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We calculate the dispersion of the out-of-phase mode characteristic for the bilayern=1 quantum Hall system
applying the version of Chern-Simons theory of Murthy and Shankar that cures the unwanted bare electron
mass dependence in the low-energy description of quantum Hall systems. The obtained value for the mode
whend, distance between the layers, is zero is in a good agreement with the existing pseudospin picture of the
system. Ford nonzero but small we find that the mode is linearly dispersing and its velocity to a good
approximation depends linearly ond. This is in agreement with the Hartree-Fock calculations of the pseu-
dospin picture that predicts a linear dependence ond, and contrary to the naive Hartree predictions with
dependence on the square root ofd. We set up a formalism that enables one to consider fluctuations around the
found stationary point values. In addition we address the case of imbalanced layers in the Murthy-Shankar
formalism.
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A major problem surfaced in the early Chern-SimonssCSd
composite boson description1 of n=1 quantum bilayer.
Namely, a bare electron mass appeared in the Bogoliubov
out-of-phase gapless mode dispersion, which is unwanted
due to the expectation that the leading description of any
intra-Landau-level collective mode depends solely on inter-
actions. The same requirement applies for the description of
any quasiparticles that may exist in the lowest Landau level,
namely their mass should stem from interactions.2 Murthy
and Shankar3,4 put forward an extended CS theory that was
able to prescribe such a mass for composite particles. The
theory underwent major additions and improvementssin-
cluding an extension to higher momentad,5 but in this paper
we will use the early version4 best suited for our needs, i.e.,
the calculation of the dispersion relation of the out-of-phase
mode in a small-momentum, low-energy window.

On the other hand, what is believed to be the first calcu-
lation of the dispersion of the gapless mode in the scope of
the pseudospin picturesin which an electron can be in states
that are superpositions of localized layer statesd was done by
Fertig.6. He obtained an interaction-dependent velocity of a
linearly dispersing mode whend is nonzero and a spin wave
quadratic dispersion with interaction-dependent spin stiffness
whend is zero. The problem atd=0 was again addressed in
Ref. 7 where a quantum ferromagnet picture for this case
was established. Then followed the pseudospin picture of
Ref. 8, a standard reference for the bilayern=1 problem, in
which small-momentum dispersion of the gapless mode was
in agreement with Fertig’s.

Our Hamiltonian is

H = o
i,s

upW i,s + eAW srWi,sdu2

2m
+ VE + VA, s1d

whereAW is the vector potential of the constant external mag-
netic field −B0eWz, so that the average total density isn
=n /2plB

2 with n=1/s2s+1d, s=0,1, . . . sfor generalityd, and
lB=1/ÎeB0 is the magnetic length. We takelB=1 and"=1. m
is the “bare” electron mass, which is precisely the effective

mass of electron in GaAs.VA and VE denote intralayer and
interlayer interactions, respectively.s= ↑ ,↓ is the layer in-
dex.

What follows is a brief account of a simple generalization
of the Murthy and Shankar CS theory extended to the case of
the bilayer. Missing details and explanations that are relevant
also to the single-layer case can be found in Refs. 3–5. As
usual in the CS theory we make the unitary transformation,9

U = expHis2s+ 1do
i, j

Fi jJ , s2d

whereFi j is the phase of the difference,zi −zj, of any two
coordinateszi andzj. Therefore, we emphasize the transfor-
mation is the same, irrespective of the layer indices. The
corresponding Hamiltonian is

HCS= U−1HU = o
i,s

upW i,s + eAW srWi,sd + aWCSu2

2m
+ VE + VA,

s3d

where the new “gauge” field satisfies the following connec-
tion with the total density,rsrd:

¹W 3 aWCS= 2ps2s+ 1drsrdeWz. s4d

Then we consider averaged and fluctuating values ofaWCS and
r,9 rewriting Eq.s4d as

¹W 3 kaWCSl + ¹W 3 :aWCSª 2ps2s+ 1dn + 2ps2s+ 1d:r:

s5d

so that equivalently, due to the cancellation of the external
and averaged CS field, we can rewrite Eq.s3d as

HCS= o
i,s

upW i,s + :aWCS:u2

2m
+ VE + VA. s6d

Now Shankar and Murthy,3,4 analogously to what Bohm
and Pines10 did in the case of a three-dimensionals3Dd Cou-
lomb gas, introduce magnetoplasmon degrees of freedom as
separate and elementary but necessarily satisfying certain
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constraints with particle degrees of freedom in order to avoid
overcounting. They do this by introducing a pair of conjugate
fields,asqWd andPsqWd, for eachqW in a disk in the momentum
space,

fasqWd,PsqW8dg = is2pd2dsqW + qW8d s7d

freminding ussfor fixed qWd of the harmonic oscillator com-
mutation relation insx,pd representationg and further, defin-

ing a longitudinal and a transverse field,PW sqWd and aWsqWd, re-
spectively, as

PW sqWd = iq̂PsqWd and aWsqWd = − ieWz 3 q̂asqWd. s8d

They rewrite the Hamiltoniansdensityd as

H =
1

2m
o
s

CCS,s
† s− i¹W + :aWCS: + aWd2CCS,s + ṼA + ṼE, s9d

in the second-quantized language, with the requirementscon-
straintd that

asqWduphysical statel = 0, s10d

for eachqW such thatuqW u,Q whereQ is the radius of the disk.
Now it is convenient to eliminate:aWCS: in favor of a andP,
and Shankar and Murthy do that3 applying the following
unitary transformation,

U = expHi o
uqW u,Q

Ps− qWd
2ps2s+ 1d

q
rsqWdJ , s11d

wherersqWd=r↑sqWd+r↓sqWd, i.e., the total charge density. Now
for the Hamiltonian density we have

H = o
s

1

2m
Ckb,s

† f− i¹W + aW + 2ps2s+ 1dPW + daWg2Ckb,s

+ ṼA + ṼE, s12d

whereCkb,s’s denote the transformed fields, which describe
modified, transformed quasiparticles, anddaW is the remnant
of the CS field left uncanceled foruqW u.Q. The constraint
gets the following form:

FasqWd −
2ps2s+ 1d

q
rsqWdGuphysical statel = 0 for uqW u , Q.

s13d

Neglecting3 daW from the start and introducing3

AsqWd =
asqWd + i2ps2s+ 1dPsqWd

Î4ps2s+ 1d
s14d

and

csqWd = q̂−o
j ,s

pW j ,s+ exph− iqW · rW j ,sj, s15d

whereV±=Vx± iVy for an arbitrary vectorVW =Vxêx+Vyêy, we
can rewrite our Hamiltonian as

H = o
i,s

pW i,s
2

2m
+ o

uqW u,Q

vcA
†sqWdAsqWd

+Îps2s+ 1d
m

o
uqW u,Q

fcsqWdA†sqWd + c†sqWdAsqWdg + VA + VE.

s16d

As expectedvc=eB0/m, i.e., equal to the cyclotron fre-
quency and in deriving the magnetoplasmon term we ne-
glected also total density fluctuations.4

Our quasiparticles are bosons and again for the sake of
completeness and easy reference we give brief account of the
so-called final representation in the Murthy-Shankar ap-
proach applied to the case of two species of composite
bosons. First Murthy and Shankar always approximate as

o
i,s

exphisqW − kWd · rWij < ns2pd2d2sqW − kWd s17d

in the long-wavelength approximation so that also in this
bosonic representation we consistently have

fcsqWd,c†sqW8dg < 0. s18d

To decouple the oscillators and particles they apply the fol-
lowing canonical transformation,

Usl0d = exphiS0l0j

= expHl0u o
uqW u,Q

fc†sqWdAsqWd − A†sqWdcsqWdgJ , s19d

where

u =
1

Î4ps2s+ 1dn
, s20d

and the parameterl0 should be determined. As we have new
variablesV defined through

Vold = exph− iS0l0jV exphiS0l0j, s21d

Murthy and Shankar also define

Vsld = exph− iS0ljV exphiS0lj, s22d

so that in this case we have

AsqW,ld = AsqWd − ulcsqWd,

csqW,ld = csqWd, uqW u , Q. s23d

It is easy to check thatl0=1 does the job of decoupling and
now we concentrate how variablesrs

oldsqWd, s= ↑ ,↓ are con-
nected with new ones. We use their definitionsrs

oldsqWd
=oi exphiqW ·rWi,sj, s= ↑ ,↓ apply Eqs. s21d and s22d, find
drssqW ,ld /dl, and integrate overl to get
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rs
oldsqWd = rssqWd +

q
Î4ps2s+ 1d

ns

n
FfAsqWd + A†s− qWdg

−
u

2
fcsqWd + c†s− qWdgG . s24d

Immediately we can conclude that the spin densityrs
oldsqWd

=r↑
oldsqWd−r↓

oldsqWd is invariant,

rs
oldsqWd = rssqWd, s25d

under the transformation of the final representationfEq.
s19dg, when we assume that we have the same fixed number
of particles,n↑=n↓=n/2, in each layer. This is our main
claim in the Murthy-Shankar formalism for the bilayer sys-
tem.

The analysis for the charge density and the form of the
constraint in new variables proceeds as in Refs. 3 and 4 and
finally for the form we get

rsqWd = −
i

2o
j ,s

sqW 3 pW j ,sdexph− iqW · rW j ,sj. s26d

In a few lines but also using an assumption that we deal with
an infinite systemswithout boundaryd we can prove that, in
the second-quantized language, the constraint is

E drW exph− iqW · rWjrsrWd

=
i

2
E drW exph− iqW · rWjo

s

f¹W 3 Cs
†srWd¹W CssrWdg s27d

for uqW u,Q and as a shorthand notation we useCkb,s;Cs

also in the following. The proof starts by expressing the
single-particle operator,

o
j ,s

sqW 3 ¹W jdexph− iqW · rW jj, s28d

in the second-quantized language as

o
s
E drWCs

†srWdsqW 3 ¹W dexph− iqW · rWjCssrWd, s29d

then followed by simple regroupings and the neglect of a
surface term. So we find that in the long-wavelength ap-
proximation we use, the charge density fluctuations exist
only if there are vortex excitations in the system.fThe charge
density on the right-hand sidesrhsd of Eq. s27d is propotional
to the vortex densities of the two kinds of fields. Strictly
speaking the vortex density is defined only by the phase part
of a bosonic field, but in the small-momentum limit we will
neglect the difference. Later a relaxation of the constraint
and thereby generation of terms quadratic in momenta will
be justified by this difference.g If our system is a stable 2D
Bose system that would mean that we have the case for in-
compressibility, because to excite a vortex a finite energy is
needed so all charge fluctuations are supressed. But do we
have a stable system? We have to get back to the Hamil-
tonian expressed in new variables. The Hamiltonian is

H = o
i=1,s

pW i
2

2m
−

1

2mn
o

i,s,j ,s8
o

uqW u,Q

pW i,s− exph− iqW · srWi − rW jdj

3pW j ,s8+ + vc o
uqW u,Q

A†sqWdAsqWd + VE + VA. s30d

To eliminate the bare electron mass in the kinetic energy and
low-energy description we choose, as in Refs. 3 and 4, that
the number of the oscillators is the same as the number of
particles, so that the diagonal partsi = j , s=s8d of the second
term in Eq.s30d exactly cancels the first kinetic energy term.
The bare mass is still present in the off-diagonal part of the
second term, and if we decompose theq sum as3,4

o
uqW u,Q

exph− iqW · srWi − rW jdj

= d2srWi − rW jd − o
uqW u.Q

exph− iqW · srWi − rW jdj, s31d

we are left with ad-function interaction among particles and
another short-range interaction that may be grouped4 with
previously neglected short-range pieces. We are assuming all
along that the same kindslayerd of bosonsstransformed elec-
tronsd behave as hard core bosons, so fors=s8 we see that
the d function is ineffective. To eliminate the bare mass in
the d-function interaction between the opposite kind bosons
we require that they also behave mutually as hard core
bosons. As we will see, this additional requirementsnot due
to the fermionic statisticsd will be very important in the deri-
vation of the low-lying spectrum.

Therefore, as a result of the transformations made, our
Hamiltonian has a free oscillator and Coulomb interaction
part only. The interaction part in the old variables with the
introduced cutoff is

V ; VA + VE =
1

2 o
s,uqW u,Q

rs
olds− qWdVAsqWdrs

oldsqWd

+
1

2 o
s,uqW u,Q

rs
olds− qWdVEsqWdr−s

oldsqWd, s32d

with VAsqWd=2pe2/ uqW u and VEsqWd=s2pe2/ uqW udexph−duqW uj,
whered is the distance between layers. If we introduce

VcsqWd = VAsqWd + VEsqWd and VssqWd = VAsqWd − VEsqWd,

s33d

and

rc
oldsqWd = r↑

oldsqWd + r↓
oldsqWd and rs

oldsqWd = r↑
oldsqWd − r↓

oldsqWd,

s34d

we can rewrite Eq.s32d as

V = o
uqW u,Q

1

4
rc

olds− qWdVcsqWdrc
oldsqWd

+ o
uqW u,Q

1

4
rs

olds− qWdVssqWdrs
oldsqWd. s35d

To get the expression in new variables forrc
oldsqWd we should
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compare Eq.s24d, Eq. s26d, and Eq.s15d and find

rc
oldsqWd =

q
Î4ps2s+ 1d

fAsqWd + A†sqWdg

− io
j ,s

sqW 3 pW j ,sdexph− iqW · rW j ,sj s36d

and also, as we already found out, we have

rs
oldsqWd = rssqWd. s37d

Further decoupling of the oscillators and particles inV would
amount to higher-order corrections to the expressions
found3,4 and we can safely neglect the presence of oscillators
sterms withA’sd in Eq. s36d when discussing the low-energy
excitations. Then the charge partfthe first term in Eq.s35dg
can be decomposed into a diagonal and off-diagonal part.
The diagonal part can be rewritten as

o
j ,s

upW j ,su2

2mc
, s38d

i.e., as a kinetic term of particles with massmc, where

1

mc
= o

uqW u,Q

VcsqWd
2

q2 sin2 uqW,pW j ,s
s39d

Therefore we came to a description of the system in terms of
quasiparticles with a mass that is due to interactions. These
are the expected bosonic dipole objects2,4 with interaction
among them described by the off-diagonal part. As overall
neutral objects they should make Bose condensatessd in the
ground state and we proceed by taking the Bogoliubov ex-
pansion of the quasiparticle operatorsCs ,s= ↑ ,↓ in the
second-quantized language as

C↑ =În0

2
+ h↑ and C↓ =În0

2
+ h↓, s40d

where operatorshs ,s= ↑ ,↓ describe the small fluctuations
around the mean field value,În0/2, wheren0 is the density
of particles in each condensate. We also introduce

hc =
h↑ + h↓

Î2
and hs =

h↑ − h↓
Î2

, s41d

new fields that, as we will find out soon, are appropriate for
the low-energy description of the system.

In terms of the new variables, the constraint is, effec-
tively,

C↑
†C↑ + C↓

†C↓ − n = n0 − n + În0shc
† + hcd + hc

†hc + hs
†hs = 0.

s42d

Please note that the equality here should be understood as the
equality of the Fourier transforms of lhs and rhs forqW small.
It is also important to notice that although the constraint

effectively is rc
oldsqWd=0 for qW Þ0W in the low-energy sector

and constrains the first term in Eq.s35d to vanish, the under-
lying canonical variableshc and hs may assume nonzero
values. To find them, especiallyhs in which we are mostly
interested, we do the following decoupling. Due to the small-

ness ofhc andhs the constraint may be rewritten as

hc
†sqWd + hcs− qWd < 0 s43d

so that fields may effectively decouple, satisfying the con-
straint only approximately. As a result, from the first part in
Eq. s35d, by relaxing the constraint, we get a kinetic term for
hs. There are no other contributions to the second order in
hs. From the first part of Eq.s42d and in the spirit of the
Bogoliubov expansion we may conclude thathc is the field
that couples to the external electromagnetic potential. In our
decoupling ansatzhc is only very weakly coupled. This co-
incides with the physical picture that we have for bosonic
dipoles thatsas dipolesd they weakly interact with external
field and therefore as a system are incompressible.4

Applying the Bogoliubov expansion again, and neglecting
the difference betweenn0 andn,

rs ; C↑
†C↑ − C↓

†C↓ < Înshs
† + hsd, s44d

we are led to the following Hamiltonian forhs fields,

Hs = o
qW

uqW u2

2mc
hs

†sqWdhssqWd +
n

4o
qW

fhss− qWd + hs
†sqWdg

3VssqdfhssqWd + hs
†s− qWdg. s45d

As before the hard core boson constraint makes theVss0d
=2pe2d part of the interaction ineffective but leaves us with
Hs that describes an unstable system. Therefore we must
impose separately the hard core constraint of composite
bosons on fieldshs. That amounts locally to the following
requirement,

rs
2srd = C↑

†C↑ + C↓
†C↓, s46d

where we used the hard boson propertiesCs
†CsCs

†Cs

=Cs
†Cs ,s=↑ and ↓, and Cs

†CsC−s
† C−s=0. Using the Bo-

goliubov expansion, Eq.s44d, again this becomes

nfhs
†srd + hssrdg2 = n s47d

that has to be imposed onhs fields. Note that here we also
used the incompressibility property of the system in the low-
energy region for the charge degrees of freedom, on the rhs
irrespective of the length scalefEq. s42d Fourier transformed
for any qWg. We had to make this assumption because we are
incorporating a piece of short-range physics into the long-
wavelength description. Please also note that this is an op-
erator identity, where the automatic neglect of the quadratic
terms on the lhs of the equation, in the Bogoliubov expan-
sion, is not allowed.

The constraint we handle in the usual way, switching to
the Lagrangian formulation with fieldshs,hs

† and a fieldl
that enforces the constraint.11 The generating functional is

Z =E DhsE Dhs
†E Dl expH−E

0

b

dtE d2x„hs
†]ths

+ Hssxd + hfhssxd + hs
†sxdg2 − 1jilsx,td…J , s48d

where
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HssxW,td =
1

2mc
¹W hs

† ·¹W hs +
n

4
E d2yWfhssxd + hs

†sxdgVssxW − yWd

3fhssyd + hs
†sydg. s49d

The constraint approximately commutes with the Hamil-
tonian in the long-wavelength limitsusing this property we
combined contributions into a single exponentiald, and so we
will take l, t simaginary timed to be independent. Also, at
the mean-field level, we are allowed to assume thatl is
space independent.

Introducing Bogoliubov transformations onhssqW ,td fields,

hssqW,td = asqWdexphivqtjcoshuqW + a†s− qWdexph− ivqtjsinhuqW

s50d

fwhereasqWd anda†sqWd are new canonical fieldsg, we get after
standard transformations that diagonalize the problemssee
also Ref. 12d, the following mean-field expression forZ:

Zmf =E dlp
qW

1

1 − exph− besqW,ldj
exph− bE0sldj,

s51d

where

esqW,ld = Îseq
cd2 + fnVssqd + 4ilgeq

c, s52d

with eq
c=q2/2mc, and the domain ofqW ’s is again the disk with

radiusQ. Also

E0sld =
1

2o
q

fesqW,ld − eqW
cg − ilo

q

s53d

with theq summations where the cutoffQ is understood. The
esqW ,ld’s are the usual Bogoliubov energies, the results of the
Bogoliubov transformation, now requiring also a suitablel
to get the final expression for the mode dispersion we are
looking for. We approximatel in the saddle point approach
ssee, for example, Ref. 13d searching for a stationary point of
FsT,ld, from the following expression forZmf,

Zmf =E dl exph− bFsT,ldj, s54d

i.e., look for the solution of

]FsT,ld
]l

= 0, s55d

which effectively becomes

]E0sld
]l

= 0, s56d

in the T→0 limit.
We solved the equation numerically finding only solutions

l0 with il0 real and positivestherefore, as usual,13 we found
a path and a saddle point in the complexl planed, and results
are depicted in Fig. 1. In Fig. 1 we also plotted the Hartree-
Fock result of Ref. 8, and the same reference exact diagonal-
ization results atd=0.5lB andd=1lB. To a good approxima-
tion we can claim a linear dependence for smalld of the

Bogoliubov velocity though with the values significantly re-
duced from the Hartree-Fock results. But atd=0.5lB all three
data points are very close to each other. For larger values of
d, d,1lB and larger, both approximation schemes fail to
capture the quantum fluctuations that increase withd.8

The result foresqd, the dispersion of the out-of-phase
mode in thed=0 case,

esqd = eq
c =

q2

2mc
, s57d

is fairly close to the estimate of Ref. 8 and 7. Namelyesqd
=e2lB

1
6
Î2q2, while the Hartree-Fock result is

e2lBsÎp /8dÎ2q2. It is interesting to note that if we use the
expression formc conjectured in the generalized theory3,5

that includes higher-momentum physics, we exactly get the
Hartree-Fock result.

It is also interesting to speculate about the discrepancy
between our and the Hartree-Fock result for smalld. Part of
it might be due to our low-energy, low-momentum limited
approach, but it might also well be due to the incompletness
of the underlying analogy6,14 of the dÞ0 system description
compared to the one of a repulsively interacting Bose gas.
sThe analogy of thed=0 case to an ideal Bose gas is com-
plete, as we found out.d The incompletness might follow
from the modifications of the composite-boson picture due to
the presence of composite fermions as proposed in Ref. 15.
The composite fermions come into relevance very soon asd
acquires a nonzero value, and their number rapidly increases
with d.15 If we are allowed to view bosons and fermions to a
first approximation as weakly interacting through a short-
range interactionsmore precisely here interacting are differ-
ences between up and down bosons and fermions, respec-
tivelyd we can borrow considerations applied to the Bose-
Fermi mixtures in optical traps; see, for example, Refs. 16
and 17. When we have a small number of fermions the
Bogoliubov mode can, in fact, enhance its valueson the

FIG. 1. The stationary point values for the velocity of the out-
of-phase modessd, the values from the pseudospin theory in the
Hartree-Fock approximation from Ref. 8snd, and exact diagonal-
ization resultss!d from Ref. 8.
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other hand, decreased and damping follows when fermions
proliferate. In that sense we can expect that by considering
fluctuations around our mean field solutionswhich maps the
problem to an interacting Bose gas with a Bogoliubov
moded, the value of the Bogoliubov velocity may increase
for smalld, stay almost the same for intermediate values, and
decrease and even acquire damping for larged. In this sense
here we have set up a formalism necessary to check these
considerations in a future work.

It is important to address the case when we do not have
the same density of particles in the up and down layer.18,19

Then in general we have, instead of Eq.s25d,

rs
old = rs − sn↑ − n↓d

i

2o
j ,s

sqW 3 pW j ,sdexph− iqW · rW j ,sj, s58d

when, as before, we neglected the magnetoplasmon part.fn↑
andn↓ sn↑+n↓=1d are the filling factors of each layer sepa-
rately.g For rs ,s= ↑ ,↓ in rs=r↑−r↓ we assume the follow-
ing form:

rs = −
i

2o
j

sqW 3 pW j ,sdexph− iqW · rW j ,sj

+ Co
j

sqW · pW j ,sdexph− iqW · rW j ,sj. s59d

The second part is the longitudinal component of the para-
magnetic current, and the term should appear, in general,
when compressible low-lying degrees of freedom are
present. IfC in Eq. s59d is the same for both layers thenrc

=r↑+r↓, because the total component of the current is zero
in the charge channel due to its incompressible nature. Sub-
stituting Eq.s58d with Eq. s59d in the projected Hamiltonian
fEq. s35dg and collecting all diagonal terms of the dipole
expansion, we get

1

mdn

= o
uqW u,Q

q2 sin2suqW,pW j ,s
dHVc

2
−

Vs

2
Sn↑ − n↓

2
D2J1

4
S 1

n↑
+

1

n↓
D ,

s60d

as a generalization of Eq.s39d to the case of imbalanced
layers. This is the mass of thehs field defined ashs

=În↑h↑−În↓h↓. So we assumed that we can apply the Bo-
goliubov theory and with neglect of some residual dipole-
dipole interaction in the pseudospin channel, our problem
reduces to the one expressed in Eq.s48d and s49d in which
instead of the massmc, we havemdn. The assumption is
based on the expectation that the pseudospin channel is com-
pressible. For not largeun↑−n↓u;dn, the velocity of the
Bogoliubov mode decreases quadratically withdn as a con-
sequence of Eq.s60d, in agreement with Ref. 20. A more
detailed investigation of the influence of the dipole-dipole
interaction is needed for generaldn.

We would like to address also the case of huge imbalance,
when we take, for example,n↑@n↓.21 As n↓→0, 1/mdn

→`, andhs=În↑h↑−În↓h↓<h↑, which probably signals the
incompressible physics of the↑ layer. Therefore, to find out
more about the physics of↓ quasiparticles, we must go back

to the beginning formulation, and apply a different decom-
position. Namely we will takesin the limit n↑@n↓d

rs
old < rc

old − 2r↓ = − io
j ,s

sqW 3 pW j ,sdexph− iqW · rW j ,sj − 2r↓.

s61d

It is easy to see that the first term in Eq.s61d would lead to
the effective mass for all quasiparticles, in the first approxi-
mation, equivalent to what we would have if there was only
one single layer withn=1. Next considering the cross term,

o
q,Q

2f− 2r↓s− qdg
Vs

4
rc

oldsqd, s62d

and taking the expression in Eq.s59d for r↓, we get from Eq.
s62d for the ↓ quasiparticle mass,

1

me
= o

q,Q

VEsqWdq2 sin2 uqW,pW j ,s
. s63d

Because of the incompressible↑ background we can neglect
↑ and↓ cross terms. If we again also assume irrelevance of
the remaining↓ dipole-dipole interactionssfor the low-
momentum physicsd, our effective Hamiltonian for↓ quasi-
particles is

He = o
q,Q

1

2me
C↓

†pW2C↓ + o
q,Q

r↓
2Vssqd

2
r↓. s64d

In Ref. 21 a physical picture of a Bose gas of excitons and
dipoles with densityn↓ was developed for the casen↑@n↓.
The massme we derived is the result of the low-momentum
theory. As in thed=0, n↑=n↓ case we expect that in the
generalized theory3,5 the cutoff in Eq.s63d would be replaced
by a Gaussian in the momentum space and the expression
would coincide with the one in Ref. 21. In this sense with the
asumption made, also in this case due to the comparison to
Ref. 21, we can claim a complete analogy to a weakly inter-
acting Bose gas ind→0 limit.

References 6, 8, and 22 and Ref. 23swhen not consider-
ing spiral statesd agree on the dependence of the Bogoliubov
velocity sin the n↑=n↓ cased. Possible additions of quantum
fluctuations to this value can be extracted from Ref. 24.
There, due to the justified assumption of the suppression of
charge fluctuations; a Schwinger boson mean field theory
was used with the requirement on the single occupancy of
the Schwinger boson in a lowest-Landau-level basis. In this
work we were primarily concerned with the establishment of
the concept of a composite boson, and we only set up the
stage for considering fluctuations beyond generalized CS
mean-field theory that is based on this concept.sA
composite-boson approach may prove useful for the study of
quantum phase transitions in the bilayer,15,25 and building of
the physical picture of the bilayer in analogy with the picture
based on composite fermions in the single layer.d Our mean-
field theory and the usual theory do not agree somewhat,
although they agree to a much better degree than the usual
CS theory1,26 slinear dependence on smalld and the absence
of the bare massd. Inclusion of the fluctuations in our hard-
core sbelonging to different layerd CS boson model that is
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probably related to the model with the single occupancy of
Schwinger bosons and comparison to Ref. 24 are planned for
future work. It would be important to probe the significance
of the fluctuations aroundd, lB. Any strong instability of the
Bogoliubov mode velocity would signal, in the composite-
boson–composite-fermion modelssee above and Ref. 15d,
the phase separation of the two fluids27 and the proposed
first-order transition.28,29 Then, from the composite-boson

point of view, we would be able to address in more detail the
extraordinary experiments done on the bilayer.30,31
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