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We argue that the naively expected singularities of the Fermi surface, in the mixed composite boson-
composite fermion states proposed[S.H. Simonet al., Phys. Rev. Lett.91, 046803(2003)] for the evolution of
n=1 bilayer quantum Hall system with distance, are obliterated. Our conclusion is based on a careful analysis
of the momentum distribution inn= 1

2 single-layer composite-fermion state. We point out to a possibility of the
phenomenon hitherto unknown outside Kondo lattice systems when, in a translationally invariant system,
Fermi-liquid-like portion of electrons enlarges its volume.
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The nature and physics of the transition in the bilayern
=1 quantum Hall(QH) system1 between the well-established
phases: one characteristic for the distances between the lay-
ers of the order of or smaller than magnetic length, some-
times described as “111” state, and the other for larger dis-
tances, described by two separate Fermi-liquid-like states of
composite fermions(CFs) recently attracted the attention of
experimentalists2 and is the focus of several theoretical
papers.3–6 Only Refs. 4 and 5 make a prediction for a coex-
istence region between two phases, with a unique property,
semicircle law for the longitudinal and Hall drag resistance
that was revealed in the experiments.2 Reference 5 intro-
duces a form of the ground state of the system that may
continuously interpolate between the 111 state, usually de-
scribed by composite bosons(CBs), and the two separate
Fermi-liquid-like states of CFs. The ground state proved to
be a good variational ansatz when compared with the exact
solution in numerical studies.5 The form of the variational
state for certain distance between the layers may be de-
scribed as one in which classically speaking some of the
electrons are in the 111 state(they make CBs) and the others
participate in two Fermi seas of CFs. Gradually the number
of CFs increases as the distance becomes larger. Therefore
the description easily accounts for the continuous nature of
the transition as observed in the experiments.2 On the other
hand the proposal that came first, based on a phase separated
picture,4 in which percolating puddles of one phase are in the
other, well enough exhibits the transport properties measured
in the experiments. The advantage of the homogenous
model,5 which accounts for the same transport properties, is
that it also accounts for the strong 111(interlayer) correla-
tions that occur even deep in the CF region.2

Here we study the Fermi surface singularities in the pro-
posed wave functions.5 Naively they are expected at the
Fermi momenta directly related to the number of CFs in the
particular partition of the overall number of electrons into
CFs and CBs. The analysis begins with a careful study of the
n= 1

2 CF problem, so that the relationships found can be
readily applied to the mixed state case. We found that the CF
momentum distribution near the naively expected Fermi mo-
menta depend analytically on the distance to the Fermi mo-
menta, therefore showing no signature of the Fermi surfaces.

Soon after Halperin, Lee, and Read7 proposed their theory

for n= 1
2 fractional QH effect Bares and Wen8 considered

fermions in low dimensions interacting via a long range
−2p / uqW u2 interaction. They used as a good ansatz for the
ground state, a wave function of the Feenberg–Jastrow type:

Coshxjd = p
i, j

uxi − xjumCFSshxjd, s1d

whereCFS denotes a Slater determinant of filled Fermi sea of
free single-particle states. Ifm=2 this construction is the
Rezayi–Read9 ground state, in the representation of CFs and
when the projection to the lowest Landau level(LLL ) is
neglected, found to correctly captures the physics atn= 1

2. By
doing a calculation of a random phase approximation(RPA)
type on Eq.(1) Bares and Wen found that the leading singu-
larity of the momentum distribution nearkF, in two dimen-
sions, is

dnk <
m

2
hnk

o lnudku − s1 − nk
odlnudkuj, s2d

wheredk= ukW u−kF andnk
o denotes the free-Fermi-gas momen-

tum distribution. They also remarked that if we interpret the
rhs of Eq.(2) as the first term in an expansion in powers of
m we can write(nearkF)

nk =
1

2
+

1

2
hnk

ouk − kFum/2 − s1 − nk
oduk − kFum/2j. s3d

What they did not emphasize is that ifm=2 and although we
have a Luttinger-liquid-type expansion nearkF

10 there is no
nonanalytic behavior due to the odd power ofuk−kFu and all
trace of the Fermi surface has been eliminated.

We can come to the same expressions employing the
weakly screening plasma analogy,11 which in considering
quantum-mechanical expectations in the state, Eq.(1), mim-
ics Laughlin’s plasma approach.12 In the Laughlin approach
there is the perfect screening of the classical Coulomb

plasma, when interaction −2p / ukWu2 becomes screened as
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−
2p

ukWu2

1 +
2pbm2

ukWu2
soskd

, s4d

wherem is from n=1/m, filling factor; b=2/m is the plasma
inverse temperature, andsoskd is the static structure factor of
the noninteracting particles, in this case bosons, so that
soskd=r- particle density, and hence a perfect screening.
More precisely it can be found13 that the expansion in small
m of classical statistic averages(to which quantum expecta-
tions correspond) is well defined, gives the results that can be
found by other methods, and allows continuation to larger
thanm=1 values. In this context the screening is captured by
the accustomed infinite summation of a geometric series de-
scribed by Eq.(4) and symbolically can be represented by
the sum of diagrams as in Fig. 1.

In the case of the weakly screening plasma analogy due to
the presence of the free-fermion Slater determinant in Eq.
(1), the first summation, Eq.(4), that is done while organiz-
ing diagrams, gets modified, having forsoskd the static struc-
ture factor of free fermion gas, which in two dimensions for
smallk can be found to beso

f skd= 3
4kF /p2k. This leads to not

so perfect screening of the long-range interaction which be-
comes as 1/r instead of lnr in real space. The approach
introduced parallels to the RPA calculation in Ref. 8 in get-
ting Eq. (2) when Fig. 1 corresponds to a RPA summation
with the value of the bubble equal toso

f skdbm2.
We want to see in more detail how the equal-time CF

propagator can be found, and, possibly, which additional dia-
grams in its calculation would lead to the conjectured expres-
sion for the CF occupation number. It is instructive to first
consider how we can get the equal-time CB correlator, i.e.,
Girvin–MacDonald correlations14 in the Laughlin case using
the diagramatic expansion.13 As introduced by Girvin and
MacDonald we in fact in the plasma language have to deal
with two impurities of chargem/2 each, which do not inter-
act directly. Therefore, we have

GBsz,z8d , uz− z8u−m/2Zsz,z8d
Zsz,zd

, s5d

where Zsz,z8d is the partition function of the classical 2D
plasma with inverse temperatureb=2/m, each particle with

chargem, as before, and two impurities with chargem/2
each at the locationsz andz8. [Zsz,zd is the partition function
with one impurity of chargem at an arbitrary location be-
cause the value of the partition function does not depend on
z.] What we expect is that the ratio will have the following
form,

Zsz,z8d
Zsz,zd

= expf− bDfsz,z8dg, s6d

whereDfsz,z8d represents the difference in the free energy
between the two configurations. Indeed we can find doing
the simple expansion inm that the term right after the first
term (of value one) is

Veffsuz− z8ud = Sm

2
D2E d2k

s2pd2 expfikWsrW − rW8dg

−
2p

ukWu2

1 +
2pbm2

ukWu2
r

,

s7d

sr=1/2pmd, which represents an effective screened interac-
tion between two impurities and extract to mimic Eq.(6),
contributions of disconnectedVeffsuz−z8ud parts that follow so
that for the final expression we get

Zsz,z8d
Zsz,zd

= exphVeffsuz− z8udj. s8d

Therefore we can conclude that in calculatingGBsz,z8d we
have to exponentiate the value of the diagram shown in Fig.
2, and get, due to the screening, the famous algebraic decay.

Similarly, applying the same type of approximation we
can get in the CF case

GFsz,z8d , GF
osz,z8dexpHSm

2
D2E d2k

s2pd2S2pb

ukWu2

−
2pb

ukWu2 + 2pbm2so
f skd

DexpfikWsrW − rW8dgJ , s9d

where (the screening bubble is proportional to the static
structure factor of free fermions and) GF

osz,z8d

FIG. 1. Effective screened interaction.

FIG. 2. Effective diagram contribution.
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=oukWu,kF
eikWsrW−rW8d is the equal-time correlator of free Fermi gas.

To fix the normalization we demand that the total number of
CFs is the same as of noninteracting particles so that

o
kW
E d2rGf

osrWde−ikWrW = N = o
kW
E d2rGFsrWde−ikWrW, s10d

andGF
os0d=GFs0d follows. Therefore,

GFsz,z8d = GF
osz,z8dexpFSm

2
D2E d2k

s2pd2S2pb

ukWu2

−
2pb

ukWu2 + 2pbm2so
f skd

DhexpfikWsrW − rW8dg − 1jG .

s11d

And indeed by takingnk=ee−ikWrWGFsrWd and considering the
first nontrivial contribution in the expansion of the exponen-
tial in Eq. (11) we get

dnk = Sm

2
D2E d2q

s2pd2S2pb

uqW u2
−

2pb

uqW u2 + 2pbm2so
f sqdDfn

kW−qW
o s1

− nk
od − nk

os1 − n
kW−qW
o dg, s12d

exactly the same expression as Eq.(86) of Ref. 8. Once we
specify thatk is nearkF, assume a flat Fermi surface and
neglect the contribution of the(weakly) screened interaction
in Eq. (12) we can get, as in Ref. 8, the leading singularity in
nk given by Eq.(2).

But unfortunately after a suitable regrouping of free-
Fermi-gas occupation numbers we can prove that the second
nontrivial contribution in the expansion of the exponential
(with the neglect of the screened interaction) is equal to zero.
That does not mean that the conjectured contribution[Eq.
(3)] is absent. Here, we have very likely the situation that
due to the nonanalytic nature of the attempted expansion in
the CF case we cannot generate corrections to the terms lin-
ear in m. That conclusion supports also the finding13 that
when the same expansion was applied in the calculation of
the static structure factor of the CF state a first correction to
the RPA result could not be generated although it was ex-
pected on the grounds that the correction would have made
the infered LLL-projected static structure factor positive
definite what by its definition it should be.

Therefore, very likely the exponential prescription[used
to get Eq.(3)] is a valid one although there is no straightfor-
ward expansion to prove it. Once we accept the prescription
we are left to wonder where is the expected nonanalyticity at
n=1/m, m/2=odd integer[see Eq.(3) for that case]. A trace
of the real Fermi-surface nonanalyticity atm/2
=odd integermay be seen in the expansion only if we take
into account the screened interaction(second part) in Eq.
(12). As an effective contribution from this part we have

dnk =
1

2pmso
fudkulnudkunoskd − f1 − noskdgudkulnudkug,

s13d

whereso= 3
4kF /p2. If we apply the exponential prescription

again, taking also into account this second contribution, we
have, with 1/2pmso;c and, form/2=1, for thecontribution
in the vicinity of kF:

nk =
1

2
+

1

2
fudkuexphcudkulnudkujnoskd − f1 − noskdg

3udkuexphcudkulnudkujg. s14d

Here a(weak) nonanalyticity is retained. Namely, in Eq.(14)
we have singular (at kF) the second derivative of
udkuexphcudkulnudkuj with respect toudku. Therefore, a trace of
the Fermi surface atn=1/m, m/2=1, is present because of
the found nonanalytic behavior.(Such a behavior exists also
for m/2=odd.1 but is weaker having singular higher de-
rivatives.)

In the following we will give an example where afore-
mentioned mechanism for getting the Fermi surface(nonana-
lyticity ) does not work due to strong correlations of the CFs
with other particles of the system. This is the case of the
mixed CB–CF quantum Hall states proposed in Ref. 5 to
describe the evolution of the bilayern=1 QH system with
distance between layers.

If we neglect the LLL projection again and assume that
for our purposes we can also neglect the overall antisymme-
trization between CB and CF parts that makes the mixed
state completely antisymmetric and an electronic wave func-
tion, we can write it in the quasiparticle representation as

Cosz↑,z↓,w↑,w↓d

= Pi, juzi↑ − zj↑unPk,luzk↓ − zl↓unPp,quzp↑ − zq↓un

Pi,juzi↑ − wj↑unPk,luzk↑ − wl↓unPp,quzp↓ − wq↑unPr,suzr↓ − ws↓un

Pi, juwi↑ − wj↑umCFSshw↑jdPk,luwk↓ − wl↓umCFSshw↓jd,

s15d

wherez↑ andz↓ denote CB coordinates andw↑ andw↓ denote
CF coordinates with arrows specifying to which layer quasi-
particles belong. The total numbers of bosons are equal as
well the total numbers of fermions, andn=m/2
=odd integer.

We would like to find out(the asymptotic behavior of) the
equal-time correlator of a CF(belonging to one of the lay-
ers). It is not hard to conclude that in this case with assump-
tions similar to the ones done in the single-layer case, we get
GFsw,w8d by simply taking for the value of the “polariza-
tion” bubble:

bm2so
f skd + bn2rb, s16d

instead ofbm2so
f skd only in Eq. (11), whererb denotes the

total (up plus down) density of bosons and inso
f skd we have

to takekF=Î4pr f wherer f is the density of fermions of one
layer only. In this case we work with a completely screened
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interaction between the two impurities which does not pro-
duce nonanalytic contributions.

Therefore we find that at the total fillings of bilayer at
which we can expect Bose–Fermi mixed states,n=2/m; m
=2,6, . . . thenaively expected Fermi surface(s) cannot exist
due to our analysis. This outcome reminds us of the similar
disappearance of the small(naively) expected Fermi momen-
tum in the Kondo lattice systems15,16 due to the Luttinger
theorem.17 In the case considered in this paper we do not
know for sure if we deal with(overall) Fermi-liquid-like

states and a complete analogy(in which CBs and CFs play
the roles of of localized spin 1/2 local moments and conduc-
tion electrons, respectively) is still missing. Further insights
into the physics of the mixed states are necessary.
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