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A. Balaž, A. Belić and A. Bogojević
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Abstract

We develop a recursive formula that gives a sequence of improved approximations

for the partition function and free energy. In this paper we work with the generic

non-linear q3 + q4 model in d = 0 dimensions. We compare the first, and simplest,

approximation in the above sequence with the semi-classical approximation, as well

as with the exact results calculated numerically.

It is well known that low dimensional models have played a crucial role in our under-

standing of the properties of various systems [1-4]. Apart from being relevant as models

of particular materials that exhibit low dimensional behavior [5-7] they also offer a way

to study and develop methods for calculating the thermodynamic properties.

In this paper we have studied a generic non-linear oscillator model with cubic and

quartic couplings:

H(q) =
1

2
q2 +

1

3!
g3 q3 +

1

4!
g4 q4 . (1)

In d = 0 the partition function of this system in an external field B is given by

Z(B) =
∫

dq e−β(H(q)−B q) . (2)

Two other important objects are the free energy F (B) defined through Z(B) = e−βF (B)

and magnetization M = 〈q〉 = − ∂
∂B

F (B).

In the Gaussian approximation, we Taylor expand the Hamiltonian in the above in-

tegral around some reference point qref , and keep terms that are at most quadratic in

q − qref . The integral in (2) is now a Gaussian and we find

FGauss(B, qref) = H(qref) − B qref +
1

2β
ln βH′′(qref) −

1

2

(H′(qref) − B)2

H′′(qref)
. (3)

For this approximation to make sense, the integral must get its dominant contribution

from the vicinity of the reference point qref . The standard semi-classical (SC) approxima-

tion corresponds to the choice qref = qmf (B), where qmf is the solution of the mean field

equation H′ = B [8]. The mean field solution is the maximum of the integrand in (2).
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On the other hand, we expand the integrand around the magnetization M . Although

the mean field solution gives the maximum of the integrand, expansion around M gives a

better approximation for the area under the curve. The Gaussian approximation around

M is simply

FGauss(B,M) = H(M) − B M +
1

2β
ln βH′′(M) −

1

2

(H′(M) − B)2

H′′(M)
. (4)

To be able to evaluate this in closed form we need to know M(B), which is tantamount

to knowing how to do the theory exactly, since M and its derivatives give all the ther-

modynamic response functions. The practical use of equation (4) comes about when one

solves it iteratively. Using the definition of M in terms of F , as well as equation (3) we

obtain the following iterative process

Mn+1(B) = −
d

dB
FGauss(B,Mn(B)) . (5)

For the seed of this iteration we chose the mean field, i.e. M0 = qmf . After one iteration we

obtain the standard SC result M1 = Msc. Continuing this process we obtain a sequence

of approximations M0,M1,M2, . . . or equivalently of approximations to the free energy

F1, F2, F3, . . . given by Fn+1(B) = FGauss(B,Mn(B)).

To test this iteration scheme we first numerically calculated the exact magnetization

Mex, and then compared it with our sequence of approximations Mn. The results of this

analysis are shown in Figure 1. As we can see, successive iterates are better and better

and converge (though slowly) to the best Gaussian approximation M∞. We also see that

M∞ is still not equal to the exact result Mex, since we used the Gaussian approximation

FGauss in defining our recursive relation. It is clear that this procedure offers a systematic

improvement on the usual mean field and SC results.

It is interesting to look at the first new approximation in the above sequence F2(B) =

FGauss(B,M1), where M1 = − d
dB

F1. Even this simple approximation already gives a

remarkable improvement on the SC result, while being only marginally harder to compute.

We call it the improved Gaussian approximation (IGA). In what follows we compare IGA

to SC and exact numerical results.

We first studied the case of the magnetization by evaluating IGA and SC for a range

of couplings g3 and g4 such that the Hamiltonian (1) has a unique minimum (g4 > 3
8
g2
3).

As a measure of the quality of an approximation let us consider the area of the region in

the g3–g4 plane in which it differs from the exact result by less than 10%. Figure 2 shows

these areas for Msc and Miga. It is clear that IGA is superior. From these contour plots

we also see that the same holds at 5% accuracy, etc.

To further test IGA we have calculated the quantity

〈q2〉 =

∫
dq q2 e−βH(q)

∫
dq e−βH(q)

, (6)
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Figure 1: Plots of Mex −M0 (dotted line), Mex −M1 (dashed line), Mex −M2 (thin line)

and Mex−M∞ (thick line) as functions of B. The above plot is done for couplings g3 = 0,

g4 = 1, and for β = 1.
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Figure 2: Contour plots of |Mex−Msc

Mex
| < 0.1 (left) and |

Mex−Miga

Mex
| < 0.1 (right), for β = 1

and B = 0.

related to the zero field susceptibility. Again, IGA outperforms SC in a similar manner.

The area in which IGA has better than 10% accuracy is in this case ≈ 2.5 times larger

than the appropriate area for SC.

As a conclusion, we have shown in this paper that even the simplest improved Gaussian

approximation (IGA) gives better agreement with the exact results than the semi-classical

(SC) approximation. At the same time, its computational cost is only negligibly greater.

We are currently working on extending the above results to interesting models in d = 1.
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