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Abstract
We investigate the formation of dark-state polaritons in an ensemble of degenerate two-level
atoms admitting electromagnetically induced transparency. Using a generalization of
microscopic equation-of-motion technique, multiple collective polariton modes are identified
depending on the polarizations of two coupling fields. For each mode, the polariton dispersion
relation and composition are obtained in a closed form out of a matrix eigenvalue problem for
arbitrary control field strengths. We illustrate the algorithm by considering the
Fg = 2→ Fe = 1 transition of the D1 line in 87Rb atomic vapor. In addition, an application of
dark-state polaritons to the frequency and/or polarization conversion, using D1 and D2
transitions in cold Rb atoms, is given.

(Some figures may appear in colour only in the online journal)

1. Introduction

At the end of the past century, the novel mechanism of
electromagnetically induced transparency (EIT) [1, 2] and
its many important applications drew a lot of attention.
Nonlinearity of EIT media enables slow, stored and stationary
light [3–5]. Mazets and Matisov were the first to introduce
the concept of adiabatic Raman polaritons that represent
a mixture of photon and collective atomic excitations [6].
Subsequently, Fleischhauer and Lukin further extended
the concept to dark-state polaritons (DSPs) in a 3-type
EIT system [7]. They also developed a quantum memory
technique [8] in order to transfer quantum states of photon
wavepackets onto collective Raman excitations in a loss-free
and reversible manner. DSPs in more sophisticated schemes
have been studied, e.g. double-3 [9–11], dual-V [12],
inverted-Y [13], four-level [14], tripod [15], M-type [16],
cyclic three-level [17] and multi-3 [18, 19]. Collapses and
revivals of the DSP number in an atomic ensemble with
ground state degeneracy were found in [20]. Resonance
beating of light stored using spinor DSPs in a multilevel-
tripod scheme was investigated in [21]. Slow light propagation
in a degenerate two-level system was experimentally
investigated in [22]. DSPs in these various schemes may

find applications in quantum information processing, quantum
memory and quantum repeaters. Furthermore, degenerate
atomic systems, due to their inherent complexity, could lead
to new features of DSPs and building blocks for quantum
information and quantum computation.

Most of the works treat DSPs using the perturbative
approach to the field operator equations of motion, followed
by the adiabatic approximation, which was introduced by
Fleischhauer and Lukin. In addition, Zimmer et al [12] also
used the Morris–Shore transformation [23]. Alternatively,
Juzeliunas and Carmichael applied a Bogoliubov-type
transformation for exact diagonalization of the model
Hamiltonian [24]. Chong and Soljacic [9] elegantly derived
the properties of the DSPs in single- and double-3 systems
using the Sawada–Brout technique [25]. In this work, we
extend the Sawada–Brout–Chong technique to a degenerate
two-level system, having a ground state manifold g and an
excited state manifold e, that admits the appearance of EIT,
i.e. (multiple) dark states exist within g. We present a general
algorithm to identify multiple DSP modes that works for
an arbitrary number of degenerate states within manifolds g
and e and arbitrary polarizations of two coupling fields. The
approach is illustrated by finding DSPs at D1 line transition
Fg = 2 → Fe = 1 in atomic vapor of 87Rb. It is shown
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Figure 1. Schematic of a degenerate two-level system, having a
ground state manifold g and an excited state manifold e, driven by a
strong classical control field (thick line) of Rabi frequency � and by
a weak quantum probe field Ê (dashed line) of different
polarizations.

that depending on the polarizations of the coupling fields,
one or two DSP modes can be determined. In addition,
it is shown how DSP modes, originating from different
87Rb transitions, can be utilized for frequency and/or linear
polarization conversion.

2. Degenerate two-level system

In this section, we present a general formalism of dark-
state polaritons in a degenerate two-level system. It is a
generalization of the neat approach of [9]. We consider a gas
sample of N atoms, where N is large. Let us denote by Hg the
Hilbert space of the atomic states in the ground state manifold
g and let He be the Hilbert space of atomic excited states in
the manifold e. The corresponding ground- and excited-state
energies are denoted by h̄ωg and h̄ωe, respectively. A strong
classical control field of Rabi frequency � and a weak
quantum probe field Ê , which differ in polarizations and both
propagate along the z axis, couple the transition g→ e (see
figure 1). The corresponding raising and lowering operators of
the control (probe) field, V̂†

c and V̂c (V̂†
p and V̂p), connect the

states in manifold g to the states in manifold e and vice versa.
We assume that dim Hg ≥ dim He holds, so that the system
admits EIT [26]. This assures the existence of the Hilbert
space Hd

g of the states in manifold g that are dark to the g→ e
transition for the control field [27, 28]. Formally, we can view
the raising operator V̂†

c as a linear mapping V̂†
c : Hg → He.

The space Hd
g is then the null space of the mapping V̂†

c

Hd
g = {|g〉 ∈ Hg | V̂

†
c |g〉 = 0}. (1)

2.1. Model Hamiltonian

We will now present the model Hamiltonian and the dynamics
of the lowest energy excitations of the ensemble of degenerate
two-level atoms. The free atomic Hamiltonian has the form

Ĥat =
∑

r
(h̄ωgÎg(r)+ h̄ωeÎe(r)), (2)

where the summation index r counts the atomic positions,
while Îg and Îe are the projection operators onto the
states in the manifolds g and e, respectively. The free

photon Hamiltonian, including multiple quantum probe field
modes, is

Ĥph =
∑

k

h̄ωkâ†
k âk, (3)

where â†
k and âk are the creation and annihilation operators

of the probe photons with the wavevector k and frequency
ωk = c|k| ∼ ωeg ≡ ωe − ωg. The atom interaction with the
probe field is given through the minimal coupling Hamiltonian

Ĥp = −
∑

k

∑
r

h̄gkâk exp(ikr)V̂†
p (r)+ H.c. (4)

with coupling constant h̄gk =

√
h̄ωk

2ε0V dge, where dge is the
effective electric dipole moment of the g→ e transition, ε0 is
the vacuum permittivity and V is the quantization volume. The
interaction of the atomic ensemble with the classical control
field of the carrier frequency ωc ∼ ωeg and the wavevector kc
is of the form

Ĥc(t) = −
∑

r
h̄� exp[−i(ωct − kcr)]V̂†

c (r)+ H.c. (5)

For simplicity, we have used the rotating-wave approx-
imation. In addition, for an atomic operator Â(r) we define
a Fourier-transformed operator Â(k) =

∑
rÂ(r) exp(ikr)/

√
N.

Note that
(
Â(k)

)
†
= Â†(−k). Especially, one has

∑
rÂ(r) =

√
NÂ(k = 0). In terms of the Fourier-transformed operators,

various Hamiltonian parts are

Ĥat = h̄ωg
√

N Îg(k = 0)+ h̄ωe
√

N Îe(k = 0), (6a)

Ĥp = −
∑

k

h̄gk

√
N âkV̂†

p (k)+ H.c., (6b)

Ĥc(t) = −h̄�
√

Ne−iωctV̂†
c (kc)+ H.c. (6c)

The entire Hamiltonian of the ensemble of degenerate
two-level atoms interacting with the probe and the control
field is Ĥ(t) = Ĥat + Ĥph + Ĥp + Ĥc(t).

2.2. Dark-state polaritons

Now, we focus on the dark-state polaritons in an ensemble of
degenerate two-level atoms. Various features of the method
in [9], which are obvious per se in the case of a simple
3 system, need to be properly adapted to the degenerate
two-level system. The additional complexity of the system we
investigate also yields some new inherent requirements.

First of all, we remove the time dependence from the
Hamiltonian Ĥ(t) by performing the following unitary gauge
transformation:

ĤT = Ûc(t)Ĥ(t)Û
†
c (t)− h̄ωc

(
√

N Îe(k = 0)+
∑

k

â†
k âk

)
,

(7)

where

Ûc(t) = exp

[
iωct

(
√

N Îe(k = 0)+
∑

k

â†
k âk

)]
. (8)
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Eventually, we restate the time-dependent Schroedinger
equation ih̄∂t|φ(t)〉 = Ĥ(t)|φ(t)〉 as

ih̄ ∂t
[
Ûc(t)|φ(t)〉

]
= ĤT

[
Ûc(t)|φ(t)〉

]
. (9)

Solutions of (9) can be obtained by finding the energy
eigenstates of the time-independent Hamiltonian ĤT.

Assume that the atomic ensemble is initially prepared in
the collective vacuum state with no probe photons |g0, 0〉 =
|g0〉 ⊗ |0〉 ≡ ⊗r|g0〉r ⊗ |0〉. Analogously with the 3 system
case [8, 9], the atomic ground state |g0〉 must be dark with
respect to the control field, i.e.

V̂†
c |g0〉 = 0, or equivalently |g0〉 ∈ Hd

g. (10)

Additional requirements on the state |g0〉 will be specified
later.

Dark-state polaritons are particular low energy, single
probe photon driven, collective excitations that do not have a
contribution of the excited atomic states. To obtain DSPs, we
look for a polariton excitation operator φ̂†

k such that in the low

energy, single excitation case φ̂†
k |g0, 0〉 is an eigenstate of ĤT

with the energy h̄ω(k). This leads to the following relation:[
ĤT, φ̂

†
k

]
= h̄ω(k)φ̂†

k + · · · , (11)

where dots represent the terms that are omitted in the single
excitation case and also terms that give zero when acting on
the collective vacuum state |g0, 0〉. Note that, for notational
simplicity, we keep in mind that all subsequent commutators
always act on the state |g0, 0〉. In agreement with [8, 9], we
neglect Langevin noise effects, which do not influence the
adiabatic evolution of the DSPs.

Collective atomic excitations are driven by the probe
photons. Hence, we begin by calculating the commutator[

ĤT, â†
k

]
= h̄(ωk − ωc)â

†
k − h̄gk

√
N V̂†

p (k). (12)

The states that arise from the interaction with the probe field
are the pure photon excitation â†

k |g0, 0〉, and the collective

atomic excitation V̂†
p (k)|g0, 0〉, up to a normalization constant.

Hence, in addition to â†
k the operator V̂†

p (k) is also a member

of the polariton excitation operator φ̂†
k . Next, we determine the

commutation relation[
ĤT, V̂†

p (k)
]
= h̄(ωeg − ωc)V̂

†
p (k)− h̄�∗(V̂cV̂†

p )(k − kc)

−

∑
k′

h̄g∗k′ â
†
k′(V̂pV̂†

p )(k − k′). (13)

Note that
√

N
[
Â1(k), Â2(k′)

]
=
[
Â1, Â2

]
(k + k′) holds for

any two atomic operators Â1 and Â2. The new operators,
(V̂cV̂†

p )(k − kc) and â†
k′(V̂pV̂†

p )(k − k′), appearing in (13)
yield the collective states via stimulated emission. The former
can readily be included into the polariton excitation operator
φ̂

†
k . It creates the spatially dependent coherence among the

atomic ground states |g0〉 and V̂cV̂†
p |g0〉, i.e. the ground state

coherence wave. When we commute the latter operator with
ĤT, we get the operator â†

k′′(V̂pV̂†
p )(k − k′)(V̂pV̂†

p )(k′ − k′′).
The emergence of such operators of increasing complexity
continues and ends with â†

k(N)
∏N

i=1(V̂pV̂†
p )(k(i)−k(i−1)), where

k(0) = k. This case corresponds to a formidably complex DSP
mode that is not tractable. Tractable modes are obtained by
imposing one further requirement on the collective vacuum
state. Namely, it is crucial that upon action V̂pV̂†

p |g0〉 we end
up with the state |g0〉, i.e.,

V̂pV̂†
p |g0〉 = λp|g0〉, (14)

where λp > 0 is the corresponding eigenvalue. Thus, one
obtains (V̂pV̂†

p )(k − k′)|g0, 0〉 = λp
√

Nδk,k′ |g0, 0〉, so that the
relation (13) greatly simplifies to[
ĤT, V̂†

p (k)
]
= h̄(ωeg − ωc)V̂

†
p (k)− h̄�∗(V̂cV̂†

p )(k − kc)

− h̄g∗kλp
√

Nâ†
k . (15)

To proceed further, we define the excited atomic state
|e〉 = V̂†

p |g0〉/
√
λp associated with the action of the probe

field. Clearly, it has the property V̂p|e〉 =
√
λp|g0〉 and it is an

eigenstate of V̂†
p V̂p, i.e. V̂†

p V̂p|e〉 = λp|e〉. The eigenstates |g0〉

and |e〉 are ‘tuned’ to the polarization of the probe field. These
are so-called polarization-dressed states, first introduced and
used in [28, 29] for problems of interaction of resonant
elliptically polarized light with atomic and molecular energy
levels degenerate in angular momentum projections. Next, let
us consider the commutators[

ĤT, (V̂cV̂†
p )(k − kc)

]
= −h̄�(V̂†

c V̂cV̂†
p )(k), (16)

and also[
ĤT, (V̂

†
c V̂cV̂†

p )(k)
]
= h̄(ωeg − ωc)(V̂

†
c V̂cV̂†

p )(k)

− h̄�∗(V̂cV̂†
c V̂cV̂†

p )(k − kc)

−

∑
k′

h̄g∗k′ â
†
k′(V̂pV̂†

c V̂cV̂†
p )(k − k′).

(17)

Similar to the discussion of the relation (13), in order to avoid
the appearance of probe photons with all wavevectors, we
require that V̂pV̂†

c V̂cV̂†
p |g0〉 ∝ |g0〉. That can hold provided that

V̂†
c V̂cV̂†

p |g0〉 = λcV̂†
p |g0〉 i.e. V̂†

c V̂c|e〉 = λc|e〉, (18)

where λc > 0 is the corresponding eigenvalue. Thus, the
excited atomic state |e〉 is a common eigenstate of the
operators V̂†

p V̂p and V̂†
c V̂c. Under such a condition, the relation

(16) becomes[
ĤT, (V̂cV̂†

p )(k − kc)
]
= −h̄�λcV̂†

p (k), (19)

while (17) turns into[
ĤT, (V̂

†
c V̂cV̂†

p )(k)
]
= λc

[
ĤT, V̂†

p (k)
]
, (20)

where the last commutator is found in (15). Hence, under
the previous conditions no new components of the polariton
excitation operator φ̂†

k appear. Stimulated emission, which is
driven by the control field, transfers the atoms from the excited
state |e〉 into the ground state |f 〉 = V̂c|e〉/

√
λc. The states

|g0〉 and |e〉 are coupled by the probe field, while the states
|e〉 and |f 〉 are coupled by the control field. Thus, for each
eigenvalue pair (λp, λc) the three states |g0〉, |e〉 and |f 〉 form

3
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an independent 3 system that is related to one independent
collective DSP mode. The number of such 3 systems, i.e.
tractable DSP modes, can be at most equal to the total number
of DSP modes, i.e. to the dimensionality of the dark space Hd

g.
Now, we collect the necessary commutation relations[

ĤT, â†
k

]
= h̄(ωk − ωc)â

†
k − h̄gk

√
NV̂†

p (k), (21a)[
ĤT, V̂†

p (k)
]
= h̄(ωeg − ωc)V̂

†
p (k)− h̄g∗kλp

√
Nâ†

k

− h̄�∗(V̂cV̂†
p )(k − kc), (21b)[

ĤT, (V̂cV̂†
p )(k − kc)

]
= −h̄�λcV̂†

p (k), (21c)

so that the polariton excitation operator is of the form

φ̂
†
nk = αnkâ†

k + βnk
V̂†

p (k)√
λp
+ γnk

(V̂cV̂†
p )(k − kc)√
λpλc

, (22)

where the band index n enumerates the different polariton
species. Orthonormal collective excitations |g0, 1k〉, |e(k), 0〉
and |f (k − kc), 0〉 result from the action of the operators
â†

k, V̂†
p (k)/

√
λp and (V̂cV̂†

p )(k − kc)/
√
λpλc on the collective

vacuum state |g0, 0〉, respectively,

|g0, 1k〉 = ⊗
r
|g0〉r ⊗ |1k〉, (23a)

|e(k), 0〉 =
1
√

N

∑
r

eikr
|e〉r ⊗

r′ 6=r
|g0〉r′ ⊗ |0〉, (23b)

|f (k − kc), 0〉 =
1
√

N

∑
r

ei(k−kc)r|f 〉r ⊗
r′ 6=r
|g0〉r′ ⊗ |0〉. (23c)

Note that the collective states |e(k), 0〉 and |f (k − kc), 0〉 are
entangled. This enables the usage of the polariton state

|φnk〉 = αnk|g0, 1k〉 + βnk|e(k), 0〉 + γnk|f (k − kc), 0〉 (24)

as a resource for quantum information processing [2].
We determine the c-numbers αnk, βnk and γnk by inserting

(22) into (11) and make use of (21). This leads to three
self-consistency equations that we can represent in the basis
{|g0, 1k〉, |e(k), 0〉, |f (k − kc), 0〉} asωk − ωc − g̃∗k

√
N 0

−̃gk
√

N ωeg − ωc −�̃

0 −�̃∗ 0


αnk

βnk

γnk

 = ωn(k)

αnk

βnk

γnk

 , (25)

where g̃k = gk
√
λp and �̃ = �

√
λc. Our effective Hamil-

tonian in (25) is similar to the one in [9], but with a
major difference. The effective coupling constant g̃k and the
effective Rabi frequency �̃ differ from the corresponding one
in [9] because of the inclusion of the eigenvalues λp and λc.
The mentioned difference clearly arises as a consequence of
the degenerate two-level atomic system.

The dark-state polaritons are obtained as one of the
solutions of the eigenproblem (25). The other two solutions
are bright-state polaritons, similarly as in [9]. Exactly at
the Raman resonance, ωk = ωc, there is an eigenvector
∝
[
−

�̃

g̃k
√

N
, 0, 1

]
. This eigenvector has no contribution of

the excited atomic states and represents a stable dark-state
polariton that is insensitive to incoherent decay processes

acting on the excited atoms. Expansion around the resonance
ωk ∼ ωeg and ωc ∼ ωeg yields a linearized solution for the
dark-state polaritons

ω(k) =
|�̃|2

|̃gk|
2N + |�̃|2

(ωk − ωc), (26a)

αk = −
�̃

g̃k
√

N
γk, βk = −

�̃(ωk − ωc)

|̃gk|
2N + |�̃|2

γk. (26b)

An interesting property of the DSP solution is that it only
depends on the Raman detuning ωk − ωc of the coupling
fields and on the coupling parameters g̃k and �̃. It does
not depend on the energy spacing ωeg of the underlying
degenerate two-level system.

The algorithm for finding tractable DSP modes in a
degenerate two-level system can be summarized as:

(1) determine the dark space Hd
g for the operator V̂†

c ;

(2) find all states |g0〉 from Hd
g and pairs of eigenvalues

(λp, λc) such that V̂pV̂†
p |g0〉 = λp|g0〉 and V̂†

c V̂cV̂†
p |g0〉 =

λcV̂†
p |g0〉 hold;

(3) for every such pair of eigenvalues obtain DSPs
|ψk(λp, λc)〉 from (24) and (26).

3. Dark-state polaritons in rubidium vapor

In this section we apply the general formalism to the rubidium
vapor. Control and probe fields couple the hyperfine levels
5S1/2,Fg = 2 and 5P1/2, Fe = 1 of 87Rb. The atomic lowering
operators of the control and probe fields are, respectively,

V̂c = V̂ · ec, V̂p = V̂ · ep, (27)

where ec and ep are polarizations of the fields. The vector

operator V̂ is defined by [28, 30, 31]

V̂ = (−1)Fe+Jg+I+1
√
(2Fe + 1)(2Jg + 1)

{
Je Jg 1

Fg Fe I

}

×

1∑
q=−1

∑
mg,me

〈Fg,mg|Fe,me; 1, q〉|Fg,mg〉〈Fe,me|e∗q,

(28)

where I = 3/2 is the nuclear quantum number of 87Rb,
{: : :} is the Wigner 6j-symbol and 〈Fg,mg|Fe,me; 1, q〉 is
the Clebsch–Gordan coefficient that connects the excited
level state |Fe,me〉 to the ground level state |Fg,mg〉 via
polarization e∗q,

e
±1 = ∓

1
√

2
(ex ± i ey), e0 = ez, (29)

given in some orthonormal basis of polarization vectors. We
choose the coordinate system such that the fields propagate
along the z axis, and define a basis of Zeeman states relative
to this quantization axis. The bases of the individual Hilbert
spaces He and Hg are

E = {|1,−1〉e, |1, 0〉e, |1, 1〉e}, (30a)

G = {|2,−2〉g, |2,−1〉g, |2, 0〉g, |2, 1〉g, |2, 2〉g}. (30b)

4
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Figure 2. Zeeman sublevel scheme of the transition
Fg = 2→ Fe = 1 at the D1 line of 87Rb. Solid lines denote σ−

transitions coupled by the control field while dashed lines denote
σ+ transitions coupled by the probe field.

We will show that according to the appropriate choice of the
polarizations of the coupling fields, one or two DSP modes
can be obtained.

3.1. Case of orthogonal circular polarizations

Let the control field couple σ− transitions, while the probe
field couples σ+ transitions, i.e. ec = e

+1 and ep = e
−1 (see

figure 2). The lowering operators of the coupling fields, V̂c
and V̂p, are represented in the basis E ∪ G with the matrices

Vc =



03,3 03,5

0 0 0

0 0 0
1

2
√

3
0 0

0 1
2 0

0 0 1
√

2

05,5


, (31a)

Vp =



03,3 03,5
1
√

2
0 0

0 1
2 0

0 0 1
2
√

3
0 0 0

0 0 0

05,5


, (31b)

where zeros 0m,n denote rectangular m × n null matrices.
Ground level dark space determined from the null space of
V†

c is

Hd
g =

{
|2,−2〉g, |2,−1〉g

}
. (32)

Both dark states are appropriate as the initial state |g0〉. Below
we tabulate the corresponding states and eigenvalues of the 3
system:

|g0〉 |e〉 |f 〉 λp λc

I |2,−2〉g |1,−1〉e |2, 0〉g 1/2 1/12
II |2,−1〉g |1, 0〉e |2, 1〉g 1/4 1/4,

Figure 3. Zeeman sublevel scheme of the transition
Fg = 2→ Fe = 1 at the D1 line of 87Rb. Solid lines denote control
field linearly polarized along the y axis while dashed lines denote
probe field linearly polarized along the x axis.

that lead to two DSP modes:

ωI(k) =
|�|2

6 |gk|
2N + |�|2

(ωk − ωc), (33a)

|ψ I
k〉 ∝ −

�
√

6 gk
√

N
|gI

0, 1k〉 + |f I(k − kc), 0〉

−
2
√

3�(ωk − ωc)

6 |gk|
2N + |�|2

|eI(k), 0〉, (33b)

ωII(k) =
|�|2

|gk|
2N + |�|2

(ωk − ωc), (34a)

|ψ II
k 〉 ∝ −

�

gk
√

N
|gII

0 , 1k〉 + |f II(k − kc), 0〉

−
2�(ωk − ωc)

|gk|
2N + |�|2

|eII(k), 0〉. (34b)

We see that for orthogonal circular polarizations of the
coupling fields, the maximal number of tractable DSP modes
exists. This is the generic case, because relevant independent
3 system(s) can be easily recognized.

3.2. Case of orthogonal linear polarizations

Now we analyze the case of the control field polarization
along the y axis and the probe field polarization along the
x axis, i.e. ec = ey and ep = ex (see figure 3). The matrices

representing the atomic lowering operators V̂c and V̂p in the
basis E ∪ G are

Vc = i



03,3 03,5
1
2 0 0

0 1
2
√

2
0

1
2
√

6
0 1

2
√

6
0 1

2
√

2
0

0 0 1
2

05,5


, (35a)
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Vp =



03,3 03,5
1
2 0 0

0 1
2
√

2
0

−
1

2
√

6
0 1

2
√

6
0 −

1
2
√

2
0

0 0 −
1
2

05,5


. (35b)

In this case, the ground level dark space is

Hd
g =

{
−

1
√

2
|2,−1〉g +

1
√

2
|2, 1〉g,

1
√

8
|2,−2〉g −

√
3

2
|2, 0〉g +

1
√

8
|2, 2〉g,

}
, (36)

but only the first dark state satisfies all necessary conditions
for the vacuum state of the tractable mode. The states and
eigenvalues of the corresponding 3 system are

|g0〉 = −
1
√

2
|2,−1〉g +

1
√

2
|2, 1〉g,

|e〉 = |1, 0〉e,

|f 〉 =
1
√

2
|2,−1〉g +

1
√

2
|2, 1〉g,

λp = 1/4, λc = 1/4.

(37a)

We identify one DSP mode

ω(k) =
|�|2

|gk|
2N + |�|2

(ωk − ωc), (38a)

|ψk〉 ∝ −
�

gk
√

N
|g0, 1k〉 + |f (k − kc), 0〉

−
2�(ωk − ωc)

|gk|
2N + |�|2

|e(k), 0〉, (38b)

while the other one is non-tractable.
From the above examples, it can be seen that the choice of

the polarization of the coupling fields yields entirely different
DSP modes. This is reflected in the composition of the DSP
state as well as in the polariton dispersion relation. Note
that different polariton dispersion relations would lead to
distinct slow light group velocities. In section 4 we outline one
possible application of DSP modes in degenerate two-level
systems for frequency and/or linear polarization conversion.

4. Frequency and polarization conversion

Let us consider the DSP modes that can be formed from the
states within 5S1/2,Fg = 1 hyperfine level of 87Rb atoms,
when the control and the probe field have orthogonal linear
polarizations. There are three relevant atomic transitions:

(a) 5S1/2, Fg = 1→ 5P1/2, Fe = 1,

(b) 5S1/2, Fg = 1→ 5P3/2, Fe = 1,

(c) 5S1/2, Fg = 1→ 5P3/2, Fe = 0.

The first belongs to the D1 line. The last two belong to the D2
line and can be rendered non-overlapping by using ultracold
rubidium atoms.

In the case of orthogonal linear polarizations ec = ex and
ep = ey of the fields that are resonant to the D1 line transition
(a), we have

|g0〉 = −
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

|e〉 = |1, 0〉e,

|f 〉 =
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

λp = 1/12, λc = 1/12.

(39a)

When considering the D2 line transition (b) with the same
polarizations of the coupling fields as in the previous case,
ec = ex and ep = ey, we find

|g0〉 = −
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

|e〉 = |1, 0〉e,

|f 〉 =
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

λp = 5/24, λc = 5/24.

(40a)

Finally, for the swapped linear polarizations, ec = ey and
ep = ex, of the fields coupling the D2 line transition (c), we
have

|g0〉 = −
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

|e〉 = |0, 0〉e,

|f 〉 =
1
√

2
|1,−1〉g +

1
√

2
|1, 1〉g,

λp = 1/6, λc = 1/6.

(41a)

Note, if the polarizations of the fields had not been swapped,
the states |g0〉 and |f 〉 would have been interchanged.

As can be seen from (39) to (41), the DSP modes
are formed from the same states |g0〉 and |f 〉 in all three
cases, but the considered transitions and polarizations of the
coupling fields are different. This provides the possibility
for frequency [32, 18] and/or polarization conversion [33]
of linearly polarized light. First, one can store a pulse of
the probe light polarized along the y axis into the atomic
coherence among the states |g0〉 and |f 〉 using the transition
(a) and the control field polarized along the x axis. The
retrieval process, using the transition (b) and the control
field polarized along the x axis, would release the pulse at
a different frequency, but of the same optical quantum state
and polarization along the y axis as the original probe pulse.
However, the pulse retrieved using the transition (c) and the
control field polarized along the y axis would be in the same
optical quantum state as the original probe pulse, but of
different carrier frequency and linear polarization along the
x axis, i.e. orthogonal to the original one. Moreover, this
realization does not suffer from losses in the retrieved pulse,
since the ratios of the probe and control Clebsch–Gordan
coefficients are the same among all three transitions [33].
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5. Conclusion

To sum up, we have investigated the formation of dark-state
polaritons in an ensemble of degenerate two-level atoms
with ground state Hilbert space Hg and excited state
Hilbert space He, where dim Hg ≥ dim He holds. We
elaborated an algorithm, which is a generalization of the
Sawada–Brout–Chong approach [9, 25]. Under suitable
conditions, the polariton mode dispersion relation and
composition can be stated in a closed form. Such DSPs do
not depend on the energy spacing of the two-level system,
but rather on the Raman detuning of the coupling fields. For
each polariton mode, the effective field coupling parameters
depend on the appropriate eigenvalues of the atomic operators
V̂†

p V̂p and V̂†
c V̂c that determine the eigenproblem for the

polariton species. The application of the general procedure
is given for 87Rb atomic transition Fg = 2 → Fe = 1 of
the D1 line. Two cases of polarizations of the control and
probe field are analyzed, when the two fields have orthogonal
circular polarizations and when both are linearly polarized in
the orthogonal directions. In the former case, two DSP modes
are identified, while in the latter case, only one DSP mode
can be determined. The formation of the modes as well as
their dispersion relation critically depend on the polarizations
chosen. Possible application of DSP modes in ultracold 87Rb
atoms for frequency and/or linear polarization conversion
without losses in the retrieved pulse is presented. Our
algorithm can be extended to degenerate systems with more
levels and might have applications in quantum information
processing as a building block for a preparation and read out
schemes with the DSPs as qubit states.
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