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Abstract. Random sequential adsorption (RSA) on a triangular lattice with 
defects is studied by Monte Carlo simulations. The lattice is initially randomly 
covered by point-like impurities at a certain concentration p. The deposited 
objects are formed by self-avoiding random walks on the lattice. Jamming 

coverage θjam and percolation threshold θ∗p are determined for a wide range of 

impurity concentrations p for various object shapes. Rapidity of the approach 
to the jamming state is found to be independent on the impurity concentration. 

The jamming coverage θjam decreases with the impurity concentration p and 
this decrease is more prominent for objects of larger size. For a certain defect 
concentration, decrease of the jamming coverage with the length of the walk 

ℓ making the object is found to obey an exponential law, /θ θ θ= +
−ℓe r

jam 0 1 . 

The results for RSA of polydisperse mixtures of objects of various sizes suggest 
that, in the presence of impurities, partial jamming coverage of small objects 
can have even larger values than in the case of an ideal lattice. Percolation in 
the presence of impurities is also studied and it is found that the percolation 

threshold θ∗p is practically insensitive to the concentration of point defects p. 
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Percolation can be reached at highest impurity concentrations with angled 
objects, and the critical defect concentration pc is lowest for the most compact 
objects.

Keywords: classical Monte Carlo simulations, percolation problems (theory)
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1. Introduction

Adsorption of particles on various substrates is a phenomenon which underlies a num-
ber of processes of great technological, environmental and biological importance. For 
example, it is crucial for the separation of mixtures, filtration, catalysis, and protein 
adsorption in living cells. A number of adsorption processes of large particles, where 
events occur essentially irreversibly on the time scales of interest, can be studied as 
random sequential adsorption (RSA). In RSA processes particles are randomly, sequen-
tially and irreversibly deposited onto a substrate. The particles are not allowed to 
overlap and they are permanently fixed at their spatial positions, so each adsorbed 
particle affects the geometry of all later placements. Thus, the dominant effect in RSA 
is the blocking of the available substrate area and the limiting (jamming) coverage θjam 
is less than in close packing. The kinetic properties of a deposition process are described 
by the time evolution of the coverage ( )θ t , which is the fraction of the substrate area 
occupied by the adsorbed particles. For a review of RSA models see [1–4].

Depending on the system of interest, the substrate can be continuum or discrete 
and RSA models can differ in substrate dimensionality. Exact solutions of RSA mod-
els are available only for deposition of k-mers on a one-dimensional lattice [5, 6] and 
for quasi-one-dimensional systems [7, 8]. On the other hand, for two-dimensional 
deposition problems Monte Carlo simulations remain one of the primary investigat-
ing tools [9–18].
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Approach to the jamming coverage is known to be algebraic for continuum systems 
[9–12] and exponential for lattice models [13–18]. In the latter case the late-time kin-
etics of the process is described by the time dependence:

( ) /θ θ= −
τ−t Ae ,tjam (1)

where A and τ are the parameters that depend on the details of the model, such as 
shape and orientational freedom of deposited objects. It was shown [16] that the rapid-
ity of the approach is determined by the symmetry properties of deposited objects.

Polydispersity is a common feature of real physical systems. Irreversible deposition 
of mixtures has been studied for the case of binary mixtures [19–21], mixtures obeying 
various distributions [22, 23], and for multicomponent mixtures on discrete substrates 
[17]. Results of the simulations [19] indicate that the mixtures cover the lattice more 
efficiently than either of the species separately, and that the kinetics of the process 
depends on the symmetry properties of deposited objects [21]. In the case of polydis-
perse mixtures [17], where the number of components is gradually increased by adding 
objects of larger size, a strong dependence of the jamming limit of n-component mix-
tures on the shape of the adsorbed objects is observed. For the mixtures of more sym-
metric shapes jamming coverage increases with n, while for the less symmetric (angled) 
shapes jamming coverage decreases with addition of larger objects to the mixture.

During the process of irreversible deposition the number of deposited objects 
increases, causing the growth of clusters of occupied sites. Percolation assumes the exis-
tence of a large cluster that reaches two opposite sides of the substrate [24]. Formation 
of long-range connectivity in disordered systems is of great importance [25] in many 
physical, chemical and even sociological systems [26]. The problem of percolation 
attracts considerable interest [27–37] thanks to its applications in numerous practi-
cal problems such as conductivity in composite materials, flow through porous media, 
polymerization, and behavior of scale-free random networks such as the internet [38].

The temperature behavior of the percolation threshold of a system of adsorbed 
flexible chains was studied in [29], motivated by irreversible deposition of large par-
ticles, such as polymers and nanoparticles. The flexibility of chains was controlled by 
the temperature via the Boltzmann factor. The impact of the composition of flexible 
chains on percolation properties was discussed in [30] for square and for triangular 
lattice. Simulations were performed for various chain lengths and the most favorable 
compositions (for which the percolation threshold acquires its minimal values) were 
identified. For longer and more bent chains a no-percolating regime was detected. The 
interplay between RSA and percolation has been discussed in several works [20, 27, 28, 
39, 40]. In [40] the results for the percolation thresholds, jamming coverages and their 
ratios were given for the deposition of various objects on a triangular lattice. Deposited 
objects were positioned by directed self-avoiding walks on the lattice. It was found that 
for elongated shapes the percolation threshold monotonically decreases, while for more 
compact shapes it monotonically increases with the object size. For various objects of 
the same length, the percolation threshold of more compact objects exceeds that of 
the elongated ones. However, for larger sizes of compact objects such as triangles and 
hexagons, a no-percolation regime was observed. The absence of percolation has also 
been reported in the studies of RSA of large rectangular particles [41], squares [42], and 
bent particles [30] on a square lattice.
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The impact of defects on the percolation of k-mers on a square lattice is studied 
in [43–45]. In [45] two models are analyzed—in the first it is assumed that some frac-
tion of sites is initially occupied by nonconducting point defects, and in the second 
that some fraction of the sites in the k-mers is nonconducting. The dependence of the 
percolation threshold on the length of the k-mers and on the impurity concentration is 
analyzed. Above some critical concentration of defects, percolation is blocked even at 
the jamming limit.

Here we present the results of extensive simulations of irreversible deposition 
of objects of various shapes on a triangular lattice initially covered with point 
impurities at various concentrations. The deposited objects are positioned by self-
avoiding random walks on the lattice. Jamming coverages and percolation thresh-
olds are determined for a wide range of impurity concentrations. In order to gain 
an insight into the effect of defects on the adsorption phenomena in complex sys-
tems, simulations are also performed for mixtures made of various objects differing 
in shape and size.

Section 2 describes the details of the simulations. The results of the simulations 
for random sequential adsorption of various objects on a triangular lattice with vari-
ous impurity concentrations are given in section 3, and the results for percolation on a 
triangular lattice with defects are given in section 4. Finally, section 5 contains some 
additional comments and final remarks.

2. Definition of the model and the simulation method

In our model the substrate is a triangular lattice initially occupied by nonconducting 
point defects at concentration p. The coverage of interest is due only to the extended 
objects. The deposited objects are positioned by self-avoiding random walks of length ℓ.  
Special attention has been paid to the deposition of basic shapes shown in table 1: 
k-mers, angled objects and triangles. Objects of larger sizes are made by repeating 
each step of a basic shape the same number of times. Exception is made for triangles, 
where larger objects also occupy all comprised sites. The construction of larger objects 
is illustrated in tables 2–4.

The Monte Carlo simulations are performed on a triangular lattice of linear size up 
to L  =  500 sites. For the approach to the jamming coverage, periodic boundary condi-
tions are used in all directions. On the other hand, when studying percolation, hard 
boundary conditions are used in the horizontal direction, in which the onset of percola-
tion is detected, and periodic boundary conditions in the other two directions.

At each Monte Carlo step a lattice site is selected at random. If the selected site is 
unoccupied, deposition of the object is tried in one of the six orientations. We fix the 
beginning of the walk that makes the shape at the selected site and search whether all 
successive ℓ sites are unoccupied. If so, we occupy these +ℓ 1 sites and place the object. 
If the attempt fails, a new site and a new direction are selected at random. The jam-
ming limit is reached when no more objects can be placed in any position on the lattice. 
In the case of mixtures, deposition of one of the objects making the mixture is selected 
with equal probability at each Monte Carlo step. The time is counted by the number 
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Table 1. Construction of basic shapes (x) of various symmetry orders ( )ns
x .

(x) Shape ( )ns
x ( )

ℓ
x

(A) 2 1
(B) 2
(C) 1 2

(D) 3

Table 2. Jamming coverages θjam for various impurity concentrations p, percolation 

thresholds θ∗p for =p 5%, and critical impurity concentrations pc for line segments 
of different lengths ℓ.

Shape

θjam

θ
∗

p pc=p 0% =p 10% =p 20% =p 50%

=ℓ 1 0.9194(5) 0.8142(6) 0.7139(6) 0.4131(6) 0.4832(7) 42.93(8)
=ℓ 2 0.8358(7) 0.7179(5) 0.6064(6) 0.2957(6) 0.4603(8) 33.62(7)

... =ℓ 3 0.7888(7) 0.6494(7) 0.5248(7) 0.2081(8) 0.4385(9) 27.41(7)

... =ℓ 4 0.7579(6) 0.5956(6) 0.4593(7) 0.1433(7) 0.4261(9) 22.81(6)

... =ℓ 5 0.7356(8) 0.5501(7) 0.4036(7) 0.0954(8) 0.4175(8) 19.06(8)

... =ℓ 6 0.7212(7) 0.5115(8) 0.3565(7) 0.0615(8) 0.4103(9) 16.54(6)

... =ℓ 7 0.7089(8) 0.4769(7) 0.3154(7) 0.0387(8) 0.4098(9) 13.91(6)

... =ℓ 8 0.6985(8) 0.4472(9) 0.2784(9) 0.0224(8) 0.4071(10) 11.49(8)

... =ℓ 9 0.6906(9) 0.4175(7) 0.2468(8) 0.0138(8) 0.4047(12) 10.68(9)

... =ℓ 10 0.6847(8) 0.3918(9) 0.2209(9) 0.0074(9) 0.4003(10) 8.27(9)

Note: The numbers in parentheses are the numerical values of the standard uncertainty of ( )
θ
x
jam, θ∗p, 

and pc referred to the last digits of the quoted value.

Table 3. Jamming coverages θjam for various impurity concentrations p, percolation 

thresholds θ∗p for =p 5%, and critical impurity concentrations pc for angled objects 
of different lengths ℓ.

Shape

θjam

θ
∗

p pc=p 0% =p 10% =p 20% =p 50%

=ℓ 2 0.8345(6) 0.7364(6) 0.6373(7) 0.3383(6) 0.4574(9) 37.95(8)

=ℓ 4 0.7184(6) 0.6057(7) 0.4996(7) 0.1985(5) 0.4060(9) 29.10(7)
... =ℓ 6 0.6502(7) 0.5178(8) 0.4039(7) 0.1085(7) 0.3781(11) 22.35(8)
... =ℓ 8 0.6039(8) 0.4520(7) 0.3327(7) 0.0522(8) 0.3561(12) 17.94(8)
... =ℓ 10 0.5689(8) 0.4019(8) 0.2773(8) 0.0218(9) 0.3405(10) 14.56(9)
... =ℓ 12 0.5458(8) 0.3608(9) 0.2344(8) 0.0077(9) 0.3262(12) 12.44(8)
... =ℓ 14 0.5230(7) 0.3254(8) 0.1976(8) 0.0024(8) 0.3195(10) 10.43(9)
... =ℓ 16 0.5059(9) 0.2951(9) 0.1686(8) 0.0007(9) 0.3146(11) 8.85(7)
... =ℓ 18 0.4915(9) 0.2702(8) 0.1416(9) 0.0002(9) 0.3056(11) 7.97(9)
... =ℓ 20 0.4777(9) 0.2462(9) 0.1219(9) 0.00005(9) 0.2986(10) 7.16(8)

Note: The numbers in parentheses are the numerical values of the standard uncertainty of ( )
θ
x
jam, θ∗p, 

and pc referred to the last digits of the quoted value.
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of attempts to select a lattice site and scaled by the total number of lattice sites. In all 
the simulations the data are averaged over 1000 independent runs.

The impact of defects on percolation is also studied. The coverage of the surface is 
increased in the RSA process up to the percolation threshold, when a cluster appears 
that extends through the whole system—from the left to the right side of the lattice. 
The tree-based union/find algorithm was used to determine the percolation threshold 
[46, 47]. Each cluster of connected sites is stored as a separate tree, having a single 
‘root’ site. All sites of the cluster possess pointers to the root site, so it is simple to 
ascertain whether two sites are members of the same cluster. When a deposited object 
connects two separate clusters, they are amalgamated by adding a pointer from the 
root of the smaller cluster to the root of the larger one. This procedure is repeated until 
the percolation threshold is reached, i.e. until the opposite sides of the lattice are con-
nected by a single cluster.

3. Impact of defects on the RSA on a triangular lattice

For all the examined object shapes simulations are performed for a wide range of impu-
rity concentrations. The approach to the jamming coverage is examined for objects cov-
ering three lattice sites—line segments, angled objects and triangles, shown in table 1 
as objects B, C and D. For each shape three example results for the time dependence 
of ( ( ))θ θ− tln jam  are shown in figure 1. The plots are obtained both for the ideal lattice 
and the lattice covered by impurities of concentrations =p 10% and =p 20%. We can 
see that for the late stages of the process the plots are mutually parallel straight lines 
for each shape, suggesting that the rapidity of the approach to the jammed state is not 
affected by the presence of impurities. The values of the parameter τ obtained from 
the slopes of the lines depend on the order of the symmetry axis of the shape: τ≃ 6 for 
shapes with a symmetry axis of first order, τ≃ 3 for shapes with a symmetry axis of 
second order, and τ≃ 2 for shapes with a symmetry axis of third order. Towards the 

Table 4. Jamming coverages θjam for various impurity concentrations, percolation 

thresholds θ∗p for =p 5%, and critical impurity concentrations pc for triangles of 
different lengths ℓ.

Shape

θjam

θ
∗

p pc=p 0% =p 10% =p 20% =p 50%

=ℓ 2 0.7971(4) 0.6864(4) 0.5775(4) 0.2598(5) 0.5222(9) 25.16(6)

=ℓ 5 0.7206(5) 0.5746(5) 0.4326(6) 0.0871(5) 0.5498(9) 11.77(6)
... =ℓ 9 0.6814(6) 0.4885(6) 0.3111(5) 0.0135(6) 0.5759(10) 5.49(7)
... =ℓ 14 0.6572(7) 0.4124(6) 0.1998(6) 0.0006(6) 0.6020(9) 2.28(7)
... =ℓ 20 0.6406(7) 0.3381(8) 0.1059(7) 0.00003(7) / 0.58(7)

Note: The numbers in parentheses are the numerical values of the standard uncertainty of ( )
θ
x
jam, θ∗p, 

and pc referred to the last digits of the quoted value.
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end of the process objects of higher order of symmetry can fill the isolated empty loca-
tions in more different orientations and the relaxation time decreases with the order of 
symmetry axis.

The dependence of the jamming coverage θjam on the impurity concentration p is 
shown in figure 2 for various sizes = …ℓ 1, 2, 3,  of k-mers, angled objects and triangles. 
The corresponding jamming densities θjam are also given in tables 2–4. The size of the 
object ℓ is determined by the length of the walk that makes the shape. The whole range of 
impurity concentrations from p  =  0 to 95% is examined. In addition, in figure 3 we show 
the typical snapshots of the jammed-state configurations obtained for objects of length 
=ℓ 10 and different impurity concentrations p. As expected, jamming coverage θjam of 

the deposited objects decreases with the concentration of impurities and this decrease is 
more prominent for larger objects. The decrease of the jamming coverage θjam is almost 
linear up to very high impurity concentrations for the smallest objects of each shape, 
while the adsorption of larger objects is more affected by the presence of impurities.

Figure 4 shows the dependence of the jamming coverage θjam on the length of the 
walks ℓ placing the objects for various impurity concentrations p for (a) k-mers, (b) 
angled objects and (c) triangles. The lines represent the exponential fit of the form:

/θ θ θ= +
−ℓe ,rjam 0 1 (2)

where θ0, θ1 and r are parameters that depend on the concentration of impurities p 
and on the object shape. The values of the parameter r versus impurity concentration 
p are presented in figure 4(d) for the three objects examined. It can be seen that the 
parameter r increases with p for low impurity concentrations, reaches a maximum, and 
decreases for higher values of p. The decrease of the jamming coverage with ℓ is slow-
est for ≃p 10–15%, while for lower and higher values of impurity concentrations p the 
curves show sharper dependence on ℓ.

Figure 1. Plots of ( ( ))θ θ− tln jam  versus t for objects B, C, and D for various 
impurity concentrations, as indicated in the legend.
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Jamming coverage θjam for three different objects covering the same number of sites 
is given as a function of impurity concentration p in figure 5. Objects B, C and D from 
table 1 show similar dependence of the jamming coverage on the impurity concentra-
tion. Jamming coverage of the angled objects displays a slightly higher resistance to the 
increase of defect concentration p than the jamming coverage of the other two objects. 
This is due to their enhanced ability for avoiding the sites with defects. Indeed, if we 
compare the jamming state snapshots in figure 3, it is clearly evident that the jamming 
coverage of the linear objects is more affected by the increase of impurity concentration 
from =p 10% to =p 20% than the jamming coverage of the angled objects. A mixture 

Figure 2. Jamming coverages θjam versus impurity concentration p for:  
(a) k-mers, (b) angled objects, and (c) triangles made by walks of various lengths 
ℓ, as indicated in the legend.

(a) (b)

(c)
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of these three objects is also examined and the results for the partial jamming cover-
ages are presented in figure 6. Here the differences due to the object shape are more 
prominent. In the competition between the adsorption of these three objects, the object 
with greater probability for avoiding the sites with impurities wins more often. This is 
the reason why the adsorption of the angled object is most favorable, and the adsorp-
tion of triangles, as compact objects, is suppressed when depositing from the mixture.

Figure 3. Typical jamming configurations obtained for objects covering ten 
lattice sites ( =ℓ 9) and different impurity concentrations p: (a) line segments, 
p  =  10%; (b) line segments, p  =  20%; (c) angled objects, p  =  10%; and (d) angled 
objects, p  =  20%. Deposited objects and point defects are colored in blue and red, 
respectively. Empty nodes are white.

(a) (b)

(c) (d)
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Mixtures of objects of the same shape but various sizes are also studied. Ten-
component mixtures are made of line segments and also of angled objects of various 
lengths, while a mixture of triangles contains five objects of various sizes. Figure 7 gives 
partial jamming coverages for these three mixtures as a function of the impurity con-
centration p. For the sake of clarity, only the results for the five smallest objects mak-
ing each mixture are presented. It is interesting to emphasize that the dependence of 
the partial jamming coverage is a nonmonotonic function of the impurity concentration 

Figure 4. Dependence of the jamming coverage θjam on the length of the walk ℓ 
positioning k-mers (a), angled objects (b), and triangles (c), for various impurity 
concentrations p. The lines represent the exponential fit of the form (2). Plot 
(d) illustrates the dependence of the parameter r from exponential fit (2) on the 
impurity concentration p.

(a) (b)

(c) (d)
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p for small objects of length =ℓ 1 and =ℓ 2. It grows with p for low impurity concen-
trations, reaches a maximum, and decreases for larger concentrations of defects. This is 
most obvious for the case of dimers and for the smallest triangles. Adsorption of smaller 
objects is favored in the presence of defects, and at relatively low impurity concentra-
tions the coverage due to small objects can have even higher values than in the case of 
an ideal lattice.

Figure 5. Jamming coverages θjam versus impurity concentration p for objects B, 
C and D (see table 1).

Figure 6. Partial jamming coverages versus impurity concentration p for the 
mixture of objects B, C and D (see table 1).
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4. Percolation in the presence of impurities

For percolation-type systems, it is known [24] that the finite scaling theory correctly 
describes the dependence of the effective percolation threshold θp (the mean value of 
threshold measured for a finite lattice), and its standard deviation σ on the linear size 
L of the lattice. In such systems one assumes that the effective percolation threshold θp 

approaches the asymptotic value →θ θ
∗

p p ( →∞L ) via the power law:

Figure 7. Partial jamming coverages versus impurity concentration p for various 
lengths of the walks ℓ placing the objects for the (a) ten-component mixture of  
k-mers, (b) ten-component mixture of angled objects, and (c) five-component 
mixture of triangles. Only the results for the five smallest objects making each 
mixture are presented.

(a) (b)

(c)
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/θ θ− ∝
ν∗ −L .p p

1
 (3)

Here θ∗p is the exact percolation threshold (as →∞L ) and the constant ν is the critical 
exponent that governs the divergence of the correlation length as ξ θ θ∝ | − | ν∗ −

p p . For 

2D systems the theoretical value for the correlation length exponent is /ν = 4 3 [24]. 
Relationship (3) allows us to extrapolate the threshold for an infinite lattice, →∞L .

Simulations were performed for lattices of various sizes ranging from L  =  30 to 
L  =  500 for smaller objects and from L  =  100 to L  =  1000 for the largest ones. Plotting 
the mean value of the threshold θp for various lattice sizes against /ν−L 1 , we confirm the 
validity of the finite-size scaling in the system and determine the asymptotic value of 
the percolation threshold. In figure 8 finite-size scaling is illustrated for objects covering 
three lattice sites—line segments, angled objects and triangles, for impurity concentra-
tion =p 10%.

In addition, it appears from the scaling theory that the standard deviation σ of the 
percolation threshold measured for a finite lattice vanishes as a power of the system 
size L:

Figure 8. Finite-size scaling of the percolation threshold θp against /ν−L 1  with 
/ν = 4 3 for objects (a) B, (b) C, and (c) D for impurity concentration =p 10%.

(a) (b)

(c)
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/
σ∝ ν−L .1 (4)

The above relationship (4) allows us to measure the critical exponent ν. As expected, 
the exponent value has been found to be /ν = ±1 0.75 0.05, compatible with / /ν =1 3 4 
value known for 2D percolation. Indeed, in figure 9 the standard deviation σ versus L 
is shown on a double logarithmic scale for (a) trimer (B), (b) angled object (C), and (c) 
triangle (D) for impurity concentration =p 10%. For all objects and impurity concen-
trations we obtained confirmation of the power law of equation (4) with the value of 
the exponent /ν1  ranging from ±0.73 0.02 to ±0.77 0.03. Therefore, these results are in 
good agreement with the universal value / /ν =1 3 4.

Percolation thresholds θ∗p are determined for various sizes ℓ of the basic objects B, C 
and D for a wide range of impurity concentrations p. While the jamming coverage θjam 

decreases as the concentration of defects p grows, the percolation threshold θ∗p is found 
to be practically insensitive to the point-like defect concentration. It seems that the 
possibility of forming a percolating cluster depends only on the coverage of the lattice, 
regardless of the presence of impurities. Consequently, the values of the percolation 

threshold θ∗p for all objects in the case of =p 5% are given in tables 2–4. The values 
of θ∗p in the case of the lattice without impurities (p  =  0) are given elsewhere [40]. The 

percolation threshold θ∗p and the jamming coverage θjam, as well as their ratio /θ θ
∗

p jam, 

are plotted against the length ℓ of the line segments in figure 10(a) for the lattice with-
out impurities (p  =  0) and in figures 10(b) and (c) for impurity concentrations =p 5% 
and =p 10% respectively. The jamming coverage θjam monotonically decreases with ℓ, 

while the percolation threshold θ∗p decreases for shorter line segments, reaches a value 

Figure 9. Standard deviations σ of the percolation threshold on a double 
logarithmic scale for: (a) trimer (B), (b) angled object (C), and (c) triangle (D) for 
impurity concentration =p 10%. Straight lines correspond to the best fit according 
to the power law of equation (4) and with the exponents ±0.77 0.03, ±0.73 0.02 
and ±0.74 0.03 for objects (B), (C), and (D), respectively.
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θ
∗

≃ 0.401p  for =ℓ 11, and it seems that θ∗p does not significantly depend on ℓ for longer 

k-mers. Consequently, the ratio /θ θ
∗

p jam increases. Since the jamming coverage decreases 

with the impurity concentration p, ratio /θ θp jam increases more sharply for higher defect 
concentrations, as can be seen from figures 10(b) and (c). In figure 10(b) the last point 
is missing since percolation is not reached for the line segments covering 20 lattice sites. 
For the lattice covered with impurities at concentration =p 10%, percolation cannot be 
reached for line segments covering more than ten lattice sites, so in figure 10(c) results 
are not shown for longer objects.

The results for the percolation threshold θ∗p, the jamming coverage θjam, and 

their ratio /θ θ
∗

p jam are shown in figure 11 for the angled objects of various lengths ℓ. 

Percolation threshold θ∗p and the jamming coverage θjam are monotonically decreas-

ing functions of the object length ℓ in the presence of impurities, as well as for the 

initially clean lattice. Their ratio /θ θ
∗

p jam increases with ℓ, but for the lattice with-

out defects this increase slows down with ℓ and becomes more prominent when the 

Figure 10. Dependence of the jamming coverage θjam, the percolation threshold 

θ
∗

p, and the ratio /θ θ
∗

p jam on the length of k-mers ( = +ℓk 1) for three different 
concentrations of impurities: (a) =p 0%, (b) =p 5%, and (c) =p 10%.

(a)
(b)

(c)
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impurity concentration p increases. From figure 11(c) we can see that at impurity 
concentration =p 10% percolation cannot be reached by angled objects covering 
more than 15 lattice sites.

In the case of triangles the jamming coverage θjam decreases, but the percolation 

threshold θ∗p monotonically increases with their size ℓ (figure 12). This is the case 

for the lattice with and without defects. Compact objects, such as triangles, have 
larger values of percolation thresholds than line segments and angled objects of the 
same length. Even low concentrations of impurities can prevent the formation of a 
percolating cluster. This can be seen from figure 12(b) where the results are shown 
for =p 2%.

Blocking of the substrate area is enhanced with the growth of line segment length, 
making the surface more porous. This results in lower values of percolation thresholds. 
Porosity of the surface is also responsible for the low values of percolation thresholds 
in the case of angled objects for which there exists a greater probability for blocking 
the comprised sites so the percolation thresholds are even lower. Moreover, defects on 

Figure 11. Dependence of the jamming coverage θjam, the percolation threshold 

θ
∗

p, and the ratio /θ θ
∗

p jam on the length ℓ of angled objects for three different 
concentrations of impurities: (a) =p 0%, (b) =p 5%, and (c) =p 10%.

(a)
(b)

(c)
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Figure 12. Dependence of the jamming coverage θjam, the percolation threshold θ∗p, 
and the ratio /θ θ

∗

p jam on the length ℓ of the walks placing triangles for two different 

concentrations of impurities: (a) =p 0%, and (b) =p 2%.

(a) (b)

a lattice are more successfully avoided by angled objects, which makes the percola-
tion more robust in the presence of impurities. On the other hand, patterns formed 
by compact objects, such as triangles, are less porous and they give larger percolation 
thresholds.

Percolation is observed when the concentration of defects is smaller than a critical 
concentration of defects pc. Figure 13 presents the critical defect concentrations pc ver-
sus the length ℓ of the objects (see tables 2–4 for the numerical values). We can see the 
percolation can be reached at highest concentrations of impurities with angled objects. 
Triangles have the lowest values of critical concentrations and the worst performance 
regarding percolation.

Figure 13. Dependence of the critical defect concentration pc on the length ℓ of 
the objects for line segments (k-mers), angled objects and triangles. Objects and 
impurities are colored in white and red respectively.
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5. Concluding remarks

We have investigated percolation and jamming phenomena for random sequential 
deposition of objects of various shapes and sizes on a 2D triangular lattice initially 
covered with point impurities at various concentrations p. The shapes are placed by 
self-avoiding lattice steps (see tables 1–4).

For each shape, it was shown that the exponential behavior (equation (1)) excellently 
describes the approach to the jamming limit θjam in the presence of defects. It was found 
that the rapidity of the approach to the jammed state is not affected by the presence of 
impurities. However, the corresponding jamming densities θjam decrease with the impu-
rity concentration p. For small objects this dependence is linear up to very high impurity 
concentrations p, while for large objects coverage θjam decreases very rapidly with p. It 
was shown that the decay of the jamming limit θjam with the length of the walk ℓ placing 
the objects occurs via the exponential law (2) for all values of impurity concentration 
p. It was found that the characteristic length scale r (equation (2)) increases with p for 
low impurity concentrations, reaches a maximum, and decreases for higher values of p.

We have also presented numerical results for the irreversible deposition of multicomp-
onent mixtures of objects from tables 2–4. In the case of polydisperse mixtures there is 
a significant difference in the behavior of partial jamming coverages for small and large 
component shapes when the concentration of impurities is increased. For small comp-
onents of length =ℓ 1 and =ℓ 2, the partial jamming coverage grows with p for low 
impurity concentrations, reaches a maximum and decreases for larger concentrations of 
defects. This means that, at relatively low concentrations, partial coverage of the small-
est object from the mixture can have even higher values than in the case of an initially 
clean lattice. On the other hand, the dependence of the partial jamming coverage is a 
monotonic function of impurity concentration p for larger components, >ℓ 2.

It has been shown that, for k-mers and angled objects, the percolation threshold θ∗p 
monotonically decreases with the size of the objects. However, in the case of more regu-

lar and compact shapes (triangles) the percolation threshold θ∗p monotonically increases 
with the object size. In both cases, the percolation threshold θ∗p is found to be practi-

cally insensitive to the point-like defect concentration. We have also shown that the 

ratio of percolation and jamming thresholds /θ θ
∗

p jam increases with object size for all 
examined objects, regardless of the presence of impurities.

We have pointed out that for each object there is a concentration of defects pc above 
which it is not possible to achieve percolation. For object arrangements made by the 
same number of steps the critical defect concentration has higher values for objects giv-
ing more porous surface configurations, and lower values for compact objects.
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