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Andrea Droghetti,1,*,† Miloš M. Radonjić,2,* Anita Halder,1 Ivan Rungger ,3 and Liviu Chioncel 4

1School of Physics and CRANN, Trinity College, Dublin 2, Ireland
2Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

3National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
4Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, and Augsburg Center for Innovative

Technologies, University of Augsburg, 86135 Augsburg, Germany

(Received 12 October 2021; revised 3 March 2022; accepted 7 March 2022; published 24 March 2022)

We present a computational approach for electronically correlated metallic surfaces and interfaces, which
combines density functional and dynamical mean-field theory using a multiorbital perturbative solver for
the many-body problem. Our implementation is designed to describe ferromagnetic metallic thin films on a
substrate. The performances are assessed in detail for a Fe monolayer on a W(110) substrate, a prototypical
nanoscale magnetic system. Comparing our results to photoemission data, we find qualitative and quantitative
improvements in the calculated spectral function with respect to the results of density functional theory within
the local spin density approximation. In particular, the spin splitting of the d states is drastically reduced and,
at the same time, their spectral width becomes narrower. The method is, therefore, able to account for the main
correlation effects in the system.
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I. INTRODUCTION

Metallic heterostructures, formed by stacking different thin
films, are the building blocks of spintronic devices, such as
spin valves. Their functionalities are largely determined by the
interfaces between the various layers and by the presence of
ferromagnetic transition metals (TMs), such as Fe, Co, and
Ni. Owing to their partially filled 3d shells, the electronic
structure of these compounds is characterized by electron
correlations, which are modified and possibly enhanced at
surfaces and interfaces because of atomic relaxation and,
moreover, of the reduced atomic coordination. These effects
can now be studied in very great detail thanks to the dramatic
advancement of spectroscopic [1] and scanning probe tech-
niques [2]. Yet a proper understanding and interpretation of
the data require accurate ab initio simulations.

Density functional theory (DFT) [3–5] with its various
formulations for the exchange-correlation functionals such
as the local spin density approximation (LSDA) [6,7] or the
generalized gradient approximation (GGA) [8–10] provides a
reasonable description for many of the ground state properties
of bulk 3d transition metals, but turns out insufficient for
describing the excitation spectra of Fe, Ni, and Co as mea-
sured in photoemission spectroscopy [11,12]. The DFT band
structure drastically overestimates the spin splitting of the 3d
bands and gives too wide majority spin bands. Furthermore,
DFT does not capture intrinsic many-electron spectroscopic
features, such as satellites [13].
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Electronic correlations can be described within the Hub-
bard model, which has been extended and combined with DFT
to incorporate the realistic description of materials [14]. In the
so-called DFT+U method [15–18], an effective Hubbard-like
interaction is added to the LSDA/GGA exchange-correlation
density functional and treated at the static mean-field level.
The method has found widespread use for computational ma-
terials design. However, when applied to Fe, Ni, and Co, it
gives a rigid downward shift of the majority spin bands, while
the minority states are maintained at the same positions. As
a result, the spin splitting of the bands is even more overesti-
mated than in LSDA/GGA calculations [18], while majority
spin 3d bands remain too wide. Hence, the U static potential
actually worsen, instead of improving, the accuracy of DFT
for these systems.

During the last decade, much progress in the theoretical
understanding of 3d TMs beyond the limitations of the static
mean-field DFT+U picture have been achieved through dy-
namical mean-field theory (DMFT) [19–22]. In the so-called
LSDA+DMFT scheme [22,23], LSDA calculations provide
the ab initio material dependent inputs (orbitals and hopping
parameters), while DMFT solves the many-body problem for
the local interactions.

LSDA+DMFT has been applied to address spectral prop-
erties of 3d ferromagnetic TMs bulk [24,25] and surfaces [25],
TM alloys [26] and TM compounds [27], and to estimate
magnetic moments above and below the Curie temperature
[24]. Electronic correlation effects have been also investigated
in digital magnetic heterostructures [28,29] or interfaces con-
taining half-metallic ferromagnets [30,31]. Tunable interfacial
properties, which emerge in the presence of electronic cor-
relation, have been found in ferromagnetic heterostructures
[32]. Last but not least, surface properties have been studied
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[25,30,31] in connection to linear-response spin-dependent
charge transport [33,34].

Despite all these successes, in practice LSDA+DMFT
remains a quite complex and a computationally demanding
approach especially for inhomogeneous systems like het-
erostructures and interfaces. Furthermore, the DMFT solvers
[35–38] typically used for ferromagnetic metals are formu-
lated on the imaginary frequency axis and spectral functions
are obtained using numerical analytic continuation schemes
to the real frequency axis [39–41]. The resulting spectra are
noisy and sharp features are absent or smeared out. This
leads to difficulties when comparing theoretical results to
spectroscopic data and when computing charge and spin trans-
port properties via generalized Landauer approaches [42,43],
which require the integration of the frequency-dependent
transmission function [33,44]. Hence, DMFT solvers that cap-
ture the essential correlation features at a lower computational
cost and that are easily implemented using real instead of
imaginary frequencies are very valuable.

In this paper, we present one of such methods. In par-
ticular, we show that the many-electron physics in 3d TMs
can be treated perturbatively up to the second order in the
local Coulomb interaction parameter U , while keeping the full
manifold of all correlated orbitals provided within DFT. We
name this method DFT+�2 as second-order contributions are
calculated diagrammatically on the real frequency axis and
accounted for via a self-energy �2. Differently from the com-
mon implementations of DFT and LSDA+DMFT, which treat
bulk unit cells of materials, our implementation is designed
for thin films, interfaces and metallic heterostructures in spin-
tronic devices. The typical systems we can describe consist
of few correlated atomic layers deposited on a noncorrelated
semi-infinite substrate.

The results of DFT+�2 are expected to be accurate for
moderately correlated systems, such as 3d TMs, where U is
smaller or comparable to the bandwidth. According to the
Fermi-liquid theory the net results of a �2 self-energy is that
the spin splitting of the correlated states is drastically reduced
and, at the same time, their spectral width becomes narrower
compared to LSDA calculations. As a specific example, we
study a Fe monolayer on a W(110) substrate, a prototypical
ultrathin magnetic film studied experimentally, and which is
used, for example, in tunneling magnetoresistance measure-
ments [45,46]. We find a drastic improvement of the spectral
function of the 3d Fe orbitals compared to the results of DFT
and DFT+U . The paper is organized as follows. We present
the method and the details of our numerical implementation in
Secs. II and III. A complete derivation of the �2 self-energy
is presented in Appendix A. In the first part of Sec. IV, we
show the results for Fe on W(110) comparing the density
of states calculated with DFT, DFT+U , and DFT+�2. In
the second part, we assess the results against photomemis-
sion spectroscopy data. Finally we conclude highlighting the
strengths of the method and anticipating potential future ap-
plications.

II. METHOD AND IMPLEMENTATION

We employ the electronic structure code SMEAGOL [44,47],
which implements DFT through the Green’s function formal-

SR

bulk

FIG. 1. One mono-layer of Fe on the W(110). The red and
blue spheres are respectively the Fe and W atoms. The surface
region is contained in the light blue rectangle. The transformation,
Eq. (8), which projects the correlated subspace Hamiltonian out of
the surface region Hamiltonian is also shown schematically on the
right-hand side.

ism. SMEAGOL uses a linear combination of atomic orbitals
(LCAO) basis set {φα} and obtains the LSDA Kohn-Sham
(KS) Hamiltonian from the DFT package SIESTA [48]. We
note however that the equations presented in the following
are general and can be readily implemented in any other
DFT code based on the LCAO approach. Each basis orbital
in SMEAGOL and SIESTA is characterized by its integer index
α, which is a collective label including the atom, the or-
bital, and the angular momentum indices. The orbital index
can run over different radial functions corresponding to the
same angular momentum following to a multiple-zeta scheme
[48,49]. The spin-dependent DFT KS Hamiltonian of a system
Ĥσ can be represented in its matrix form Hσ of elements
Hσ

αβ = 〈φα|Ĥσ |φβ〉, where σ = ↑,↓ labels the spin. Since in
general the basis orbitals are nonorthogonal, we also need
to introduce the overlap matrix S of elements Sαβ = 〈φα|φβ〉
(Ref. [48]), which are spin-independent.

A. System setup

The typical system that we study is shown in Fig. 1. It
consists of few ferromagnetic TM layers on a semi-infinite
nonmagnetic substrate. The surface is parallel to the x-y plane,
while its normal vector points along the z direction. Periodic
boundary conditions are applied along x and y so that k =
(kx, ky) is the in-plane momentum. The system is partitioned
into the surface region and the semi-infinite bulk region using
a standard approach based on the Green’s function technique
(e.g., Refs. [44,47,50–52]). The surface region comprises not
only the ferromagnetic layers, but also those few layers of
the substrate, which are at the interface and whose electronic
structure is different from that of the bulk layers. The surface
region is described with NSR basis orbitals.

The DFT KS Hamiltonian of the system is written as a
block matrix [47](

Hσ
SR(k) Hσ

SR,bulk (k)

Hσ
SR,bulk (k)† Hσ

bulk (k)

)
. (1)

The block Hσ
SR(k) is the surface region Hamiltonian, which

has dimension NSR × NSR. Hbulk (k) is the Hamiltonian matrix
of the bulk region, whose dimension is infinite because the
substrate is semi-infinite along z. Hσ

SR,bulk (k) is the matrix
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describing the electronic coupling between the surface and the
bulk region. The Hamiltonian is k-dependent because of the
in-plane periodic boundary conditions [48].

The orbital overlap matrix of the system has the same
structure as the Hamiltonian matrix and reads(

SSR(k) SSR,bulk (k)

SSR,bulk (k)† Sbulk (k)

)
. (2)

SSR(k) indicates the NSR × NSR overlap matrix of the surface
region, Sbulk (k) is the overlap matrix of the bulk region, and
SSR,bulk (k) describes the overlap between the surface and the
bulk region.

The energy-dependent retarded Green’s functions of the
surface region is given in the standard form [44,47]

Gσ
SR(k; E ) = [

(E + iη)SSR(k) − Hσ
SR(k) − �σ (k; E )

]−1
,

(3)

which is a NSR × NSR matrix; η is a vanishing small
positive real number. �σ (k; E ) is the energy- and momentum-
dependent embedding matrix, which describes the hybridiza-
tion between the SR and the bulk region. It formally reads [47]

�σ (k; E ) = Kσ (k; E )†Gσ
bulk (k; E )Kσ (k; E ), (4)

where

Gσ
bulk (k; E ) = [

(E + iη)Sbulk (k) − Hσ
bulk (k)

]−1
(5)

is the retarded Green’s function of the bulk region uncoupled
from the surface region, and the matrix Kσ (k; E ) is

Kσ (k; E ) = [
Hσ

SR,bulk (k) − (E + iη)SSR,bulk (k)
]
. (6)

describing the coupling between the surface and the bulk
region. We note that the presence of the second term on the
right side of Kσ (k; E ) is a general consequence of using a
nonorthogonal basis set. A detailed algebraic derivation is
performed for example in Refs. [47,53]. �σ (k; E ) needs to
be evaluated via recursive methods (e.g., Refs. [54,55]) or
semi-analytical methods (e.g., Refs. [56,57]). Here we use the
algorithm in Ref. [58].

In practice, DFT calculations for the system are performed
as follows. First, we obtain the LSDA charge density and KS
Hamiltonian of the bulk region, and we compute the embed-
ding matrix �σ (k; E ). Then the KS problem for the surface
region is solved self-consistently for the boundary conditions
set by the bulk [44,47].

B. Correlated subspace

We assume that there are in total NTM atoms in the fer-
romagnetic layers of the surface region (see Fig. 1). Their
3d orbitals span a 2(5 × NTM)-dimensional subspace of the
surface region and we call it the “correlated subspace” (CS)
(the factor 2 accounts for the spin). The CS can be projected
out from the rest of the system, which we refer to as the
bath (B) [42,43,59–62] and which includes the orthogonal
subspace to the CS within the surface as well as the bulk
region. To this aim, we change the basis set. Specifically, we

perform the transformations [43]

S̄SR(k) =
(

1 0
0 S̄B(k)

)

= W (k)†SSR(k)W (k) (7)

for the SR overlap matrix,

H̄σ
SR(k) =

(
H̄σ

CS(k) H̄σ
CS,B(k)

H̄σ
B,CS(k) H̄σ

B (k)

)

= W (k)†Hσ
SR(k)W (k) (8)

for the SR Hamiltonian, and

Ḡσ
SR(k; E ) =

(
Ḡσ

CS(k; E ) Ḡσ
CS,B(k; E )

Ḡσ
B,CS(k; E ) Ḡσ

B (k; E )

)

= W (k)−1Gσ
SR(k; E )W (k)−1†

(9)

for the SR Green’s function. The matrices W (k) are defined in
Eq. (10) of Ref. [43]. In the transformed S̄SR(k), H̄σ

SR(k) and
Ḡσ

SR(k; E ), the top left block describes the CS, the bottom right
block describes the part of the bath included in the surface,
and the off-diagonal blocks describe the connection terms. In
Eq. (7) 1 and 0 indicate the identity and the null matrix blocks.
We note that the orbitals of the CS in the transformed basis
set become orthogonal and they have zero overlap with the
bath orbitals. H̄σ

CS(k) in Eq. (8) and Ḡσ
CS(k; E ) in Eq. (9) are

respectively the noninteracting Hamiltonian and the noninter-
acting, or bare, retarded Green’s function of the CS. They are
matrices of dimension 5NTM × 5NTM.

In the second quantization formalism, the noninteracting
CS Hamiltonian reads

ˆ̄Hσ
CS(k) =

∑
i, j,λ1,λ2,σ

[
H̄σ

CS(k)
]

iλ1, jλ2
d̂†

iλ1σ
d̂ jλ2σ , (10)

where d̂†
iλσ and d̂iλσ are the electron creation and annihi-

lation operators at orbital λ within the atom i and spin σ

(i = 1, . . . , NTM and λ = 1, . . . , 5, σ = ↑,↓). [H̄σ
CS(k)]iλ1, jλ2

is the CS Hamiltonian matrix element between the d orbital
λ1 of the atom i and the d orbital λ2 of the atom j.

Next, we assume that only electrons in the CS are interact-
ing. To describe the Coulomb interaction within the CS, we
add the Hubbard-like term to ˆ̄Hσ

CS as follows:

ˆ̄Hσ (k)CS,U = ˆ̄Hσ
CS(k) + 1

2

∑
i,λ1,λ2,λ3,
λ4,σ1,σ2

× Uλ1,λ2,λ3,λ4 d†
iλ1σ1

d†
iλ2σ2

diλ4σ2 diλ3σ1 − Ĥσ
CS,dc,

(11)

where Uλ1,λ2,λ3,λ4 are the four-index U parameters, i.e., the
matrix elements of the screened Coulomb interaction be-
tween four 3d orbitals located at the same site. They are
parametrized in terms of the average effective Coulomb in-
teraction U and exchange J (Ref. [63])

U = 1

(2l + 1)2

∑
λ1,λ2

Uλ1,λ2,λ1,λ2 , (12)

J = 1

2l (2l + 1)

∑
λ1 �=λ2,λ2

Uλ1,λ2,λ2,λ1 . (13)
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Ĥσ
CS,dc is the double-counting correction, which is needed

to cancel the Coulomb interaction already included in
the LSDA exchange-correlation potential. The form of the
double-counting correction is not exactly known, and several
approximations have been proposed and used in practice (see,
for example, Refs. [22,24,64,65]). We will return to this in
Sec. II D after Eq. (29).

The solution of the interacting Hamiltonian ˆ̄Hσ (k)CS,U

gives the interacting, or dressed, Green’s function Ḡσ
CS(k; E )

and the retarded self-energy �̄σ
CS(k; E ) of the CS, which sat-

isfy the Dyson equation

Ḡσ
CS(k; E ) = [

Ḡσ
CS(k; E )−1 − �̄σ

CS(k; E )
]−1

, (14)

where Ḡσ
CS(k; E ) is the bare Green’s function of Eq. (9).

�̄σ
CS(k; E ) is evaluated as explained in the following sections.
Since the bath is assumed to be noninteracting, the full

surface region self-energy in the transformed basis set is

�̄σ
SR(k; E ) =

(
�̄σ

CS(k; E ) 0
0 0

)
. (15)

It can alternatively be expressed in the original basis by
performing the inverse of the transformation in Eq. (8),
namely [43],

�σ
SR(k; E ) = W (k)−1†

�̄σ
SR(k; E )W (k)−1. (16)

Finally, the dressed Green’s function of the surface region in
the original basis set is

Gσ
SR(k; E ) = [

Gσ
SR(k; E )−1 − �σ

SR(k; E )
]−1

, (17)

where Gσ
SR(k, E ) is given in Eq. (3). From the Green’s func-

tion, we then obtain the density of states (DOS)

DOSσ (E ) = − 1

Nk

∑
k

[
1

π
ImGσ

SR(k; E )

]
, (18)

where Nk is the number of k points.
It is important to note that our implementation allows to

take into account the effect of the electron-electron interaction
as well as that of the electronic coupling between the sur-
face and the noncorrelated continuum bulk states. The states
of the surface region are shifted and broaden owing to the
real and imaginary parts of both the self-energy �σ

SR(k; E )
and hybridization function �σ (k; E ). The interaction and the
hybridization contributions are generally equally important in
surface science problems.

C. DMFT approximation

The self-energy of the CS, �̄σ
CS(k; E ), is a 5NTM × 5NTM

matrix, which is energy- and momentum-dependent like the
retarded CS Green’s function. The calculations accounting for
both the k and the E dependencies are a computationally too
demanding task for realistic systems. Therefore we employ
the DMFT approximation to simplify the problem, and we
consider electron correlation local in space [22,23]. We as-
sume the self-energy matrix to be momentum independent and

to have block-diagonal form

�̄σ
CS,DMFT(E ) =

⎛
⎜⎜⎝

�̄σ
1 (E ) 0 . . . 0
0 �̄σ

2 (E ) . . . 0
. . .

0 0 . . . �̄σ
NTM

(E )

⎞
⎟⎟⎠,

(19)

where �̄σ
i (E ) is the 5 × 5 block for the 3d orbitals of the

TM atom i. �̄σ
i (E ) may in general be nondiagonal. The

self-energy is evaluated via the self-consistent DMFT proce-
dure [22,23]. Our implementation is similar to that suggested
by Valli et al. for model systems [66] and Jacob et al. for
nanocontacts [60]. The main steps are the following.

(i) We compute the dressed Green’s function Ḡσ
CS(k, E ) in

Eq. (14) with �̄σ
CS,DMFT(E ) instead of �̄σ

CS(k; E ). In the first
iteration of the self-consistent procedure we need an initial
guess for the �̄σ

CS,DMFT(E ). In our calculation, we set it to
zero.

(ii) We define the so-called local Green’s function

Ḡσ
loc(E ) = 1

Nk

∑
k

Ḡσ
CS(k; E ). (20)

(iii) We build the dynamical field Gσ
DF,i(E ) for each TM

atom i inside the CS

Gσ
DF,i(E ) = {[

Ḡσ
loc,i(E )

]−1 + �̄σ
i (E )

}−1
, (21)

where Ḡσ
loc,i(E ) is the 5 × 5 block of the local Green’s func-

tion matrix relative to the atom i.
(iv) We map each of the NTM atom inside the CS into an

impurity model by defining the bare impurity Green’s function
of each TM atom as gσ

imp,i(E ) ≡ Gσ
DF,i(E ).

(v) We solve the impurity problems as described in the
next section and we get the impurity self-energies �σ

imp,i(E )
for each atom i.

(vi) We set �̄σ
i (E ) = �σ

imp,i(E ) for each atom i and recom-
pute the CS DMFT self-energy in Eq. (19).

These steps are iterated to convergence.
Once the self-energy �̄σ

CS,DMFT(E ) is computed, the self-
energy matrix of the whole surface region is obtained and
transformed into the original basis set �σ

SR(k; E ). We note
that in spite of the DMFT approximation used to compute the
CS self-energy, the self-energy of the surface region in the
original basis �σ

SR(k; E ) acquires a k dependence because of
the transformation matrices W (k) in Eq. (16).

D. Self-energy in perturbation theory

We now describe in detail the method used to compute
the self-energy by solving the impurity problem. In case of
weakly or moderately correlated systems, such as the 3d
ferromagnetic metals of interest here, the self-energy can
be obtained using self-consistent perturbative approaches in
terms of skeleton diagrams around the noninteracting so-
lution. A popular scheme is the self-consistent fluctuating
exchange approximation (FLEX) [67], which is conserving
in the Baym-Kadanoff sense [68–70]. The FLEX has been
further combined with the T -matrix approximation, into the
spin-polarized T -matrix fluctuating exchange approximation
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[35–38], the so-called SPT-FLEX impurity solver. The SPT-
FLEX self-energy is described by the Hartree and Fock
diagrams with the formal replacement of the bare interaction
by the T matrix [71,72], which obeys the Bethe-Salpeter-like
integral equation. The SPT-FLEX is formulated on the imagi-
nary (Matsubara) frequency axis and correlation functions are
obtained indirectly via the numerical analytical continuation
to the real frequency axis. Unfortunately, this often leads
to numerical difficulties since the analytical continuation of
discrete numerical data is not unambiguous and, in addition,
it requires the treatment of the high-frequency “tails” [73]. For
this reason, we consider here a simpler second-order perturba-
tive treatment implemented to provide the self-energy directly
on the real frequency axis, while retaining the multiorbital
nature of the many-body problem. A similar approach was
used by Drchal et al. to study TM alloys [74]. The method rep-
resents a good compromise between the need for an accurate
description of correlated effects and the need for an efficient
and easy numerical evaluation of spectral properties.

We assume that the matrix gσ
imp,i(E ) for the impurity prob-

lem associated to the TM atom i in Eq. (21) is diagonal.
This greatly reduces the computational effort of the calcula-
tions. We denote the diagonal elements of the impurity bare
Green’s function and self-energy as gσ

iλ(E ) ≡ [gσ
imp,i(E )]λ,λ

and �σ
iλ(E ) ≡ [�σ

imp,i(E )]λ,λ, where λ = 1, . . . , 5 labels the
3d orbitals. The Dyson equation for the impurity problem is
then

Gσ
iλ(E )−1 = gσ

iλ(E )−1 − �σ
iλ(E ), (22)

where Gσ
iλ(E )−1 is the dressed Green’s function for orbital λ

of the impurity i. The self-energy up to the second order in
perturbation theory in U over the bandwidth is obtained by
using the skeleton diagrams in Appendix A, and is written as

�σ
iλ(E ) ≈ �

σ (1)
iλ + �

σ (2)
iλ (E ). (23)

The first-order contribution

�
σ (1)
iλ =

∑
λ1σ1

Uλλ1λλ1 nσ1
iλ1

−
∑
λ1

Uλλ1λ1λnσ
iλ1

(24)

is the well-known Hartree-Fock approximation, where

nσ
iλ =

∫ ∞

−∞
dE f (ω)ImGσ

iλ(E ) (25)

is the occupation of the orbital λ of spin σ at the atom i;
f (E ) is the Fermi function. �

σ (1)
iλ is local in time, i.e., energy

independent. Therefore it represents a one-electron potential
producing only a shift of the noninteracting energy levels.

The second-order contribution can be split into its real and
imaginary parts. The imaginary part is given by

Im
[
�

σ (2)
iλ (E )

] = −π
∑

λ1λ2λ3σ1

Uλλ1λ2λ3Uλ3λ2λ1λ

∫ ∞

−∞
dε1

∫ ∞

−∞
dε2Dσ1

iλ1
(ε1)Dσ

iλ2
(ε2)Dσ1

iλ3
(ε1 + ε2 − E )

×{ f (ε1) f (ε2) + [1 − f (ε1) − f (ε2)] f (ε1 + ε2 − E )}

+π
∑

λ1λ2λ3

Uλλ1λ2λ3Uλ2λ3λ1λ

∫ ∞

−∞
dε1

∫ ∞

−∞
dε2Dσ

iλ1
(ε1 + ε2 − E )Dσ

iλ2
(ε2)Dσ

iλ3
(ε1)

×{ f (ε2) f (ε1) + [1 − f (ε2) − f (ε1)] f (ε1 + ε2 − E )}, (26)

where

Dσ
iλ(E ) = − 1

π
ImGσ

iλ(E ) (27)

is the spectral function of Gσ
iλ(E ). The real part is given by the

Kramers-Kronig relations

Re
[
�

σ (2)
iλ (E )

] = − 1

π

∫ ∞

−∞
dε

Im
[
�

σ (2)
iλ (ε)

]
E − ε

. (28)

Equations (26) and (28) are easily implemented thus allowing
for the calculation of the second-order self-energy contribu-
tions.

The approximation for the self-energy that we introduced
is called second Born-approximation [70] and it is conserving
in the Baym-Kadanoff sense. Equation (22) needs to be solved
self-consistently together with Eqs. (24) and (26) because the
self-energy is a functional of the dressed impurity Green’s
function, that is �

σ (1)
iλ = �

σ (1)
iλ [Gσ

iλ] and �
σ (2)
iλ = �

σ (2)
iλ [Gσ

iλ].
Equations (26) and (28) are easily implemented thus al-

lowing for the calculation of the second-order self-energy
contributions. The numerical integration over the frequencies
ε1 and ε2 in Eq. (26) would potentially represent a compu-

tational bottleneck of the method if it was carried out using
a too large number of discrete frequency points. However,
in the case of ferromagnetic TMs, we find accurate results
already for relatively coarse energy grids (dE ≈ 10−3 eV)
thus making the evaluation of �

σ (2)
iλ (E ) computationally quite

inexpensive.

E. Self-energy calculations combined with DFT

We now discuss how self-energy calculations are combined
with DFT, and how the first- and second-order contributions
are taken into account in our numerical implementation. Dif-
ferent scheme are proposed to carry out calculations.

1. The reduction to LSDA+U

The first-order term of Eq. (23) combined with DFT
reduces to the LSDA+U approach. The double counting cor-
rection Hσ

CS,dc of Eq. (11) can be englobed into �
σ (1)
iλ and

can be approximated with one of the various forms proposed
for LSDA+U [75]. For example, using the so-called fully
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Dynamical field

Self-consistent impurity self-energy

Eqs. (24) and (26)

FIG. 2. Schematic representation of the self-consistent �2 calculations.

localized limit [76] for Hσ
CS,dc, leads to

�
σ (1)
iλ,dc = �

σ (1)
iλ − Hσ

CS,dc =
∑
λ1σ1

Uλλ1λλ1 nσ1
iλ1

−
∑
λ1

Uλλ1λ1λnσ
iλ1

−
[
U

(
Ni − 1

2

)
+ J

(
Nσ

i − 1

2

)]
, (29)

where Ni = ∑
σ Nσ

i = ∑
σλ nσ

iλ is the total occupation, and U
and J are the average effective Coulomb and exchange inter-
actions in Eqs. (12) and (13). �

σ (1)
iλ,dc is exactly the Hubbard

corrective potential of the LSDA+U Hamiltonian proposed
by Lichtenstein et al. in Ref. [16] [note that, differently from
the original formulation, only diagonal elements of the density
matrix nσ1

iλ1
appear in Eq. (29) because we assumed the Green’s

function to be diagonal in the orbital indices]. Based on these
observations, we evaluate the first-order self-energy perform-
ing a standard LSDA+U calculation. Although, Eq. (29) is
the most complete formulation of the LSDA+U Hubbard
corrective potential with fully orbital-dependent electronic
interactions, we use a simplified expression introduced by
Dudarev et al. [17]

�
σ (1)
iλ,dc ≈ V σ

U,iλ = (U − J )
(

1
2 − nσ

iλ

)
(30)

to reduce the complexity of the calculations. This simplified
expression has been successfully applied in several studies
and for most materials it yields similar results as the fully ro-
tationally invariant formulation (see Ref. [75] and references
therein for more details).

2. The LSDA+�2 scheme

The self-energy can be evaluated in terms of the bare impu-
rity Green’s function instead of the dressed impurity Green’s
function, i.e., �

σ (1)
iλ = �

σ (1)
iλ [gσ

iλ] and �
σ (2)
iλ = �

σ (2)
iλ [gσ

iλ] with
gσ

iλ that replaces Gσ
iλ in Eqs. (25) and (27). The approach

has already been used in the literature [77], and in particular
in Refs. [78–80], although these papers consider a single-
orbital model [80] or an average interaction U (Ref. [79]),
while we maintain a multiorbital description including the
complete four-index interaction. The approximation using
bare Green’s functions neglects some the diagrams in the
perturbative expansion of the self-energy compared to the
second Born-approximation [70] and it is nonconserving in
the Baym-Kadanoff sense. Nonetheless, we find that both
approaches provide similar total numbers of electrons.

The fact that the Hartree-Fock self-energy is static leaves
us the freedom to chose how to practically perform the per-
turbative calculations up to second order. Namely, starting
from the noninteracting Green’s function gσ

iλ(E ) we can cal-
culate the total self-energy corrections up to second order, i.e.,
including the static �

σ (1)
iλ and the dynamic �

σ (2)
iλ (E ) contribu-

tions. Alternatively, we can “immerse” the static contribution,
approximated as in Eq. (30), into the noninteracting local
Green’s functions. This means that gσ

iλ(E ) is replaced by the
LSDA+U Green’s function

gσ
LSDA+U,iλ(E ) = [

gσ
iλ(E )−1 − V σ

U,iλ

]−1
. (31)

The Dyson equation (22) retains its structure with the total
self-energy �σ

iλ(E ) substituted by the correlation self-energy
�σ

C,iλ(E ) = �σ
iλ(E ) − V σ

U,iλ, where �σ
C,iλ(E ) is evaluated us-

ing the LSDA+U Green’s functions gσ
LSDA+U,iλ(E ).

Following these considerations, our calculations are prac-
tically carried out in the following way. We perform a fully
charge self-consistent LSDA+U calculation and we obtain
V σ

U,iλ with nσ
iλ the LSDA+U occupation of atom i and orbital

λ. Then, in the first DMFT iteration, we use gσ
LSDA+U,iλ(E )

as impurity Green’s function, which already contains the
Hartree-Fock part of the self-energy, while we compute the
second-order self-energy corrections inserting gσ

LSDA+U,iλ(E )
into Eq. (26). The DMFT equations are eventually iterated
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solving the impurity problem by re-evaluating �
σ (1)
iλ and

�
σ (2)
iλ (E ) at each DMFT iteration. For the systems of in-

terest here, and in the limit of weak interactions, we found
the DMFT self-consistent procedure converges very fast, and
changes in the DOS are negligible after the first few DMFT
iterations. In fact, perturbative corrections in metallic sys-
tems lead to moderate changes of the electronic structure.
The system remains a well defined Fermi liquid with mod-
ified parameters. We refer to such computational approach
as LSDA+�2. Calculations carried out by means LSDA+�2

add just a small computational cost to standard LSDA+U
calculations, while already capturing some correlation effects
as shown in Sec. IV.

3. Self-consistent �2 approximation

The self-energy terms are evaluated as functionals of
the dressed impurity Green’s function, that is �

σ (1)
iλ [Gσ

iλ]
and �

σ (2)
iλ [Gσ

iλ]. A calculation requires in practice two self-
consistent cycles as shown in Fig. 2. The first, is the DMFT
cycle explained in Sec. II C. Then at each DMFT iteration,
a second self-consistent cycle is done to solve the impurity
problem as explained in Sec. II D. To ensure electron con-
servation inside the impurity according to the Luttinger-Ward
theorem [70], we add an identical on-site potential v to all
correlated 3d orbitals and we readjust v at each iteration.

III. COMPUTATIONAL DETAILS

Our method is implemented in the SMEAGOL Green’s
function-based electronic structure code [44,47], which takes
the DFT Hamiltonian from the SIESTA package [48]. We
treat core electrons with norm-conserving Troullier-Martin
pseudopotentials. The valence states are expanded through a
numerical atomic orbital basis set including multiple-ζ and
polarized functions [48]. The electronic temperature is set to
300 K. The real space mesh is set by an equivalent energy
cutoff of 300 Ry. We use 15 × 15 k-point mesh to compute the
self-consistent charge density with LSDA(+U ). This charge
density is then used as input in a non-self-consistent calcu-
lation to obtain the DOS employing 61 × 61 k-points. We
shift all energies in such a way to set the Fermi level at 0 eV.
To calculate the second-order self-energy, we use a frequency
grid comprising 4400 points and extending from −16 to 6 eV.
The imaginary part η in Eq. (3) is 0.01 eV and 0.005 eV
in LSDA(+U ) and in LSDA+�2 calculations, respectively.
This leads to an additional broadening of the DOS for a better
display in Figs. 3 and 4.

We express the Coulomb parameters Uλ1,λ2,λ3,λ4 in terms
of Slater integrals F 0, F 2 and F 4 (Ref. [14]). These are
connected to the average effective Coulomb and exchange
interactions of Eqs. (12) and (13) through the relations U =
F 0 and J = (F 2 + F 4)/14. The ratio F 4/F 2 is assumed to
correspond to the atomic value ≈0.625 [81].

We fix the lattice constant of the W bulk region to the
experimental value 3.16 Å. The surface region is optimized
by DFT within the LSDA via a slab calculation using SIESTA.
The slab includes the Fe layer and six W layers. The atomic
positions of the Fe layer and of the first W layer underneath
are allowed to relax until the ionic forces are smaller than 0.01

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

4

-10 -8 -6 -4 -2 0 2 4
E-E

F
 (eV)

-2

0

2

LSDA

LSDA+Σ
2
 (no HF)

LSDA+U

LSDA+Σ
2 

LSDA+U

LSDA+Σ
2

D
O

S
 (

eV
-1

)

(a)

(b)

(c)

(d)

(e)

(f)

U=1.5 eV

U=1.5 eV

U= 2.5 eV

U=2.5 eV

U=1.5 eV

FIG. 3. Fe DOS calculated by means of LSDA, LSDA+U , and
LSDA+�2. The value of U used in LSDA+U is indicated. J = 0.5
eV in all calculations. LSDA+�2 (no HF) indicates calculations
where the approximate HF potential of Eq. (30) is neglected.

FIG. 4. Fe-orbital resolved DOS obtained via LSDA and
LSDA+�2 calculations.
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eV/Å. The positions of the other W atoms are constrained
to be the same as in bulk W. The obtained structure is then
attached to the semi-infinite bulk region for the SMEAGOL

calculations.

IV. ELECTRONIC STRUCTURE OF Fe/W(110)

To describe the performances of our method we consider
a monolayer of Fe on a W(110) substrate, a system quite
investigated in nanoscale magnetism and often used in spin-
polarized scanning tunneling experiments [45,46]. The system
is presented in Fig. 1. The distance between the Fe layer
and W substrate is 2.04 Å, which is shorter than the W
inter-layer distance, 2.22 Å. We present here only the results
of spin-polarized calculations in the ferromagnetic phase,
while nonmagnetic calculations are shown in Appendix B.
We remark that our method treats the W substrate as truly
semi-infinite. This is an advantage compared to standard im-
plementations of DFT and DFT+DMFT, where Fe/W(110)
would be described as a slab with few W layers introducing
unwanted confinement effects in the system electronic struc-
ture.

A. Density of states

The Fe DOS calculated by means of LSDA, LSDA+U ,
and LSDA+�2 is presented in Fig. 3. By analyzing the re-
sults of the different methods, we will understand the effect
of the dynamical self-energy compared to mean-field static
approximations.

To begin with, we observe that already the DOS obtained
by using LSDA(+U ) has an intrinsic broadening in our
calculations. This is due to the embedding matrix function
�σ (k; E ) in Eq. (3) describing the hybridization between the
surface region and the W bulk continuum states. The effect
would be absent in calculations considering a slab geometry
for Fe/W(110), and it demonstrates the importance of using
our implementation of DFT to accurately describe surfaces
and interfaces.

The LSDA results are shown in Fig. 3(a). The spin up
(majority) and spin down (minority) DOS are split by about
2 eV [Fig. 3(a)]. Comparing with the orbital resolved DOS
in Fig. 4, we find that the prominent peaks for both spin
channels have mostly d character. The total DOS for the
spin up channel is centered at E − EF ≈ −2.2 eV and is
almost completely filled. The total occupation of the major-
ity d orbitals is 4.68 electrons. In contrast, the spin down
DOS presents two main peaks at the opposite sides of the
Fermi level and separated by a pseudo-gap. As seen in the
orbital-resolved DOS in Fig. 4, the two-peak structure reflects
the separation of the Fe dxy and dyz from the dxz, dz2 , and
dx2−y2 orbitals due to the (110) surface symmetry. The dxy

orbitals are oriented along the crystal direction connecting
the surface Fe atoms and thus merge into σ bonding and
anti-bonding bands. The Fe dyz orbitals overlap with the 5dyz

orbitals of the W atoms underneath forming a second set of
σ bonding and anti-bonding bands. All bonding states are
centered at about E − EF ≈ −0.4 eV giving the first sharp
peak in the spin down DOS, while the antibonding states are
unoccupied and emerge as very broad features extending up

to 2 eV. The dxz, dz2 and dx2−y2 orbitals mostly overlap with s
orbitals forming broad states centered around E − EF ≈ 1.15
eV. They contribute to the second unoccupied peak in the spin
down DOS. The occupation of the Fe dxy and dyz orbitals is
about 0.46, whereas that of the dxz, dz2 and dx2−y2 orbitals is
0.31, contributing to the total occupation of the minority d
states equal to 1.86 electrons. The spin magnetic moment μ

is 2.84 μB, considerably enhanced with respect to that in bulk
Fe, 2.2 μB.

The DOS calculated by means of LSDA+U is shown in
Figs. 3(c) and 3(e) for U = 1.5 eV and U = 2.5 eV, respec-
tively, and J = 0.5 eV. In such a mean-field like approach, the
V σ

U,iλ potential shifts the spin up LSDA DOS towards lower
energies by about −0.5(U − J ) [see Eq. (30)]. The occupation
of the spin up states, therefore, increases as a function of U .
In contrast, the V σ

U,iλ potential barely affects the spin down dxy

and dyz orbitals, and it moves the dxz, dz2 , and dx2−y2 orbitals
towards higher energies by about 0.2(U − J ). The pseudogap
in the spin down DOS across the Fermi level widens, while the
dxz, dz2 , and dx2−y2 orbitals are slightly emptied. Overall, the
splitting between the spin up and down DOS becomes larger
and, as a result, the total Fe magnetic moment systematically
increases as a function of U − J . This is a general outcome
of DFT+U calculations found for all ferromagnetic metallic
materials [18]. It is a consequence of the fact that the V σ

U,iλ
potential of Eqs. (29) and (30) represents the Hartree-Fock
approximation to the Hubbard interaction.

Next, we discuss the results obtained including second-
order self-energy contributions via the approach described
in Sec. II E 2. The DOS is shown in Figs. 3(b), 3(d), and
3(f). We use U = 1.5 eV and U = 2.5 eV and J = 0.5 eV
like in the LSDA+U calculations. Since the LSDA d band-
width is about 4.5 eV, the perturbation expansion is valid.
We note that the Fe atoms Green’s function is not diag-
onal. However the off-diagonal elements are typically two
orders of magnitude smaller than diagonal elements. They
can, therefore, be discarded, consistent with our assumption
in Sec. II D. The calculations in Fig. 3(b), which are indicated
as “LSDA+�2 (no HF)”, are carried out neglecting the ap-
proximate Hartree-Fock potential of Eq. (30) and using the
LSDA Green’s function to evaluate second-order self-energy
contributions.

The main features due to the second-order self-energy are
similar across Figs. 3(b), 3(d), and 3(f). Some redistribution of
the spectral weight occurs resulting in a considerable spectral
narrowing. The orbital ordering (orbitals’ position in energy)
and the character of the main peaks recognizable in Fig. 4 is
preserved as it is dictated by the surface symmetry and the
crystal field. The changes in the DOS are more pronounced
for spin up than for spin down. The top of the occupied d
DOS in the spin up channel is shifted towards the Fermi level,
while the down DOS is barely affected. This leads to a low-
ering of the Fe magnetic moment μ reported in Table I.
For U = 2.5 eV, we observe a reduction in excess of 0.3μB

compared to LSDA+U thus demonstrating that correlation
effects play a crucial role in counterbalancing the exchange
interaction.

The finding that self-energy contributions largely affect
the spin up DOS, but barely change the spin down DOS
indicates that correlation effects are much stronger for spin up

115129-8



DFT+�2 METHOD FOR ELECTRON … PHYSICAL REVIEW B 105, 115129 (2022)

TABLE I. Total Fe d orbitals occupation and magnetic moment
μ = n↑ − n↓ (in Bohr magneton μB.)

Method n↑ n↓ μ(μB )

LSDA 4.68 1.85 2.84
LSDA+�2 (no HF) 4.57 1.96 2.6
LSDA+U (U = 1.5 eV) 4.75 1.75 3.0
LSDA+�2 (U = 1.5 eV) 4.69 1.81 2.88
LSDA+U (U = 2.5 eV) 4.79 1.69 3.1
LSDA+�2 (U = 2.5 eV) 4.65 1.88 2.76

than for spin down electrons. The underlying physics is easy
to understand, and for simplicity, we refer to a model one-
band ferromagnetic metal with the effective electron-electron
interaction U (see, for example, Ref. [82]). The physical
picture corresponds to electrons propagating through the
Stoner mean-field created by electrons of opposite spin. The
self-energy dynamical contributions added to such system
describe scattering of single electrons against the Fermi sea.
The scattering process of an electron of a given spin σ may
produce an electron-hole pair in the opposite spin channel
σ̄ . This process is called resonant scattering, and the en-
ergy necessary to excite the electron-hole pair is sometimes
called the magnon pole in the transverse magnetic sus-
ceptibility χ+−(E ). The associated self-energy contribution
reads [83]

�σ (k; E ) ∝ U 2
∑

k′

∫
dE ′Gσ̄ (k′; E ′)χ+−(k − k′; E − E ′),

(32)

where Gσ̄ is the Green’s function for electrons of spin σ̄ .
Physically this can be interpreted as the spin σ electron re-
sponse to the fluctuating effective “magnetic field” created
by the dynamical electron-hole pairs in the σ̄ channel. In
the case of strong ferromagnets like the system studied here,
where the spin up channel is almost fully filled and the spin up
DOS near the Fermi energy is small, the formation of particle-
hole pairs in that spin up channel is unlikely. Hence, spin
down electrons are subject to a negligible fluctuating effective
magnetic field, which means that �↓(E ) is small, and they are
very weakly correlated. In contrast, since the spin down DOS
is large near the Fermi energy, spin up electrons scattering the
spin down Fermi sea can produce many electron-hole pairs
in the spin down channel. As a result, �↑(E ) is large and
electron correlation effects on spin up electrons are strong.
Our �2 solver for DMFT is a generalization of this picture for
multiorbital systems, in the local approximation, which means
that the self-energy, the Green’s function and the transverse
susceptibility of Eq. (32) are local. This can be seen by in-
specting the Feynman diagrams and the mathematical form of
the self-energy in Appendix A and Sec. II D.

We now analyze in more details the results for U = 1.5 eV.
The spin up d DOS center is predicted at E − EF ≈ −1.5 eV
and at ≈ −2.0 eV respectively in calculations without and
with the HF potential [Figs. 3(b) and 3(d)]. Clearly the differ-
ences in the two cases are due to the initial state dependence
of perturbation theory and they reflect the differences between
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FIG. 5. Comparison between the Fe DOS calculated by using
LSDA+�2 and LSDA+sc�2.

the LSDA and LSDA+U DOS. In spite of that, the two results
are overall quite similar. In this specific case, neglecting the
HF potential and using the LSDA Green’s function to compute
�

σ (2)
iλ (E ) is a practical and reliable simplification.
Next, we compare the LSDA+�2 results for U = 1.5 eV

and for U = 2.5 eV [Figs. 3(d) and 3(f), respectively]. We
see that a larger U does not significantly change the position
of the d states, but it induces a narrowing of both the spin up
and the spin down DOS features. According to this finding, an
increase in the local Coulomb parameter U including dynamic
self-energy effects leads to a reshaping of the spectrum rather
than to a modification of their spin splitting as one would
expect based on a static mean-field picture.

For energies far below from the Fermi level, we distinguish
a satellite appearing in the spin-up channel below −4 eV. A
similar feature has been unequivocally observed in photoemis-
sion measurements for Ni [13] and it has been predicted for
bulk Fe as well [25]. Here we predict that it is present even in a
Fe monolayer. The center of the satellite systematically shifts
in energies when increasing U . A similar behavior was already
noted in Ref. [25] for bulk calculations, albeit performed by
using a SPT-FLEX impurity solver instead of �2. The shift is
however quite large in our LSDA+�2 calculations. This may
be related to a limitation of the method, which will require
further study.

Finally, we present the results of calculations, referred
to as LSDA+sc�2, where the self-energy is evaluated self-
consistently as explained in Sec. II E 3. The DOS is shown in
Fig. 5 for U = 1.5 and 2.5 eV (J = 0.5 eV in both cases).
The self-consistent iterations lead to a redistribution of the
spin up spectral weight, in particular at energies far from
the Fermi level. The spin down DOS remains almost unal-
tered owing to the low correlation. For U = 1.5 eV, the spin
splitting of the 3d states remains equal to that predicted in
the LSDA+�2 calculations. In contrast, for U = 2.5 eV, the
spin up 3d states are moved towards the Fermi energy by
about 0.2 eV compared to non-self-consistent calculations.
Thus the DOS spin splitting is reduced. Overall, we find
that the self-consistent procedure mitigates the initial state
dependence of perturbation theory, although it does not com-
pletely eliminate it. Notably, at energies far below the Fermi
level, the satellite feature becomes much less marked in the
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FIG. 6. Real and imaginary parts of the self-energy (in eV) aver-
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LSDA+sc�2 than in LSDA+�2 DOS. The self-consistent
calculation enhances multiband screening effects thus lead-
ing to a partial suppression of that intrinsic many-body
feature.

B. Self-energy and effective masses

After having described the physical picture, which relates
dynamical correlation to scattering processes, we now analyze
at a quantitative level how the changes in the DOS at different
energies can be traced back to the shape and magnitude of
the self-energy. This is presented in Fig. 6 for different cases.
Since the crystal-field splitting is rather small, the self-energy
is very similar for all orbitals, and we, therefore, present only
the average over the orbital indexes. The shape of the real and
imaginary parts is typical of ferromagnetic transition metals
[25]. For example, in Fig. 6(a), we note that, in the spin up
channel, the real part of the self-energy is positive in the
energy range between −5 eV and the Fermi level, and it shows
a maximum at about E − EF ≈ −3.5 eV. This causes the shift
of occupied d states towards to the Fermi level as observed
in Fig. 3. In contrast, for energies below −5 eV, the negative
real part of the self-energy draws the spectral weight towards
lower energies leading to the formation of the satellite in the
DOS. The imaginary part has an extended negative peak cen-
tered at E − EF ≈ −4.5 eV resulting in the large broadening
of the satellite. Increasing the U value to 2.5 eV [Fig. 6(c)], the
peak in the real part of the self-energy for spin up is enhanced
to compensate the larger LSDA+U potential, which brings
the spin up d states towards too low energies. The maximum
of the imaginary part also becomes more pronounced than for
U = 1.5 eV. In the spin down channel, correlation effects are
much less pronounced as we already mentioned. We find that
the self-energy is quite small for both U = 1.5 and 2.5 eV.

It is interesting to observe how the spin up self-energy
changes when evaluated self-consistently [Fig. 6(b)]. The
positive maximum of the real part shifts of almost 2 eV to-
wards the Fermi energy compared to the non-self-consistent
LSDA+�2 calculation. Furthermore, in the energy region
below E − EF < −6 eV, where the real part of the self-
energy is negative, its magnitude is reduced. Similarly, the
imaginary part also becomes smaller. These two factors ex-
plain why the satellite is partly suppressed in self-consistent
self-energy calculations. The self-energy near the Fermi level
has Fermi-liquid character: for the imaginary part, we have
−Im�σ (E ) ∝ (E − EF )2, whereas the real part has negative
slope, ∂/∂E (Re�σ (E )) < 0. We then evaluate the mass en-
hancement, which amounts to(

m∗

m

)
λ,σ

= 1 − ∂

∂E
(Re�λ,σ (E )), (33)

where m represents the band-mass obtained within the
LSDA(+U ) calculations. The enhancement factors with re-
spect to LSDA are very similar for all d orbitals and spin
channels. For U = 1.5 eV, they are on average about 1.2,
which indicates that the system is medium-correlated. When
the self-energy is calculated self-consistently, m∗/m becomes
larger and is equal to about 1.4. This is a due of the shift
of the main peak of Re�λ,σ (E ) towards the Fermi level.
Therefore we find that, while the self-consistent iterations
partly suppress many-body correlation effects at high en-
ergy, they make electrons at the Fermi energy slightly more
correlated.

C. Comparison to experimental data

We now assess the performances of the various methods
against experiments. Photoemission spectra of a Fe monolayer
on W(110) were measured in Ref. [84] with the electron ex-
citation occurring along the �-�-N direction of the Brillouin
zone. The results are presented as small triangles in Fig. 7
along with the DOS calculated by using LSDA, LSDA+�2,
and LSDA+sc�2 for U = 1.5 eV and J = 0.5 eV. Since
electrons from both Fe and W contribute to the experimental
signal, we present the sum of the DOS of the Fe monolayer
and of the first W layer underneath. The DOS is convoluted
with a Fermi function to introduce a smooth cutoff around
the Fermi energy. We assume that the DOS can be directly
compared to experiments, which means that transition matrix
element effects are neglected.

The most striking observation is that LSDA drastically
overestimates the spin splitting between majority and minority
states. The experimental spin up spectrum quickly rises below
the Fermi energy and the maximum is at E − EF ≈ −0.5 eV,
whereas the LSDA DOS for the spin up channel is centered
at about −2.2 eV. The inability of LSDA to accurately predict
the spin splitting of states in metallic ferromagnetic systems
has been pointed out in a number of works [11,12,25].

Calculations including dynamical self-energy contribu-
tions shift the majority DOS towards the Fermi level thus
correcting for the LSDA short-comes. The LSDA+�2 DOS
is in quantitative agreement with the experimental data.
The method captures the main correlation effect in the
system.
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We can not identify which scheme, LSDA+�2 or
LSDA+sc�2, performs better. Both methods give a very sim-
ilar DOS in the energy range, where the experimental data are
available, and the broadening of the photoemission spectrum
does not allow to distinguish between small differences in
the spectral distribution. Photoemission experiments probing
the energy region E − EF < −4 eV and the existence of the
satellite features would provide stronger indications about the
accuracy of LSDA+�2 and LSDA+sc�2. We hope that these
experiments will be performed in the future.

V. CONCLUSIONS

DFT+�2 combines DFT to a multiorbital solver for the
Hubbard model, where the Coulomb interaction parameter
U is treated in perturbation theory up to second order. The
method provides a realistic description of moderately corre-
lated materials. Our implementation is designed to investigate
TM surfaces, interfaces, and layered systems in general. As
an example of application, we considered a Fe monolayer on
a W(110) substrate. We discussed in detail the correlated DOS
comparing the results with those of LSDA and LSDA+U
calculations. We found that second-order self-energy contri-
butions led to a shift of the majority-spin DOS towards the
Fermi level and, therefore, to a reduction of the d states
spin splitting compared to LSDA calculations. This result
is in quantitative agreement with available photoemission
spectra.

The use of different unperturbed states and the inclusion of
the first-order contribution in DFT+�2 gave differences in the
DOS spin splitting and spectral width. These differences were
nonetheless rather minor. The self-consistent evaluation of the
self-energy leads to a redistribution of the spin up spectral

weight, in particular at energies far from the Fermi level.
The spin splitting of the 3d states changes very little during
the self-consistent cycle. In contrast, a satellite feature far in
energy below the Fermi level is considerably reduced owing
to multiband screening effects.

In our calculations we employed the local approxima-
tion thus we neglected spatially nonlocal correlation effects.
However, the calculation of second-order self-energy contri-
butions can in principle be extended to allow for momentum
dependence, although this would increase significantly the
complexity of the numerical implementation and the compu-
tational overhead.

Overall, our implementation of DFT+�2 can be readily
used to simulate, at a relatively low computational cost, cor-
relation effects in the electronic structure of heterostructures
comprising TMs. The calculation of the self-energy on the real
energy axis is particularly convenient if one is interested in
treating charge and spin transport properties using generalized
Landauer methods [42,43], which require the evaluation of
the energy dependent transmission function [33,44]. As such,
we believe that DFT+�2 will provide important theoretical
inputs for the design of materials and devices for electronics
and spintronics.
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APPENDIX A: SECOND-ORDER SELF-ENERGY

We provide here details about the perturbative treatment
of the multiorbital electronic system. We use the Keldysh
Green’s functions formalism [70]. The self-energy, up to sec-
ond order, can be schematically expressed using skeleton
Feynman diagrams

(A1)
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where the dots represents space-(contour time) coordinates,
the straight line represents the dressed Green’s function
and the wiggly lines represents the interaction. Converted
into equations these diagrams give four contributions to the
self-energy

�
(1,1)
λσ (k; t, t ′)

= −iδC (t, t ′)
∑
λ f ,σ f

∑
p

Ũ
σσ f σσ f

λλ f λλ f
(0; t )Gλ f σ f (p; t, t ),

(A2)

�
(1,2)
λσ (k; t, t ′)

= iδC (t, t ′)
∑
λ f

∑
p

Ũ σσσσ
λλ f λ f λ

(k − p; t )Gλ f σ (p; t, t ′), (A3)

�
(2,1)
λaλd σaσd

(k; t, t ′)

=
∑

λb,λe,λ f ,σ f

∑
p,q

Ũ
σaσ f σaσ f

λaλeλbλ f
(q; t )Ũ σ f σaσ f σa

λ f λbλeλd
(q; t ′)δσaσd

× Gλbσa (k + q; t, t ′)Gλ f σ f (p; t ′, t )Gλeσ f

× (p − q; t, t ′), (A4)

�
(2,2)
λaλd σaσd

(k; t, t ′)

= −
∑

λb,λc,λe

∑
p,q

Ũ σaσaσaσa
λaλeλcλb

(p; t )Ũ σaσaσaσa
λcλbλeλd

(q; t ′)δσaσd

× Gλbσa (k − q; t, t ′)Gλeσa (k−p − q; t ′, t )

×Gλcσa (k − p; t, t ′). (A5)

In the specific case of the Hubbard model, the interaction
matrix Ũ is time and momentum independent and we refer
to it as U in the main text. Additionally, the Hubbard U
matrix is also spin independent, but, in this Appendix, we
keep the spin indices in accordance with the most general
notation.

After applying the Langreth rules [70] and performing the
Fourier transform we obtain the first-order terms

�
(1,1)r
λσ (k; E ) = −i

∑
λ f ,σ f

U
σσ f σσ f

λλ f λλ f

∑
p

∫
dε1

2π
G<

λ f σ f
(p; ε1),

�
(1,2)r
λσ (k; E ) = i

∑
λ f

U σσσσ
λλ f λ f λ

∑
p

∫
dε1

2π
G<

λ f σ
(p; ε1), (A6)

where the lesser Green’s function in equilibrium assumes the
following form:

G<
λσ (E ) = −2i f (E ) Im Gr

λσ (E ), (A7)

with gr
λσ (E ) the retarded Green’s function and f (E ) the Fermi

function. The first-order terms can then be written in well
known Hartree-Fock expression of Eq. (24).

The two second-order terms giving reads

�
(2,1)r
λaλd σσ (k; E ) =

∑
λb,λe,λ f ,σ f

U
σσ f σσ f

λaλeλbλ f
U

σ f σσ f σ

λ f λbλeλd

∑
p,q

∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π
[G<

λbσ
(k + q; E + ε1)G<

λ f σ f
(p; ε2)Gr

λeσ f
(p − q; ε2 − ε1)

+ Gr
λbσ

(k + q; E + ε1)G<
λ f σ f

(p; ε2)G<
λeσ f

(p − q; ε2 − ε1)

+ Gr
λbσ

(k + q; ε + ε1)G<
λ f σ f

(p; ε2)Gr
λeσ f

(p − q; ε2 − ε1)

+ G<
λbσ

(k + q; E + ε1)GA
λ f σ f

(p; ε2)G<
λeσ f

(p − q; ε2 − ε1)], (A8)

�
(2,2)r
λaλd σσ (k; E ) = −

∑
λb,λc,λe

U σσσσ
λaλeλcλb

U σσσσ
λcλbλeλd

∑
p,q

∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π
[G<

λbσ
(k + q; E − ε2)G<

λeσ
(p; ε2)Gr

λcσ
(p − q; ε2 − ε1)

+ Gr
λbσ

(k + q; E − ε2)G<
λeσ

(p; ε2)G<
λcσ

(p − q; ε2 − ε1)

+ gr
λbσ

(k + q; E − ε2)G<
λeσ

(p; ε2)Gr
λcσ

(p − q; ε2 − ε1)

+ G<
λbσ

(k + q; E − ε2)GA
λeσ

(p; ε2)G<
λcσ

(p − q; ε2 − ε1)]. (A9)

After a few steps of algebra and neglecting the momentum dependence, we easily obtain Eq. (26). We note that we drop the
superscript “r” for “retarded” in the main text to keep the notation lighter.

APPENDIX B: NONMAGNETIC CALCULATIONS

Self-energy calculations can be carried out also for the
nonmagnetic phase and can be combined with DFT within the
local density approximation (LDA). The nonmagnetic orbital-
resolved DOS obtained with LDA and LDA+�2 is presented

in Fig. 8. The general features are similar to those discussed
in Sec. IV A. In LDA calculations, the DOS extends across
the Fermi energy from about −3 to 1.5 eV, i.e., over the d
bandwidth equal to about 4.5 eV. There are two peaks well
below the Fermi energy, at E − EF ≈ −1.3 and ≈ −1 eV.
They stem respectively from the dxy and dyz orbitals. Instead,
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FIG. 8. Non-spin-polarized orbital resolved DOS of the Fe atom
obtained via LDA, LDA+�2, and LDA+sc�2 calculations. The
Fermi level is at 0 eV. Self-energy calculations are for U = 1.5 eV
and J = 0.5 eV.

the dxz and dx2−y2 orbitals give the dominant contribution to
quite sharp peaks at the Fermi energy. The DOS projected
over dz2 is much smoother. Overall the total DOS at the Fermi
energy is DOS(EF ) = 2.9 eV−1. Since the Stoner parameter
[85,86] estimated by analyzing the band splitting in Fig. 3(a)
is I ≈ 1 eV, we see that the Stoner criterion IDOS(EF ) > 1 is
satisfied and, therefore, the ferromagnetic state is favored over
the nonmagnetic one. The same conclusion is also found by
comparing the DFT total energies of the two states. The orbital
dyz has the largest occupation equal to about 1.47 electrons,
while dz2 and dx2−y2 have the lowest occupation, respectively
1.27 and 1.25 electrons. The orbitals dxy and dxz orbital have
similar occupations of about 1.32 electrons.

The second-order self-energy induces some redistribution
of the spectral weight. The main effect in LDA+�2 is that the
peaks associated to the dxz and dx2−y2 orbitals in the DOS at the
Fermi level become sharper, while the other peaks stemming
from dxy and dyz are shifted towards EF by about 0.3 eV.
Furthermore, the satellite at E − EF < −3 eV appears.

In self-consistent self-energy calculations, some further
spectral redistribution occurs. The peak in the dyz-projected
DOS (blue line) at about E − EF ≈ −0.7 eV gets reshaped
into a shoulderlike feature accompanying the main peak at EF .
At the same time, the peak in the dxy-projected DOS (green
line) becomes broader. As already found in the spin-polarized
calculation, the satellite becomes much less marked.
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