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Abstract

A novel approximation technique – the improved Gaussian approximation –
developed in the previous publication [1] is used to improve the efficiency of the
Monte Carlo calculation of the free energy in low dimensions. As an example, we
consider the generic non-linear q3 + q4 model in d = 0 dimensions and obtain a
sizeable speed-up over the standard algorithm. The implications for the d = 1 case,
when the speed-up should be exponential in the number of time slices, are discussed.

In a recent paper [1] we have studied a generic non-linear oscillator model with cubic

and quartic couplings:

H(q) =
1

2
q2 +

1

3!
g3 q3 +

1

4!
g4 q4 (1)

in d = 0. We have introduced a Gaussian approximation for the partition function

Z(B) ≡ e−βF (B) =
∫

dq e−β(H(q)−B q) , (2)

and showed that it can be used to generate a sequence of approximations of increasing

quality for the free energy F (B) and the magnetization M = 〈q〉 = − ∂
∂B

F (B). The zero

and first order approximations in this scheme correspond to the familiar mean field and

semi-classical approximations [2]. The second order approximation, called the improved

Gaussian approximation (IGA), was studied in detail, and shown to be superior to the

first two.

The aim of our investigations in [1] has been to develop a better analytic approximation

scheme that can be applied to general models in statistical mechanics. We worked in d = 0

in order to be able to make a simple comparison with exact (numerical) results. In the

present paper we go a step further and study the numerical techniques themselves. The

method of choice for calculating path integrals featuring in the definition of the partition

function is the Monte Carlo (MC) algorithm [3]. Of course, in d = 0 MC is not the

most efficient method to do the calculation since its advantages become apparent as the

number of required integrations grows. We use MC in order to investigate the algorithm
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itself in light of what we have learned in [1, 4, 5], and as a stepping stone to a future MC

calculation in d = 1 and higher.

To clarify the subsequent discussion we start with a brief description of the MC

method. In order to calculate the definite integral
∫

dq f(q) we choose a probability

distribution p(q), and rewrite the integral as

∫
dq f(q) =

∫
dq

f(q)

p(q)
p(q) ≡

〈
f

p

〉

p

, (3)

where 〈F 〉p denotes the mean value of F with respect to the probability distribution p.

Therefore, the integral of f is given as the mean value of f/p on a sample of random

numbers whose probability distribution is given by p. In practice, this mean value is

estimated using a finite number Nmc of MC samples, and the error of such an estimate is

itself estimated to be σf/p =
√

σ2
f/p , where the variance equals

σ2
f/p =

1

Nmc − 1




〈(
f

p

)2〉

p

−
〈

f

p

〉2

p


 . (4)

It can be shown that as Nmc →∞, the MC algorithm converges to
∫

dq f for an arbitrary

choice of distribution p. The only condition that must be met is σ2
f/p < ∞ [3]. This

freedom of choice can be used to speed-up the convergence of the algorithm. The speed

of convergence is measured by the efficiency E , given by

E =
1

T σ2
f/p

, (5)

where T denotes the total computation time. Note that a hundred fold increase of effi-

ciency corresponds to one extra significant figure in the final result for a fixed amount of

computer effort.

In our calculation we chose p(q) to be the Gaussian normal distribution

p(q) =
1√

2πσ2
exp

(
− (q − a)2

2σ2

)
. (6)

There are three reasons for this choice. First, the function we are integrating can be

approximated by a Gaussian over a wide range of B, g3, and g4. A good choice of param-

eters a and σ makes f/p almost constant over the range of integration, thus making the

variance small. Second, there exists a specific algorithm for generating random numbers

conforming to a Gaussian distribution. The Box-Muller algorithm [6] is more efficient

than the standard Metropolis algorithm [7] since it doesn’t give rise to autocorrelations

of generated numbers whose presence can substantially slow down the simulation. Last,

the use of the Gaussian distribution enables us to apply the insights gained in studies of

IGA [1, 4, 5].
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The choice of probability distribution has a great effect on the efficiency. For example,

the efficiency corresponding to the uniform distribution on the interval q ∈ [−100, 100] is

3.5 1010 times smaller than the efficiency achieved by the Gaussian distribution centered

at the mean field a = qmf with optimal choice of width σ. Let us recall that the mean field

qmf is defined by H′ = B, i.e. it corresponds to the maximum of the integrand. Having

chosen p to be a Gaussian, the computation time T depends only on the number of MC

samples Nmc. Therefore, the maximization of efficiency is, in our case, equivalent to the

minimization of the variance σ2
f/p.

It is apparent that the MC parameter a plays a role analogous to that of qref in [1]

(see equation (3) therein). Therefore, on the basis of the main insight of that work that

the Gaussian expansion of the integrand should be done around the magnetization rather

than around the mean field solution, we expect that a further gain in efficiency of the

MC algorithm can be achieved when p is centered at M(B) rather than at qmf . This is

precisely what we find. By varying the center of the Gaussian a (always using optimal

width σ for that given a), we find that the maximum efficiency is reached at a = M(B).

Figure 1 illustrates this point for a typical choice of parameters.

Figure 1: The variance as a function of the parameter a. The plot is for g3 = 0, g4 = 10,

B = 1, and β = 1. The variance is minimal for M(1) = 0.377 (dot). The mean field

solution is qmf(1) = 0.614 (cross).

Figure 2 compares the efficiencies Emf of simulations done using the distribution cen-

tered at qmf , and EQ for those centered at M(B) for various values of B. It is seen that

we get a two fold improvement in efficiency. This may not seem spectacular, and in d = 0

it really is not. However, once we consider theories in d > 0 and deal with true path

integrals, this conclusion changes considerably. If the path integral is approximated with

N integrals then the expansion around M increases the efficiency (EQ/Emf)
N ≈ 2N times.

Even for a modest simulation with N = 20 this corresponds to an increase of six orders

of magnitude.
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Figure 2: The ratio EQ/Emf as a function of B for g3 = 0, g4 = 1, and β = 1. The line is a

guide for the eye. Similar results are obtained for other values of the couplings g3 and g4.

The problem with the above calculation is that we already need to have the exact

result for M(B) in order to get the stated increase in speed. The way out is obvious

and is reminiscent of the procedure we have adopted in [1]. Thus, we start MC with a

Gaussian distribution centered at qmf . After a while this gives us an approximation to

M , denoted as Mmc
1 . Using this as the center of a new probability distribution we obtain

Mmc
2 , etc. Unlike the series of analytical approximations M0, M1, M2, . . . of the previous

paper [1], this one trivially converges to the exact result since its every step does so. The

improved MC scheme, however, can be organized in such an adaptive way to yield an

efficiency very near to the ideal value EQ.

In conclusion, we have used the insights gained in previous studies of the improved

Gaussian approximation to set up an efficient Monte Carlo procedure for the calculation

of the partition function and free energy in d = 0. A considerable speed-up, exponential

in the number of time slices, is predicted for calculations of path integrals in d = 1. A

work in that direction is in progress.
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