
P H Y S I C A L R E V I E W L E T T E R S week ending
25 JULY 2003VOLUME 91, NUMBER 4
Coexistence of Composite Bosons and Composite Fermions in � � 1
2 �

1
2 Quantum Hall Bilayers

Steven H. Simon,1 E. H. Rezayi,2 and Milica V. Milovanovic3

1Lucent Technologies, Bell Labs, Murray Hill, New Jersey 07974, USA
2Department of Physics, California State University, Los Angeles, California 90032, USA

3Institute of Physics, P.O. Box 68, 11080, Belgrade, Yugoslavia
(Received 28 January 2003; published 25 July 2003)
046803-1
In bilayer quantum Hall systems at filling fractions near � � 1=2� 1=2, as the spacing d between the
layers is continuously decreased, intralayer correlations must be replaced by interlayer correlations, and
the composite fermion (CF) Fermi seas at large d must eventually be replaced by a composite boson
(CB) condensate or ‘‘111 state’’ at small d. We propose a scenario where CBs and CFs coexist in two
interpenetrating fluids in the transition. Trial wave functions describing these mixed CB-CF states
compare very favorably with exact diagonalization results. A Chern-Simons transport theory is
constructed that is compatible with experiment.
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of states interpolating between these end points where as simple Drude or Boltzmann transport for fermions in
Bilayer quantum Hall systems show a remarkable va-
riety of phenomena [1]. Perhaps the most studied case is
when the electron density in each of the two layers is such
that � � n�0=B � 1

2 , where n is density, �0 � 2� �hc=e is
the flux quantum, and B is the magnetic field perpendicu-
lar to the sample. At this filling fraction, it is known that
at least two types of states can occur depending on the
spacing d between the layers. For large d the two layers
must be essentially independent � � 1

2 states, which are
thought to be well described as compressible composite
fermion (CF) Fermi seas with strong intralayer correla-
tions and no interlayer correlations [2]. For small enough
values of d one should have an interlayer coherent ‘‘111
state’’ which can be described as a composite boson (CB)
condensate with strong interlayer correlations and intra-
layer correlations which are weaker than that of the CF
Fermi sea [1]. The nature of the transition between CFs
and CBs is the focus of this Letter. (Throughout this
Letter we will assume zero interlayer tunneling and as-
sume the spins are fully polarized.)

Initial numerical work [3] suggested that the transition
between the CF Fermi sea and the CB 111 state may be
first order. (The transition has also been studied theoreti-
cally in Refs. [4,5].) However, experiments clearly show
that interlayer correlations and coherence turn on
somewhat continuously as d=‘B is reduced [6,7] where
‘B � � �he=Bc�1=2 is the magnetic length. Based on a
picture of a first order transition and percolating
puddles of one phase within the other, Ref. [8] predicts the
drag resistivity tensor �D should roughly obey the
semicircle relation ��D

xx�
2 � ��D

xy � � �h=e2�2 � �� �h=e2�2

which agrees reasonably well with experiment [7]. On
the other hand, the first order transition model has trouble
accounting for the strong interlayer correlations that
appear to occur even deep into the putative Fermi liquid
state [7]. We are thus motivated to look for a more
continuous transition from the CF Fermi liquid to
the CB 111 state. The picture we have in mind is a family
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each state is specified by the number of CFs and the
number of CBs with the total number of CBs plus CFs
remaining fixed. A first order transition could also be
described as a mixture of CBs and CFs but with phase
separation of the two fluids. Here we instead consider
states where the CF and CB fluids interpenetrate. We
find that such mixed CF-CB states agree well with exact
diagonalizations. Further, a Chern-Simons version of our
mixed Bose-Fermi theory is consistent with experimen-
tal observation, predicting the above mentioned semi-
circle relation.

CF Fermi sea and 111 state.—Near � � 1
2 in a single

layer, the Jain CF [2] picture is given by attaching two
zeros of the wave function to each particle. Thus we write
the electron wave function as � � P ��f�z1; z1; . . . ; zN;
zN�

Q
i<j�zi � zj�

2� where here and elsewhere P represents
projection onto the lowest Landau level, Gaussian factors
exp��

P
ijzij

2=�4‘2B�� will not be written explicitly, and
zi � xi � iyi is the complex representation of the position.
In the above equation �f represents the fermionic wave
function of the CFs in the effective magnetic field B �
B� 2n�0 where n is the density. Generally, we will
assume the CFs are weakly interacting so that the wave
function �f can be written as a single Slater determinant
appropriate for noninteracting fermions in the effective
field B. At � � 1=2, B is zero and �f represents a filled
Fermi sea wave function.

In Chern-Simons fermion theory [2,9], each electron is
exactly transformed into a fermion bound to two flux
quanta. At mean field level, the fermions see magnetic
field B � B� 2n�0 which is zero at � � 1

2 . The effective
(mean) electric field seen by a fermion is given analo-
gously by E � E� 2�J where E is the actual electric
field, J is the fermion current (which is equal to the
electrical current), and � � �2� �h=e2�� where � � i�y is
the 2 by 2 antisymmetric unit tensor (here �y is the Pauli
matrix). Defining a transport equation for the weakly
interacting fermions E � �fJ (where �f is approximated
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zero magnetic field), we obtain the RPA expression for the
electrical resistivity � � �f � 2�.

We now turn to the double layer systems and focus on
filling fraction �1 � �2 �

1
2 . If the two layers are very far

apart, then we should have two independent � � 1
2 sys-

tems. Thus, we would have a simple CF liquid state in
each layer with the total wave function being just a
product of the wave functions for each of the two layers.

On the other hand, if the two layers are brought very
close together, the intralayer and interlayer interactions
will be roughly the same strength. In this case, it is
known that the system will instead be described by
the so-called 111 state. The wave function for this state
is written as � �

Q
i<j�zi � zj�

Q
i<j�wi � wj�

Q
i;j�zi �

wj�, where the zi’s represent the electron coordinates in
the first layer and the wi’s represent electron coordinates
in the second layer. Here each electron is bound to a single
zero of the wave function within its own layer as well as
being bound to a single zero of the wave function in the
opposite layer. By Fermi statistics, each electron must be
bound to at least one zero within its own layer so the only
additional binding here is interlayer. Thus, when d is
small, the electron binds a zero in the opposite layer (to
form a CB interlayer dipole), whereas when d is large the
electron binds a zero within its own layer (forming a CF
dipole [2]).

One can also write a Chern-Simons boson theory for
the 111 state. Here, each electron is exactly modeled as a
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boson bound to one flux quantum where the bosons see the
Chern-Simons flux from both layers. Thus, the effective
magnetic (mean) field seen by a boson in layer � is given
by B� � B��0�n1 � n2� with ni being the density in
layer �. Here, at total filling fraction of �1 � �2 � 1, the
bosons in each layer see an effective field of zero and can
condense to form a superfluid (or quantum Hall) state.
The effective electric field seen by the bosons in layer � is
similarly given by E� � E� � ��J1 � J2� where E� is the
actual electric field in layer �. This can be supplemented
by a transport equation for the bosons in zero magnetic
field E� � ��

bJ
�. If the bosons are condensed, then we

can set ��
b � 0. This results in the perfect Hall drag of the

111 state where E1 � E2 � ��J1 � J2�.
Transition wave functions.— At intermediate d we need

to ask what the energetic price is for binding within the
layer (to form a CF) versus out of the layer (to form a CB).
Note that each fermion put into the Fermi sea costs
successively more energy (each having a higher wave
vector than the last). Thus, it might be advantageous for
some of the fermions at the top of the Fermi sea to
become unbound from their zeros within the layer and
bind to the other layer—falling into the boson conden-
sate. We imagine having some number N�

f of electrons in
layer � that act like CFs (filling a Fermi sea) and N�

b that
act like CBs (which can condense). Of course, we should
have N�

f � N�
b � N� the total number of electrons in

layer �. We can write down mixed Fermi-Bose wave
functions for double layer systems as follows:
� � AP

2
4�1

f�z1; z1; . . . ; zN1
f
; zN1

f
��2

f�w1; w1; . . . ; wN2
f
; wN2

f
�
Y

i<j	N1
f

�zi � zj�2
Y

i<j	N2
f

�wi � wj�
2



Y

j<i;N1
f<i

�zi � zj�
Y

j<i;N2
f<i

�wi � wj�
Y

i;j;N1
f<i

�zi � wj�
Y

i;j;N2
f<i;j	N1

f

�wi � zj�

3
5: (1)
We have chosen to order the particles so that particles
i � 1; . . . ; N�

f are fermions and i � N�
f � 1; . . . ; N� are

bosons. The antisymmetrization operator A antisym-
metrizes only over particle coordinates within each layer.
Here, ��

f is the CF wave function of N�
f fermions in layer

�. The first line of the wave function is thus the fermionic
part, including the CF wave functions and also the
Jastrow factors. Here the Jastrow factors bind two zeros
to each fermion within a layer so that the wave function
vanishes as z2 as two fermions in the same layer approach
each other (before antisymmetrization and projection).
The second line of the wave function binds zeros to
each boson such that the wave function vanishes as z as
any particle (boson or fermion) approaches that boson
from either layer. (The bosons are assumed condensed so
the explicit boson wave function is unity.)

It is perhaps easier to describe these Jastrow factors in
terms of a Chern-Simons description. Within such a de-
scription, we write expressions for the effective magnetic
field B� seen by either species in layer � as
B �
f � B� 2�0n�

f ��0�n1
b � n2

b�; (2)

B �
b � B��0�n

1
b � n2

b � n1
f � n2

f�: (3)

While it may appear that such a Chern-Simons approach
is ill-defined since one must make an arbitrary choice of
which electrons are CBs and which are CFs, it turns out
that this approach can be put on more rigorous grounds by
using a variant of the two-fluid picture of superfluidity
[10]. Describing a 111 state as a superfluid of CBs at k �
0, any CBs taken out of the condensate to finite k form a
‘‘normal’’ fluid which is almost independent of the con-
densate. This normal fluid can then be independently
Chern-Simons transformed again to form CFs. In this
picture particles can scatter in and out of the condensate,
changing from fermions into bosons or vice versa. This
has an analogy in the wave function language where zeros
of the wave function are transferred between electrons.
(Such processes are ignored in the above simplified
046803-2
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FIG. 1. (Top) Overlap squared of trial wave functions with
exact ground state as a function of layer spacing d=‘B.
(Bottom) Energy of trial states minus energy of the ground
state (in units of e2=‘B) as a function of d=‘B. Calculations are
for 5 electrons per layer on a bilayer sphere with flux 9�0. At
small d=‘B the 111 state (j0 fermionsi) has the highest overlap
and the lowest energy. As the spacing increases, we go through
a sequence of states j2 fermionsi, j3 fermionsi, and j4 fermionsi
until at large d=‘B j5 fermionsi (the CF Fermi sea) has the
highest overlap and lowest energy.
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Chern-Simons theory.) More rigorous details of this pic-
ture will be given in a future paper.

Since at � � 1
2 the effective magnetic field seen by

bosons or fermions is zero, we will take ��
f to be a filled

Fermi sea of N�
f CFs in layer �. Similarly, the CBs in zero

field condense into a k � 0 ground state (as assumed in
the wave function). If we have two layers of matched
density we must have N1

f � N2
f in the ground state.

However, the overall number of CFs versus CBs is a
matter of energetics and may vary continuously as d
changes. When Nf � 0 in both layers, this wave function
is the 111 state, whereas Nb � 0 (or Nf � N) consists of
two uncorrelated layers of CFs.

Numerical calculations.—We have considered a finite
sized bilayer sphere with five electrons per layer and a
monopole of flux 9�0 at its center.We first generate mixed
CB-CF wave functions of the form of Eq. (1). The method
of numerical generation is involved and will be discussed
elsewhere. We note that in the Jastrow factors of Eq. (1)
the fermions (zi; wi 	 Nf) experience one less flux quan-
tum than the bosons (zi; wi > Nf). Thus, when the CBs
are in zero effective magnetic field (so they can con-
dense), the CFs experience a single flux quantum. Thus,
�f is modified to represent fermions on a sphere with a
monopole of charge �0 in the center. We generate wave
functions with 0, 1, 2, 3, 4, 5 fermions per layer (and
correspondingly 5, 4, 3, 2, 1, 0 bosons per layer). Note
that the 1 fermion state is identical to the 0 fermion
state. However, all of the remaining states are linearly
independent. Thus we have 5 states which we label
j0 fermionsi, j2 fermionsi, j3 fermionsi, j4 fermionsi,
and j5 fermionsi. Of course, j0 fermionsi is the 111 state,
and j5 fermionsi is two separate layers of composite
fermions in the presence of one flux quanta. (In most of
the wave functions, the fermionic ground state in a single
layer [11] is at maximal angular momentum L � 0. We
always couple these to produce a bilayer L � 0 wave
function.)

We next perform an exact lowest Landau level diago-
nalization on the bilayer sphere using a pure Coulomb
interaction v11�r� � e2=r within a layer and v12�r� �
e2=

����������������
r2 � d2

p
between the two layers where r is the chord

distance between two points and d the interlayer spacing.
In Fig. 1, we show the overlap (squared) of each of our
trial wave functions with the exact ground state at each of
the values of d=‘b. We also show the relative energy of the
various ground states as a function of d=‘B. It is clear that
the mixed CB-CF states have very high overlap with the
exact ground state and very low energy in the transition
region. This supports the picture of the transition from CF
to CB occurring through a set of ground states with
interpenetrating CF-CB mixtures. In Fig. 2 we show the
interlayer and intralayer electron pair correlation func-
tions (g12 and g11). We see that the mixed CB-CF states
allow us to interpolate between the types of correlations
that exist in the limiting 111 and Fermi liquid states.
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Chern-Simons RPA.—We can calculate the resistivities
and drag resitivities of these mixed Bose-Fermi states by
using the Chern-Simons RPA approach. Analogous to
Eqs. (2) and (3) we can write effective electric (mean)
fields seen by the bosons or fermions in layer �:

E �
f � E� � 2�J�f � ��J1b � J2b�; (4)

E �
b � E� � ��J1b � J2b � J1f � J2f�; (5)

where J�f�b� is the Fermi (Bose) current in layer � with the
total current in layer � given by J� � J�b � J�f .

We supplement Eqs. (4) and (5) with transport equa-
tions for the fermions (bosons) in each layer E�

f�b� �

��
f�b�J

�
f�b�. Finally, for a drag experiment we fix J2 � 0

and fix J1 finite. We then solve for E1 and E2 yielding the
in layer resistivity (E1 � �11J1) and the drag resistivity
(E2 � �DJ1). Assuming layer symmetry so ��

b�f� is not a
function of �, the results of such a calculation yield �11 �
�G�H�=2 and �D � �G�H�=2 where G � ���1

b �
��1

f ��1 � 2�, and H�1 � ��1
b � ��f � 2���1. At filling

fraction �1 � �2 �
1
2 both �b and �f are diagonal (since

CBs and CFs are in zero effective field). Thus, there are
046803-3
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FIG. 2. Interlayer (top) and intralayer (bottom) electron pair
correlation functions g12 and g11 as a function of (arc) distance
r for each of the trial wave functions (5 electrons per layer).
Going from the Fermi liquid state (j5 fermionsi) to the 111 state
(j0 fermionsi) the short range intralayer correlations are re-
duced and the interlayer correlations build up. In the Fermi
liquid state two L � 0 single layer states are combined to form
an L � 0 bilayer state causing a deviation of g12 from unity.
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only two free parameters (�b;xx and �f;xx) and four mea-
surable quantities (�xx; �xy; �

D
xx; �

D
xy) which enable us to

derive experimental predictions, such as �D
xy � �11

xy �
4� �h=e2 [12].

When d is large, we assume that there are very few
CBs, and thus �b;xx should be large (at least at finite
temperature or with disorder). Furthermore, from the
experimentally measured CF resistivity, it is clear that
�f;xx is small ( 
 2� �h=e2), at least at large d. As d is
reduced, presumably the density of CBs increases and
�b;xx drops until the CBs condense at some critical density
and �b;xx � 0 (yielding perfect Hall drag as in the 111
state). Simultaneously, as d decreases, �f;xx presumably
increases, but only mildly [9], and may remain small even
when the CBs condense. Only when the density of CFs is
near zero should �f;xx diverge. In the limit that �f;xx 

2� �h=e2 it is easy to derive the above mentioned semi-
circle law ��D

xx�
2 � ��D

xy � � �h=e2�2 � �� �h=e2�2 from our
above expression for �D. In addition, in this limit one can
derive �11

xx � �D
xx which is also reasonably consistent with

published data [7].
One can ask whether at zero temperature CBs (or,

almost equivalently, coherence [13]) start being replaced
by CFs for any small but finite d, or whether there is a
nonzero d below which no CFs exist. Similarly, one could
ask whether some CBs remain up to infinite d or whether
there is a critical d above which there are none. These two
questions remain topics of current research.
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Our mixed CB-CF theory can be generalized for un-
equal densities as well as for filling fractions away from
�1 � �2 �

1
2 . Further, one may be able to treat the effects

of an in-plane magnetic field. Indeed, such an approach
was already used in Ref. [14] to understand bilayer tun-
neling experiments in tilted fields.

In summary, we have constructed a theory describing
the crossover between a CF liquid at large d to the 111 CB
state at small d which can be thought of as a two-fluid
model. Comparisons of trial wave functions to exact
diagonalization are very favorable, and the corresponding
Chern-Simons transport theory appears to be in reason-
able agreement with experimental data.
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