model.

The simplest RSA model is defined by the following three rules: (i) objects are
placed one after another at a random position on the substrate; (ii) adsorbed objects
do not overlap; and (iii) adsorbed objects are permanently fixed to their spatial positions.
The kinetic properties of a deposition process are described by the time evolution of
the coverage θ(t), which is the fraction of the substrate area covered by the adsorbed
particles. Within a monolayer deposit, each adsorbed particle affects the geometry of all
later placements. Due to the blocking of the substrate area by the previously adsorbed
particles, at large times the coverage approaches the jammed-state value θJ, where only
gaps too small to accommodate new particles (provided their centers fall within landing
cells) are left in the monolayer.

The entire simulation procedure consisted of two main stages:

1. The simulation area was covered with identical rectangles (or squares) to a prescribed
coverage fraction θ

(cell)
0 < θ

(cell)
J , where θ

(cell)
J is the jamming coverage for landing cells.

During this stage the usual RSA simulation algorithm was used. In this way we are
able to prepare the randomly patterned heterogeneous substrate with a statistically
reproducible density θ

(cell)
0 .

2. Then, for each initially prepared configuration, we switch the cell deposition events off
and initiate a random deposition of disks, with diameter d0, by choosing at random
their position within the simulation area. The overlapping test between disks was
carried out by considering the distances between the disk centers. A disk deposition
attempt fails if disk’s center falls outside the deposited landing cells, or if the arriving
disk overlaps at least one of previously adsorbed ones.
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The Monte-Carlo simulations are performed on a planar continuous substrate of size
L×L = (256d0)2 with periodic boundary conditions. In calculations, the time t is gradually
increased by an increment δt, given by δt = πr2

0/L
2, each time an attempt is made to

deposit a disk of radius r0 = d0/2. Consequently, we define dimensionless parameter
t = Nattπr2

0/L
2, where Natt is the overall number of attempts to place disk particles. The

dimensionless adsorption time t was set to zero at the beginning of the second stage. By
plotting θ(t) versus the adsorption time t, defined above, one can simulate the kinetics of
particle adsorption.

For purposes of our modeling, each landing cell is a rectangle with sides a and b
(b � a) whose midpoint is located on a continuous substrate. The cells can take arbitrary
orientations, but in some numerical simulations we have introduced anisotropy in the
deposition procedure for landing cells. This simple modification introduces a preferential
direction in the deposition process and, depending on the aspect ratio of deposited
rectangles, imposes specific ‘patterning’ on the deposited layer. We rescale the lengths
relative to the diameter of the disks d0, and define three dimensionless parameters:

α =
a

2r0
, β =

b

2r0
(1)

γ =
α√
θ

(cell)
0

(2)

The parameter γ (an average distance between cell centers) is a meaningful measure only
if the landing cells are squares (a = b).

For a fixed values of parameters α and β, simulations were carried out for various
values of θ

(cell)
0 , ranging from 0.10 to 0.50. For each case, the simulations are carried out

up to 1010 deposition attempts, or up until L2 × 104 consecutive deposition attempts are
rejected. The results are obtained by averaging over 100 simulation runs.

3. Results and discussion

In the first part of this section simulation results are presented and discussed for random
deposition of identical disks on nonuniform substrates covered by squares of arbitrary
orientation. We characterize the jammed state in terms of radial distribution function of
distances between the particle centers and distribution of the Delaunay ‘free’ volumes.
After that, further analysis is extended to adsorption of disks on rectangular cells
deposited with arbitrary or fixed orientation.

3.1. Circles on squares

First, we consider the irreversible deposition of disks of fixed diameter d0 = 1 whose
centers are inside the square cells arranged randomly at the surface. Depending on the
cell size α, one can place one or more disk centers inside each cell. We are interested
in the range of α where the number of disks adsorbed per cell is a small number
(less than five). For α < 1/

√
2, at most a single disk can be adsorbed at any given

square cell. We denote this case as single particle per-cell adsorption (SPCA). For
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squares with α � 1/
√

2, more than a single disk can be placed in the square cell,
and we denote this as multiparticle per-cell adsorption (MPCA). The cases of up-to-
two, -three and -four disks per square cell are obtained, respectively, for α in the ranges
1/

√
2 � α < (1 +

√
3)/(2

√
2), (1 +

√
3)/(2

√
2) � α < 1, and 1 � α <

√
2. In other

words, the numbers {αk : k = 1, 2, 3, 4} = {1/
√

2, (1 +
√

3)/(2
√

2), 1,
√

2} determine
the size of the largest cell in which at most k = 1, 2, 3, 4 disks can be deposited,
respectively.

The effect of density of landing cells θ
(cell)
0 on the adsorption process is illustrated

in figure 1 by snapshots of the jammed-state coverings for (a) θ
(cell)
0 = 0.3 and (b)

θ
(cell)
0 = 0.5, for two values of the cell size α, namely, α4 =

√
2 ≈ 1.41 (figure 1(a))

and α2 = (1 +
√

3)/(2
√

2) ≈ 0.966 (figure 1(b)). For low values of θ
(cell)
0 , adsorption on a

given cell is weakly affected by disks previously adsorbed on neighboring cells. Therefore,
most of the cells shown in figure 1(a) contain at least three discs. However, in the case
shown in figure 1(b) one can see a significant impact of the cell–cell excluded volume
interaction on the cell population. Although each cell has enough area to accommodate
up to two disks, only one disk is deposited on most of the cells.

3.1.1. Densification kinetics. Kinetics of the irreversible deposition of disks is illustrated
in figures 2(a)–(e) where the plots of time coverage behavior θ(t) are given for the five
values of coverage fraction of landing cells, θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.5. Here the plots of

such time-dependence are shown for various values of the cell size, αk (k = 1, 2, 3, 4). It can
be seen that for a fixed density of landing cells θ

(cell)
0 , jamming coverage θJ = limt→∞ θ(t)

decreases with increasing the cell size αk. This effect is clearly visible in the case of the
lowest density of the landing cells θ

(cell)
0 = 0.1 (figure 2(a)), when the average distance

between the squares γ (equation (2)) is several times larger than the diameter of the
disks. Then, the cell–cell separation is large enough so that adsorption on a given cell
is negligibly affected by disks previously adsorbed on neighboring cells. Therefore, for
sufficiently low densities θ

(cell)
0 � 0.2, the global kinetics of deposition is determined by

the kinetics of independent adsorption processes on finite-size substrates (landing cells)
with specific boundary conditions (disks can be adsorbed on finite α×α square as long as
their centers are within the square). Consequently, for this range of θ

(cell)
0 values, formula

θJ = (π/4α2)〈n〉θ(cell)
0 gives very close estimation of the jamming density θJ, where 〈n〉 is

the mean number of disks per cell. The dashed (black) line in figure 3 shows the simulation
results for the mean number of particles per cell 〈n〉 as a function of the cell size α in the
noninteracting cell–cell adsorption regime (i.e. in the case of single cell on a substrate).

Consider now the case of up-to-two disks per square cell (α2 = (1 +
√

3)/(2
√

2) ≈
0.966), when 〈n〉 � 1.6 (see, figure 3). Then, during the deposition process, disk can
be adsorbed at the position inside the cell that blocks the chance for other disks to be
adsorbed on the same cell at later times. Consequently, the probability of having a second
adsorbed particle in any given cell is smaller than the probability of having at least one
particle adsorbed on it. Similar reasoning applies as α crosses α3, α4, . . .. In addition,
in figure 3 we show simulation results for the probability that the configurations with
only one disk, or n = 2, . . . , 5 disks, occur on square cell of size α in the noninteracting
cell–cell adsorption regime. If α = α1 ≈ 0.707, each landing cell (square) can contain no
more than one disk. If α = α2 ≈ 0.966, the number of cells with one and two disks is
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(a)

(b)

Figure 1. Typical jammed-state configuration of a region of size 30 × 30 in units
of the disk diameter d0, for (a) θ

(cell)
0 = 0.3, α4 =

√
2 ≈ 1.41, and (b) θ

(cell)
0 = 0.5,

α2 = (1 +
√

3)/(2
√

2) ≈ 0.966.

approximately equal (figure 3). However, if density θ
(cell)
0 is unchanged, then the increasing

of the cell size α1 → α2 reduces the total number of landing cells on the substrate by a
factor ≈ 2. Reduction in number of adsorbed disks is a consequence of these two effects.
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Figure 2. Shown here is the time evolution of the coverage fraction θ(t) for the
five values of density of landing cells, θ

(cell)
0 = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d),

0.5 (e). The curves in each graph correspond to various values of the cell size,
αk (k = 1, 2, 3, 4), as indicated in the legend. The αcont line shows the time
dependence of the coverage θ(t) for RSA of disks on a continuous substrate. The
entire αcont curve can be seen in plot (e).

doi:10.1088/1742-5468/2015/06/P06032 8

http://dx.doi.org/10.1088/1742-5468/2015/06/P06032


J. S
tat. M

ech. (2015) P
06032

Structural properties of particle deposits at heterogeneous surfaces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8  1  1.2  1.4  1.6  1.8  2
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

p n
 (

α )

〈n
〉

α

n = 1
n = 2
n = 3
n = 4
n = 5
〈n〉

Figure 3. Simulation results for the probability that the configurations with
n = 1, 2, . . . , 5 disks occur on square cell of size α in the noninteracting cell–cell
adsorption regime (left-hand axis). The dashed line is plotted against the right-
hand axis and gives the simulation results for the average number of particles per
cell 〈n〉 as a function of the cell size α in the noninteracting cell–cell adsorption
regime.

This discussion indicates that the jamming density θJ decreases with cell size α at fixed
density θ

(cell)
0 .

As can be seen from figure 2, the time coverage behavior θ(t) is markedly slowed down
with the increase of the cell size α for the fixed density of landing cells θ

(cell)
0 . Indeed,

in MPCA case the large times are needed for filling of small isolated vacant targets
on landing cells, remaining in the late stages of deposition. Furthermore, in this regime,
density curves θ(t) show a noticeable slowing down of deposition process at coverages that
are significantly smaller than jamming densities. Coverage growth starts to slow down at
the moment when the number of adsorbed disks reaches the number of landing cells. After
this initial filling of the landing cells, adsorption events take place on isolated islands of
partially occupied cells. This extends the time interval between successful consecutive
adsorption events and causes a slowing down of the densification.

The results for the time evolution of the coverage θ(t) in the case of up-to-two disks
per square cell (α = α2) are shown in figure 4 for various values of θ

(cell)
0 . Qualitatively

similar results are obtained with landing cells of other sizes α. As expected, the jamming
density θJ increases with higher coverage fraction of landing cells θ

(cell)
0 . At high values

of θ
(cell)
0 � 0.5 when γ ∼ 1, a disk attempting adsorption can overlap with a previously

adsorbed one belonging to a different cell, resulting in a failed adsorption attempt. This
excluded volume interaction between particles during adsorption at different cells causes
even slower asymptotic approach of the coverage fraction θ(t) to its jamming limit. In
addition, the analysis of the time evolution of the coverage θ(t) was carried out for
deposition on square cells centered at the vertices of a square lattice. Consequently, the
temporal evolution of the coverage θ(t) obtained for regular substrate pattern are included
in figure 4. Here, the size α and density θ

(cell)
0 of landing cells are the same as those used in
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Figure 4. Temporal behavior of the coverage θ(t) for various values of θ
(cell)
0 in the

case of up-to-two disks per square cell (cell size: α2 = (1 +
√

3)/(2
√

2) ≈ 0.966).
The curves correspond to various values of density θ

(cell)
0 = 0.1–0.5, as indicated

in the legend. Thick lines represent results obtained for regular substrate pattern
while thin lines are results for random pattern case.

our previous calculations for random pattern case. It can be seen that lower values of the
jamming coverage fraction are reached by the deposition process involving randomness
in the pattern compared to a deposition process in the presence of a regular substrate
pattern, regardless of the value of the density θ

(cell)
0 .

Below we try to characterize quantitatively the time dependence of the approach to the
jammed state at large times. Depending on the system of interest modeled by RSA, the
substrate can be continuous (off lattice) or discrete. Asymptotic approach of the coverage
fraction θ(t) to its jamming limit, θJ = θ(t → ∞), is known to be given by an algebraic
time dependence for continuous substrates [25–29]:

θ(t) ∼ θJ − At−1/d, (3)

where A is a constant coefficient and d is interpreted as substrate dimension [26] in case of
spherical particles adsorption or, more generally, as a number of degrees of freedom [30].
For lattice RSA models, the approach to the jamming coverage is exponential [31–36]:

θ(t) ∼ θJ − ∆θ exp(−t/σ), (4)

where parameters θJ, ∆θ, and σ depend on the shape and orientational freedom of
depositing objects [34,36].

Representative examples of the double logarithmic plots of the first derivative of
coverage θ(t) with respect to time t are shown in Figure 5(a), for various values of the
cell size, αk (k = 1, 2, 3, 4), and for high density of landing cells, θ

(cell)
0 = 0.5. The time

derivatives of θ(t) are calculated numerically from the simulation data. In the case of the
algebraic behavior of the coverage fraction θ(t) (equation (3)), a double logarithmic plot
of the first time derivative dθ

dt ∝ t−
1+d

d is a straight line. One can see that curves shown
in figure 5(a) are straight lines in the late stage of deposition process. However, the same
is not valid for all values of densities of landing cells θ

(cell)
0 . The double logarithmic plots
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Figure 5. Test for the presence of the algebraic law (3) in the approach of the
coverage θ(t) to the jamming limit for different densities of landing cells: (a)
θ
(cell)
0 = 0.5, and (b) θ

(cell)
0 = 0.1. The curves in each graph correspond to various

values of the cell size, αk (k = 1, 2, 3, 4), as indicated in the legend. Straight line
sections of the curves show where the law holds. The dashed black line has slope
−3/2 and is a guide for the eye.

of the numerically calculated derivatives of θ(t) for the data obtained in the case of low
density of landing cell θ

(cell)
0 = 0.1 are shown in figure 5(b). As it can be seen, at the very

late times of the deposition process the plot of the first derivative of coverage fraction
θ(t) with respect to time t is not linear on a double logarithmic scale, indicating that the
approach to the jamming limit is not consistent with the power law behavior given by
equation (3). The deviation from the power law is particularly pronounced in the case of
single particle per-cell adsorption (SPCA).

Kinetics of the irreversible deposition under SPCA conditions is illustrated in figure 6
where a logarithmic plots of θJ − θ(t) versus t are shown for various densities of landing
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Figure 6. Plots of θJ − θ(t) versus t in the single particle per-cell adsorption
case for various densities of landing cells θ

(cell)
0 = 0.1–0.5. The solid lines are the

exponential fit of equation (4).

cells θ
(cell)
0 . These plots are straight lines for the late times of deposition, suggesting that

in the case of SPCA the approach to the jamming limit is indeed exponential, as in lattice
RSA models. Indeed, the kinetics of deposition in SPCA case is determined by the kinetics
of adsorption processes on finite-size landing cells. The difference relative to the lattice
RSA is in the particle positions, which here are uncertain within the order of the size of
the cell.

3.1.2. Radial distribution function. Here we compare quantitatively the structural
characteristics of jamming coverings corresponding to different values of the cell size α
for various densities θ

(cell)
0 . In order to gain basic insight into the ‘microstructure’ of the

jammed state, we first consider the radial distribution function g(r) (or pair-correlation
function) which gives information about the long-range interparticle correlations and their
organization [24]. In absence of external forces, the pair correlation function can be
calculated from expression

g(r) =
S

N

Na(r)
2πr∆r

, (5)

where r is the radial coordinate, S is the surface area, N is total number of particles
adsorbed over this area, and Na is the averaged number of particles within the annulus
of the radius r and the thickness ∆r. In figure 7(a) we compare the radial distribution
function g(r) at various densities θ

(cell)
0 = 0.1–0.5 in the SPCA case. As expected, the

random deposition process never leads to correlation distances between the deposited
particles exceeding two or three particle diameters. The position of the first peak measures
typical distances between the closest disks. Decreasing the value of θ

(cell)
0 in the SPCA case

increases the uncertainty in the position of the particles which leads to peak broadening.
The shape of radial distribution g(r) is more structured at higher densities, showing higher
first and second peaks, because, when the system gets denser, particles will be deposited
closer to one another. As can be seen from figure 7(a), the minima of g(r) curves shift to
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Figure 7. Radial distribution function g(r) for jamming coverings as a function
of separation r (in units of the disk diameter d0) for various values of the cell
size α: (a) α1 = 1/

√
2, (b) α2 = (1 +

√
3)/(2

√
2), (c) α3 = 1, (d) α4 =

√
2. The

curves in each graph correspond to various values of density θ
(cell)
0 = 0.1, 0.2,

0.3, 0.4, 0.5, as indicated in the legend.

shorter distances (∼
√

3) when the density θ
(cell)
0 increases. At a very low densities, the

broad minima are located near the distance ∼2d0. Indeed, since the particles are added
at random, the probability that disks are connected as a three-bead chain is negligible.

The results for g(r) in the MPCA case are shown in figures 7(b)–(d). The shape of the
radial distribution function g(r) is significantly affected by the values of the cell size α.
In the case of up-to-two disks per square cell (figure 7(b)) the peak which appears at unit
distance is the most pronounced for low densities of landing cells θ

(cell)
0 . For low values of

θ
(cell)
0 , one expects a lower impact of the cell–cell excluded volume interaction on the cell

population. However, as θ
(cell)
0 increases, the first peak of g(r) becomes broader because

excluded volume interaction with disks belonging to neighboring cells reduces the average
number of adsorbed disks per cell. This is opposite to what is observed under SPCA
conditions (figure 7(a)), where the distance to the closest disk, on average, is determined
by the distance of the nearest-neighbor landing cells.
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The comparison of figures 7(b) and (c) shows that the results for g(r) in the case of
up-to-two and up-to-three disks per square cell are very similar. This arises as a direct
consequence of the fact that cells with sizes α2 ≈ 0.966 and α3 = 1 have very similar
population of particles (see figure 3). Figure 7(d) shows the radial distribution function
g(r) of jamming coverings at several densities θ

(cell)
0 obtained in simulations carried out

with the cell size of α4 =
√

2. For this value of the parameter α, each cell is of sufficient
size to accommodate up to four particles. As can be seen in figures 7(b)–(d), increasing
the value of parameter α in the MPCA case increases the uncertainty in the position of
the disk within the cell, i.e. it leads to peak broadening.

3.1.3. Volume distribution of the pores. Further analysis is based on the Voronöı
tessellation, which allows us to unambiguously decompose any arbitrary arrangement of
disks into space-filling set of cells. Given a set A of discrete points in the plane π (centers
of disks), for almost any point x ∈ π in the plane π there is one specific point ai ∈ A
which is closest to x. The set of all points of the plane which are closer to a given point
ai ∈ A than to any other point aj 
= ai, aj ∈ A, is the interior of a convex polygon Pi

usually called the Voronöı cell of ai. The set of the polygons {Pi}, each corresponding
to (and containing) one point ai ∈ A, is the Voronöı tessellation corresponding to A,
and provides a partitioning of the plane π. Voronöı cells are convex and their edges join
at trivalent vertices, i.e. each vertex is equidistant to three neighboring disks. Two disks
sharing a common cell edge are neighbors. In this work, the Quickhull algorithm [37]
is used to compute the Voronöı diagrams in MATLAB� for a given set of disks on
a plane.

The jammed-state coverings are analyzed in terms of volume distributions of the pores.
The convenient definition of a pore is based on the Delaunay triangulation (DT), which is
a natural way to subdivide a 2D structure of disks into a system of triangles with vertices
at the centers of neighboring disks. Consequently, the circle circumscribing a Delaunay
triangle has its center at the vertex of a Voronöı polygon. In this work we define the pore
as a part of the Delaunay triangle not occupied by the disks (Delaunay ‘free’ volume)
[21, 22]. The pore volume v is normalized by the ‘volume’ of the disks, v0 = d2

0π/4. In
figure 8 we show Delaunay triangulation of typical jammed-state covering obtained for the
same conditions as in figure 1(a) (θ(cell)

0 = 0.3, α4 =
√

2 ≈ 1.41). Looking at the diagram
of figure 8, one can observe variations in the area of Delaunay triangles, which indicates
the presence of pores of various sizes in the deposit.

Here we consider the probability distribution P (v) of the Delaunay ‘free’ volume v.
The distribution function P (v) represents the probability of finding a pore with volume
v. Fluctuations in the measurements of P (v) are reduced by averaging over 100 different
simulations, performed under the same conditions. We compare volume distribution of the
pores P (v) for jamming coverings corresponding to different values of the cell size α and
various densities of landing cells θ

(cell)
0 , as illustrated in figures 9(a)–(e). Here, the pore

distributions P (v) obtained for densities θ
(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.5 have been plotted.

At very low value of θ
(cell)
0 = 0.1 (figure 9(a)), the curves of volume distribution P (v)

are asymmetric with a quite long tail on the right-hand side, which progressively reduces
while the cell size α increases at the fixed density. At the same time, the distribution
P (v) becomes narrower and more localized around the low values of the pore volume v.
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Figure 8. Delaunay triangulation of a set of points (centers of disks). Diagram
corresponds to jammed-state covering obtained for density of landing cells
θ
(cell)
0 = 0.3 and cell size α4 =

√
2; see figure 1(a) for a typical configuration.

The red dots are centers of the adsorbed disks. Length is measured in units of
the disk diameter d0.

This behavior of the distribution P (v) was not observed for all densities of landing cells
θ

(cell)
0 = 0.1–0.5 (see figures 9(a)–(e)). For densities θ

(cell)
0 � 0.2, the pore distributions

P (v) obtained for deposition on square cells of size α2 and α3 are broader and shifted
to higher values of volumes v compared to the pore distribution P (v) corresponding to
SPCA case (α1). Qualitative interpretation of this result is given below.

In the case of up-to-four disks per square cell (α4 =
√

2), we observe the appearance of
pronounced peak of P (v) at low values of v, approximately at v = 0.15–0.20. It is easy to
understand which kind of local configuration contributes mostly to this peak of the P (v).
The Delaunay cells with free dimensionless volume vhex =

√
3/π−1/2 ≈ 0.051 correspond

to the local arrangements of hexagonal symmetry, when three disks are all in touch with
each other with centers on the vertices of a unilateral triangle. The cells with free volume
vquad = 2/π − 1/2 ≈ 0.13 correspond to the local configurations of quadratic symmetry,
when centers of four touching disks are positioned on the vertices of a square. These are
minimal values of pore volumes that can be formed with three and four disks deposited
on a single landing cell of size α4 =

√
2. However, the probability that the previously

described structures of quadratic and hexagonal symmetry arise during the process of
random deposition is negligibly small. Therefore, the ‘free’ volumes formed with random
deposition of disks into a single cell are larger than the minimal values vhex ≈ 0.051 and
vquad ≈ 0.13, so that observed peak of P (v) is around v � 0.20.
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Figure 9. Main panel: Volume distribution of the pores P (v) for jamming
coverings at different values of density of the landing cells corresponding to
θ
(cell)
0 = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e) are shown in the case of random

pattern. The curves in each graph correspond to various values of the cell size,
αk (k = 1, 2, 3, 4), as indicated in the legend. The αcont line shows distribution
P (v) for jamming covering in the case of the irreversible disks deposition on a
continuous substrate. Insets: Volume distribution of the pores P (v) for jamming
coverings obtained from simulations carried out using the heterogeneous surface
covered by square cells centered at the vertices of a square lattice. The size α
and density θ

(cell)
0 of landing cells are the same as those used in the main panel.

At high values of density of landing cells θ
(cell)
0 = 0.5 (figure 9(e)), distribution

P (v) obtained under SPCA conditions becomes very similar to pore volume distribution
for RSA of disks on a continuous substrate, as expected. The results for the volume
distribution of the pores P (v) obtained in the cases of up-to-two and up-to-three disks
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Figure 10. Various types of Delaunau triangles (T1–T3) depending on the
position of vertices.

per square cell are almost identical at all densities θ
(cell)
0 (see figure 9). The similarity of

these distributions at small values of pore volumes can be explained by the results shown
in figure 3. Small pores appear due to the presence of configurations with three or more
disks on a single landing cell. But, in the case of up-to-three disks per square cell, the
number of in-cell configurations with three disk is considerably smaller than the number
of configurations with one or two disks. Consequently, broad maximum in P (v), centered
at v = 0.4–0.6 is caused by contribution of large pores formed mostly in the space between
the landing cells.

Further, we study the effect of the presence of a regular substrate pattern of squares
on volume distribution of the pores P (v). Distributions P (v) for jamming coverings
corresponding to θ

(cell)
0 = 0.1–0.5 and different values of the cell size αk (k = 1, 2, 3, 4)

are shown in insets of figure 9. At low density of landing cells θ
(cell)
0 = 0.1 and for large

cell size α � α4 =
√

2 (see inset of figure 9(a)) we observe the appearance of three peaks
of P (v). The first peak at v ≈ 0.2 is due to Delaunay triangles with their vertices inside
a single landing cell (see T1 triangle in figure 10). The third peak at v ≈ 8 corresponds
to Delaunay triangles with vertices located in different landing cells (see T3 triangle
in figure 10). Central peak at v ≈ 2 arises due to Delaunay triangles with two vertices
belonging to single cell, while the third one is located in a neighboring cell (see T2 triangle
in figure 10). The first peak at very low values of pore volumes v does not appear for the
smaller landing cells, α = α1, α2, α3. Indeed, if α � α3, the Delaunau triangles that lie
within a single landing cell are very rare (α = α3) or they can not exist (α � α2). In the
case of single particle per-cell adsorption (α = α1) vertices of each Delaunay triangle are
located in three different cells, so that distribution P (v) has only one broad maximum.
As can be seen from insets of figure 9, the difference between distribution P (v) for regular
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Figure 11. Radial distribution function g(r) for jamming coverings as a function
of separation r (in units of the disk diameter d0) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of arbitrary
orientation. The curves correspond to various values of density θ

(cell)
0 = 0.1, 0.2,

0.3, 0.4, 0.45, as indicated in the legend.

substrate pattern of squares and for random pattern case decreases with the increase of
the cell density θ

(cell)
0 .

3.2. Circles on rectangles

We have also performed numerical simulations of random deposition of identical disks on
heterogeneous surfaces covered by rectangles of arbitrary orientation. In these simulations,
each landing cell is a rectangle with sides α = 8 and β = 1 (in units of the disk diameter
d0). The choice of the value of aspect ratio α/β plays important role in our model.
Increasing of the aspect ratio of the landing cells (rectangles) leads to the formation
of domains of increased regularity. The chosen value of α/β = 8 is large enough to
provide patterned substrate that is significantly different from the surfaces in the case
with the square cells. We have verified that usage of a different, but large, values of
aspect ratio α/β gives quantitatively very similar results leading to qualitatively same
phenomenology.

To characterize the jammed state we studied radial distribution function g(r) and
probability distribution P (v) of pore volume v for different values of density of landing
cells: θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.45. Figure 11 shows the corresponding results for radial

distribution function g(r). Comparing the results from figures 7(b)–(d) and 11, one can
see that the first peak near r/d0 = 1 and local maximum at r/d0 � 2 of g(r) are more
pronounced in the case of elongated rectangular cells than in the case of multi-particle
adsorption (MPCA) at squares. This emergence of a better local order is a correlation
effect that develops during the deposition stage, due to the formation of arrays of disks
along a single elongated rectangular cells.

Figure 12 compares volume distribution of the pores P (v) for jamming coverings
corresponding to different densities θ

(cell)
0 . Similar to the case of MPCA on square cells,
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Figure 12. Volume distribution of the pores P (v) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of arbitrary
orientation. The curves correspond to various values of density θ

(cell)
0 = 0.1, 0.2,

0.3, 0.4, 0.45, as indicated in the legend. Distribution P (v) for jamming covering
in the case of the irreversible disks deposition on a continuous substrate is shown
for comparison.

here we observe the peak of P (v) at small values of v ≈ 0.2. As previously mentioned,
such small pores are feature of coverings which occurs when three or more particles can
be adsorbed on a single cell. The observed peak of the distribution P (v) broadens when
density θ

(cell)
0 increases. Deposition of elongated objects at high densities is characterized

with compact domains of parallel objects and large islands of unoccupied substrate area.
Figure 13 shows typical snapshot of the jammed-state covering obtained for rectangular
cells of arbitrary orientation and density θ

(cell)
0 = 0.45. Relatively high local packing of

nearly parallel adsorbed rectangles reduces the number of disks effectively adsorbed at
a cell. This process is associated with the appearance of larger interstitial voids, which
causes the peak broadening.

It is now useful to explore the interplay between the anisotropy in deposition procedure
for landing cells and structural characteristics of jamming coverings. In this case the
orientation of rectangular cells is fixed to the one preferential direction. The configuration
formed in the long time regime is made up of a large number of domains; see figure 14
for typical configuration. As expected, any such domain contains parallel cells all close to
each other. This produces better packing of landing cells and higher impact of the cell–cell
excluded volume interaction on the average cell population. Hence, anisotropic deposition
of landing cells lowers the average cell population, which enhances the appearance of larger
pores, resulting in a peak broadening. Volume distributions of pores P (v) for jamming
coverings of disks corresponding to anisotropic deposition of cells are shown in figure 15
with thick lines, while the case of arbitrarily oriented cells from figure 12 is drawn with
thin lines for comparison. Figure 15 clearly shows enhanced peak broadening of P (v)
in the case of anisotropic deposition of landing cells, which is consistent with previous
discussion.
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Figure 13. Typical jammed-state configuration of a region of size 30 × 30 (in
units of the disk diameter d0), for θ

(cell)
0 = 0.45. Orientation of rectangular

cells with sides α = 8 and β = 1 is arbitrary. Deposition of elongated objects
(cells) is characterized with domains of nearly parallel objects and large islands
of unoccupied space.

4. Concluding remarks

We investigated numerically RSA of disk-shaped particles on a nonuniform substrates,
with focus on the jammed-state properties. A surface heterogeneities consisting of square
cells and elongated rectangles were considered. The influence of the cell size and density
of landing cells on kinetics of deposition process, and on morphological characteristics of
the coverings were studied.

We found that for a given density of landing cells, the highest jamming coverage and
the fastest kinetics of the deposition process can be achieved in the SPCA case. Due to the
fact that the densification kinetics is dictated by geometric exclusion effects, the coverage
kinetics is severely slowed down in the MPCA case.

To examine the short scale structure in the jammed-state coverings, we evaluated the
radial correlation function g(r) which measures the particle density-density correlation at
distance r for various shapes and sizes of the landing cells. The oscillation of g(r) quickly
decays for all densities of landing cells θ

(cell)
0 , which means that long-range order does not

exist in the system. In the MPCA case, the peak of g(r) which appears at unit distance
is the most pronounced for low densities of landing cells θ

(cell)
0 . This is opposite to what

is observed under SPCA conditions when the shape of radial distribution g(r) is more
structured at higher densities θ

(cell)
0 .
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Figure 14. Typical jammed-state configuration of a region of size 30 × 30 (in
units of the disk diameter d0,) for θ

(cell)
0 = 0.45. Orientation of rectangular cells

with sides α = 8 and β = 1 is fixed to the horizontal direction.
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Figure 15. Volume distribution of the pores P (v) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of fixed
orientation (thick lines) and arbitrary orientations (thin lines). The curves
correspond to various values of density θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.45, as indicated

in the legend.

Morphology of deposited disks has also been analyzed through the distribution of pore
volumes. This distribution is sensitive to small structural changes of the covering and
therefore describes the degree to which the cell size and cell density affects the deposit

doi:10.1088/1742-5468/2015/06/P06032 21

http://dx.doi.org/10.1088/1742-5468/2015/06/P06032


J. S
tat. M

ech. (2015) P
06032

Structural properties of particle deposits at heterogeneous surfaces

morphology. Delaunay ‘free’ volumes have a distribution with a long tail, particularly at
low densities θ

(cell)
0 . We have found that the distribution P (v) becomes narrower and more

localized around the low values of v with increasing of θ
(cell)
0 . In the case of the largest cells

(α � α4 =
√

2), we have observed the pronounced peak of P (v) at low values of v = 0.15–
0.20, which appears due to presence of configurations with three or more disks on a single
landing cell. We have also studied the influence of a regular substrate pattern on volume
distribution of the pores P (v). At low densities θ

(cell)
0 , distribution function P (v) shows

a well developed peaks which correspond to the various types of Delaunay triangles,
as shown in figure 10. Cell–cell excluded volume interaction increases with the cell
density θ

(cell)
0 , so that distribution P (v) for regular substrate pattern of squares becomes

similar to P (v) for random pattern case at densities near jamming limit for RSA of
square cells.

Numerical simulations of random deposition on heterogeneous substrates covered by
elongated rectangles have shown that the shape of the pore distribution function P (v)
is affected by the anisotropy in deposition procedure for landing cells. It is shown that
anisotropic deposition of landing cells lowers the average cell population and reduces the
number of small pores. Our results suggest that the porosity of deposit (pore volumes) can
be controlled by the size and shape of landing cells, and by anisotropy of cell deposition
procedure. It must be emphasized that radial correlation function g(r) for jamming
coverings of disks corresponding to anisotropic deposition of rectangles is quite similar
to g(r) for the case of isotropic landing-cell pattern and is not detailed here.
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[4] delCampo A, Greiner C, Àlvarez I and Arzt E 2007 Patterned surfaces with pillars with controlled 3d tip
geometry mimicking bioattachment devices Adv. Mater. 19 1973–7

[5] Flory P J 1939 Intramolecular reaction between neighboring substituents of vinyl polymers J. Am. Chem.
Soc. 61 1518

[6] Evans J W 1993 Random and cooperative sequential adsorption Rev. Mod. Phys. 65 1281–329
[7] Privman V 2000 Dynamics of nonequilibrium deposition Colloids Surf. A 165 231–40
[8] Talbot J, Tarjus G, Van Tassel P R and Viot P 2000 From car parking to protein adsorption: an overview of

sequential adsorption processes Colloids Surf. A 165 287–324

doi:10.1088/1742-5468/2015/06/P06032 22

http://dx.doi.org/10.1016/j.mseb.2009.07.003
http://dx.doi.org/10.1038/nnano.2007.262
http://dx.doi.org/10.1038/nnano.2009.220
http://dx.doi.org/10.1002/adma.200602476
http://dx.doi.org/10.1021/ja01875a053
http://dx.doi.org/10.1103/RevModPhys.65.1281
http://dx.doi.org/10.1016/S0927-7757(99)00412-4
http://dx.doi.org/10.1016/S0927-7757(99)00409-4
http://dx.doi.org/10.1088/1742-5468/2015/06/P06032


J. S
tat. M

ech. (2015) P
06032

Structural properties of particle deposits at heterogeneous surfaces

[9] Senger B, Voegel J C and Schaaf P 2000 Irreversible adsorption of colloidal particles on solid substrates
Colloids Surf. A 165 255–85
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