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Abstract

We develop an efficient adaptive Monte Carlo algorithm for calculation of parti-
tion functions in low dimensions, and demonstrate its use on the case of the anhar-
monic q4 oscillator in d = 1. The trajectories needed to estimate the path integral
are sampled from a correlated Gaussian centered at the average 〈q〉. The proposed
scheme is a generalization of earlier work done in d = 0 [1].

1 Introduction

Path integrals play a central role in many areas of physics, most notably in statistical

mechanics and quantum field theory where they represent the natural formalism in which

to cast the theory [2, 3]. Unfortunately, except in rare cases, the only way to solve

path integrals exactly is through numerical simulations. All numerical methods imply

some sort of discretization in real or inverse space (space-time). This is usually done in

two steps: the path integral is first approximated with a multiple integral which is then

calculated using standard discretization. The most economic way for the calculation of

these integrals is the Monte Carlo method which approximates the path integral with a

sum of the contributions of a finite number of representative trajectories.

If we do not need to calculate the partition function, but only the averages of certain

physical quantities, then the calculation can proceed using the efficient Metropolis M(RT)2

algorithm [4]. The calculation of the partition function is significantly more difficult

however, and there still does not exist a generic efficient algorithm for its evaluation. For

this reason we have initiated a series of investigations [5, 6, 7] whose goal is to develop

just such a generic algorithm. In this paper we extend our previous results in d = 0 to

calculations in d = 1 dimensions.

2 Formalism

Statistical mechanics in d = 1 is equivalent to (Euclidean) quantum mechanics. Having

this in mind, we label our dynamical variables q(τ). We have investigated the anharmonic

oscillator in a constant magnetic field B. The Hamiltonian of this system is

H(q, q̇) =
1

2
q̇2 +

1

2
q2 + 16gq4 . (1)
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It is well known [2, 3] that the partition function can be written as a path integral over all

periodic trajectories q(τ) = q(τ + β) of exp
[
− ∫ β

0
dτ (H−Bq)

]
. In this paper we shall in

fact study a related, and a bit more general object—the associated generating functional.

In this case the path integral is taken over all trajectories that go from q(0) = 0 to

q(β) = a. Using the Feynman-Kac discretization we divide the interval of propagation

(0, β) into N equal subintervals of length ε = β/N , and find [3]:

ZN(a, β; g, B) =

∫ ∞

−∞
· · ·

∫ ∞

−∞

dq1 · · · dqN−1

(2πε)N/2
exp

{
−ε

N−1∑
n=0

[
1

2

(
qn+1 − qn

ε

)2

+

+
1

2

(
qn+1 + qn

2

)2

+ g(qn+1 + qn)4 −B
qn+1 + qn

2

]}
. (2)

The most important point in calculating a general integral
∫

ddx f(x) using the Monte

Carlo method lies in the choice of the normalized distribution p in the expression

∫
ddx f(x) =

∫
ddx

f(x)

p(x)
p(x) ≡

〈
f

p

〉

p

≈ 1

Nmc

Nmc∑
i=1

f(xi)

p(xi)
, (3)

where Nmc represents the number of trajectories sampled in the Monte Carlo calculation,

while xi are the points sampled from the distribution p. The square of the error of this

estimator is given [8] by the variance

σ2
f/p =

1

Nmc − 1




〈(
f

p

)2
〉

p

−
〈

f

p

〉2

p


 , (4)

and the function p is chosen so as to minimize the error. In this paper we use the general

Gaussian distribution

p(q1, · · · , qN−1) =
1√

(2π)N−1 det A
exp

{
−1

2

N−1∑
m, n=1

(qm − q̄m)Amn(qn − q̄n)

}
, (5)

where A is a given symmetrical positive definite matrix, and q̄m are appropriately chosen

centers of the distribution. Distribution (5) is a direct generalization of the one we have

used earlier in the d = 0 case [1]. The integrand in (2) can be well approximated within

the class (5), so that the function f/p, after optimization of the Gaussian distribution, is

almost constant, making the error small.

We have investigated two possible choices for q̄m. The mean field approximation

suggests that we use q̄m = qmf (mε), where qmf (τ) minimizes the energy disregarding

thermal fluctuations, i.e. is the solution of the equation of motion q̈ = q + 64gq3 − B.

Another choice for q̄m was motivated by our work in d = 0 dimension [1], where we have

shown that it is more efficient to center the Gaussian at the magnetization M = 〈q〉.
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This scheme was designated IGA for Improved Gaussian Approximation [5, 6, 7]. The

straight forward generalization to d = 1 is to use q̄m = M(mε), where M(τ) is the thermal

average value of q(τ). Unlike qmf (τ), the magnetization M(τ) is not known beforehand.

This problem was circumvented by employing an adaptive procedure as discussed in [1].

We start the simulation using the distribution p centered at q̄ = qmf , and thereafter every

N ′
mc (¿ Nmc) Monte Carlo steps adjust q̄ to the current estimate of M = 〈q〉. After a

while the magnetization M settles, and a longer run is then performed to calculate the

partition function with required precision.

Having made our choices for the centers of the Gaussians we still have to specify the

matrix A. The simplest choice for A is to use the uncorrelated Gaussian Amn = δmn/σ
2,

where the width σ is chosen to minimize the error. On the other hand, if A is chosen to

cancel all the quadratic terms in the exponent of the function f/p (correlated Gaussian)

then the distribution p contains the full dynamics of the linear harmonic oscillator. It is

not surprising that the trajectories sampled from such a distribution have been found to

be more representative than those generated from the uncorrelated Gaussian, i.e. that

the corresponding errors are smaller. It should be noted that the choices of A and q̄ are

independent, since q̄ only appears in the linear and constant terms in ln(f/p).

3 Results

The error associated with the use of the uncorrelated Gaussian grows exponentially with

N , regardless of the choice of σ and q̄. This effectively limits the numerical work to the

modest values N . 10, making the extrapolation to N → ∞ difficult. The correlated

Gaussian scheme is much more efficient. In that case, the errors decrease with N , enabling

us to easily work with N ∼ 100.

The algorithm was verified by comparison with the g = 0 case which can be solved

analytically. In the g 6= 0 case the estimates of the generating functional ZN , obtained

for various values of N , fit to a power series in 1/N . In practice it is enough to stop at

the quadratic term

ZN = Zex +
c1

N
+

c2

N2
. (6)

This is shown in Fig. 1 (a) for the cases a = β = g = 1, B = −1 and B = −10. As we can

see, the relative deviation of ZN from the estimate Zex of the exact value (obtained by

extrapolation to N →∞) is a smooth function. On the basis of this numerical evidence

one can conclude that the continuum limit is well behaved, justifying the extrapolation

procedure. All of the results for g 6= 0 have been obtained using this kind of extrapolation.

Fig. 1 (b) shows how the errors decrease as N is increased. At all times one gets better

results (smaller errors) by centering the Gaussians at the average values M(τ) rather than

at mean field value qmf (τ). This is in complete agreement with what has been found in
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[1]. For large enough N , the errors ∆ZN are also well approximated by a polynomial

in 1/N , as shown in Fig. 1 (b). The displayed results were obtained using Nmc = 106

trajectories.
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Figure 1: (a) The relative deviation of the estimates for the generating functional from

the exact values for a = β = g = 1, B = −10 (top) and B = −1 (bottom). (b) The

corresponding errors for (from top to bottom) B = −1, q̄m = qmf (mε); B = −1, q̄m =

M(mε); B = −10, q̄m = qmf (mε); B = −10, q̄m = M(mε).

In this paper we have studied various strategies for generating trajectories needed to

calculate the partition function in d = 1. We have shown that it is always more efficient

to center the Gaussian distribution p on the magnetization M rather then on the mean

field value. To illustrate the difference between the two, in Fig. 2 we show the trajectories

used in calculating the generating functionals in the preceding cases. For a = β = 1 and

g = 0, B = −1 the difference between qmf and M is insignificant, while for the cases

g = 1, B = −1 as well as g = 1, B = −10 there is a sizeable difference between them,

leading to a substantial increase in efficiency.

We believe that there is still more room for improvement in the efficiency of the

presented algorithm. The choice of the centers q̄ is already optimal, hence further im-

provements may come through a full optimization of matrix A. An even more promising

venue for improvement lies in the use of alternate discretization schemes. We plan to

pursue both of these possibilities in future work.

The numerical simulations presented in this work were done at the Institute of Physics

on a SGI Origin 2000 super-computer. We would like to acknowledge the kind help of the

staff of the IPCF (Institute of Physics Computing Facilities). This work was financed in

part by the Ministry of Science and Technology of the Republic of Serbia under research

projects 01M01 and 01E15.
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Figure 2: Comparison of the mean field solution qmf (τ) with the magnetization M(τ) for

N = 2, 5, 10, and 100 for employed sets of parameters: a = β = 1 and B = −1, g = 0

(top group), B = −1, g = 1 (middle group) and B = −10, g = 1 (bottom group).
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