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Abstract

An effective 1-D model of planetary condensation through gravitational accretion is presented.

The formation of planetary systems is is simulated starting from as many as N = 1010 initial particles,

and the spontaneous appearance of two distinct types of condensate is investigated. The two types

of condensate, light and heavy, are distinguished by the way they scale with changes of N . The

positions, mass and spin of the heavy condensates (planets) are found to be in very good agreement

with Solar system data.

1 Introduction

There has been a large increase of the amount of available data on extra-solar planetary systems [1],
and an even more dramatic increase is expected in the near future [2]. For this reason the long standing
problem of the detailed understanding of planet formation [3] has received a lot of attention lately [4, 5].
The ultimate goal of such studies is to assess the likelihood of the formation of Earth-like planets. The
exponential increase in computing power during the last two decades has made numerical simulation the
most promising tool to achieve this goal. However, the brute force numerical simulation of the formation
of whole planetary systems is still impossible due to the large number of initial particles (N & 106)
needed to resolve the resulting planets with reasonable accuracy. In order to deal with this problem we
have constructed an effective model of planetary accretion. The simplifications in the model have made
it effectively one dimensional, which not only makes gravitational condensation more transparent, but
also makes possible the derivation of certain analytical results.

2 The Model

Our effective planetary condensation model starts from a given planar distribution of N initial particles,
all of the same mass and with no spin. The particles have a uniform angular distribution, while the radial
distribution is given by ρ(r), which determines the initial conditions.

The dynamics is modeled by two independent processes—free propagation of particles and instanta-
neous interactions. Between interactions all particles move on circular trajectories according to Kepler’s
laws. The only interaction allowed is the merging of two particles into one. The merging happens if the
two particles satisfy an interaction criterion given bellow. The result of the merging of two bodies with
masses m1 and m2, at positions ~r1 and ~r2, and with spins S1 and S2, is a new body with mass m1 + m2,
position ~R, and spin S = S1 + S2 + L1 + L2 − L. L1, L2 and L are respectively the orbital angular
momenta of the first, second and final particle. The point of joining follows from energy conservation
(once we neglect heating due to accretion, energies due to the particles spin, as well as the potential
energies between pairs of condensing particles). We find

m1 + m2

R
=

m1

r1
+

m2

r2
. (1)

The interaction criterion chosen is quite natural. We impose F4t & |4~p |, where F is a mean value of
the gravitational force between the bodies during the collision and 4t ∼ |4~r |/|4~v | is a characteristic
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time of the collision. For this criterion to be satisfied the two initial particles must be close in space. As
a consequence, the angle between them must be small. In this paper we set θ = 0, and disregard the
O(θ2) corrections. This makes the model one dimensional, and the criterion becomes

1
m1m2

∣∣∣∣
m1 + m2√

R
− m1√

r1
− m2√

r2

∣∣∣∣
∣∣∣∣

1√
r1
− 1√

r2

∣∣∣∣ |r1 − r2| ≤ K . (2)

As we see, the interaction is given in terms of a single parameter K. From the derivation we have
K ∼ 1/M , where M is the mass of the star. Note that Newton’s gravitational constant G has cancelled
by the use of Kepler’s law. The above criterion is homogeneous with respect to changes of mass scale
as well as of distance scale. We will find it convenient to fix the mass scale by setting the mass of the
protoplanetary material MP equal to one. By doing this, the mass of the initial particles becomes 1/N ,
while K becomes dimensionless. Distance scales are fixed by our choice of initial mass density. In this
paper we work with the triangular initial mass density

ρ(r) =
{

1
5 r if r ≤ 1
1
45 (10− r) if 1 < r ≤ 10 .

(3)

This is a rather simple density peaked at r = 1. It is convenient to work with reduced angular momentum
quantities ` = L/

√
MG, as well as s = S/

√
MG. In these units the orbital angular momentum of a body

of mass m at a distance r from the star is equal to ` = m
√

r. As a result of joining the spin of the new
body becomes s = s1 + s2 + m1

√
r1 + m2

√
r2− (m1 + m2)

√
R. It is easy to see that in this simple model

spins are always positive, in accord with most of the planets in the Solar system.

3 Basic Results

The first physical quantity that we look at is Ω ≡ n/N , the ratio of the number of final condensates and
initial particles. Ω is a monotonous function of K that decreases from 1 (small K) to 0 (large K) and
distinguishes between two phases, dominated by light and heavy condensates respectively. The behavior
of the system is most complicated in the intermediate regime, in which Ω differs significantly from 0 or
1, i.e. when there is a significant mixture of both light and heavy condensates. It is rather easy to fit the
obtained data to a simple law. We find

1
Ω
− 1 = ANαKβ , (4)

where α = 0.737(6), β = 0.251(2), while A = 2.10(5). Since nlight À nheavy, we see that Ω is just
the relative number of light condensates. Ω is a global property of light condensates. A more detailed
understanding of their structure is achieved by studying their distributions in mass and distance from
the star. The mass distribution, i.e. the fraction of condensates at mass m, can be fitted by a simple
power law

∆(m) =
{

0 if m < 1/N

τN−τm−τ−1 if 1/N ≤ m < m∗ ,
(5)

where τ = 1.20(5). The mass scale m∗ is the dividing line distinguishing between light and heavy
condensates. More details about this and other properties of light condensates will given in a forthcoming
publication. Condensates with masses greater than m∗ are designated as heavy. Planets belong to this
category. We have studied their masses, locations and spins. Unlike the light condensates, the properties
of the heavy condensates do not scale with N . The K dependence of the masses of the four heaviest
condensates is shown in Figure 1. The choice of K = 0.1 follows from equating m2/m1 with the ratio of
the masses of Saturn and Jupiter. By fixing K we have completely determined our model. The predicted
masses of the other giants also agree with Solar system data up to 5%.
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Figure 1: The mass of the four heaviest condensates as functions of K.

The situation with spin is even more interesting. We find that

s ∝ Kεmω , (6)

where ω = 1.75(3), and ε = 0.40(2). This is shown in Figure 2. Except for the very lightest particles whose
mass is near the 1/N cut-off all the points lie on the law given in equation (6). The corresponding data
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Figure 2: The spin of condensates as a function of their mass for K = 0.1 and N = 106, 107, . . . , 1010. The data

fits to s ∝ m1.75.

for the planets in the Solar system is given in Figure 3. We see that our simplified accretion model agrees
quite well with phenomenology, giving rise to a scaling exponent for spin of ω = 1.75(3), which is close to
the measured value of ω = 2.00(4). The only two planets that do not satisfy the above spin-mass relation
are Mercury and Venus. This is not surprising, as these are the two planets nearest to the sun, where
additional tidal lock effects play an important role. Of the above properties, the exponents governing
Ω and ∆ have been found to be independent of the choice of initial mass density. The same is true of
spin. The masses of the heavy condensates do depend on ρ, but the general form of this dependence is
quite similar for all ρ’s. The properties of the condensates that depend very strongly on the initial mass
density are the positions of the planets.
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Figure 3: In the Solar system the planet’s spin fits a s ∝ m2 law, that is, the exponent is ω = 2.

In conclusion, the presented one dimensional model of planetary formation leads to simple power law
behaviour that agrees well with Solar system data. The detailed study of the universality of these laws
with respect to changes of initial mass distribution ρ(r) is in progress, and will be given in a forthcoming
publication.
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