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Composite bosons in bilayerr=1 system: An application of the Murthy-Shankar formalism
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We calculate the dispersion of the out-of-phase mode characteristic for the bikyeuantum Hall system
applying the version of Chern-Simons theory of Murthy and Shankar that cures the unwanted bare electron
mass dependence in the low-energy description of quantum Hall systems. The obtained value for the mode
whend, distance between the layers, is zero is in a good agreement with the existing pseudospin picture of the
system. Ford nonzero but small we find that the mode is linearly dispersing and its velocity to a good
approximation depends linearly ah This is in agreement with the Hartree-Fock calculations of the pseu-
dospin picture that predicts a linear dependencedpand contrary to the naive Hartree predictions with
dependence on the square rootofVe set up a formalism that enables one to consider fluctuations around the
found stationary point values. In addition we address the case of imbalanced layers in the Murthy-Shankar
formalism.
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A major problem surfaced in the early Chern-Sim6@s) mass of electron in GaA3/, and Vg denote intralayer and
composite boson descriptibnof v=1 quantum bilayer. interlayer interactions, respectively=1,] is the layer in-
Namely, a bare electron mass appeared in the Bogoliubosex.
out-of-phase gapless mode dispersion, which is unwanted What follows is a brief account of a simple generalization
due to the expectation that the leading description of anyf the Murthy and Shankar CS theory extended to the case of
intra-Landau-level collective mode depends solely on interthe bilayer. Missing details and explanations that are relevant
actions. The same requirement applies for the description adlso to the single-layer case can be found in Refs. 3-5. As
any quasiparticles that may exist in the lowest Landau levelysual in the CS theory we make the unitary transformation,
namely their mass should stem from interactiérdurthy )
and Shankar* put forward an extended CS theory that was U= exp[|(23+ 1)2 q)ii}’ (2)
able to prescribe such a mass for composite particles. The =<
theory underwent major additions and improvemefits  where ®;; is the phase of the difference,-z, of any two
cluding an extension to higher momepitebut in this paper  coordinates; andz. Therefore, we emphasize the transfor-
we will use the early versidrbest suited for our needs, i.e., mation is the same, irrespective of the layer indices. The
the calculation of the dispersion relation of the out-of-phaseorresponding Hamiltonian is
mode in a small-momentum, low-energy window. .

On the other hand, what is believed to be the first calcu- o PigteAr ) + acd?
lation of the dispersion of the gapless mode in the scope of Hes=UHU = > om
the pseudospin pictur@n which an electron can be in states
that are superpositions of localized layer stateas done by 3
Fertig®. He obtained an interaction-dependent velocity of ayhere the new “gauge” field satisfies the following connec-
linearly Q|sper3|ng mode \_Nheuhls nonzero and a Spin wave jon with the total densityp(r):
quadratic dispersion with interaction-dependent spin stiffness
whend is zero. The problem at=0 was again addresspd in V X dcs= 2m(2s+ 1)p(r)E,. (4)
Ref. 7 where a quantum ferromagnet picture for this case ] . .
was established. Then followed the pseudospin picture of hen we consider averaged and fluctuating valuezgnd
Ref. 8, a standard reference for the bilayerl problem, in  p,° rewriting Eq.(4) as
which small-momentum dispersion of the gapless mode was
in agreement with Fertig’s.

+VE+VA1

i,o

Vv x (8cg + V x ‘dcgi= 2m(2s+ 1)n+ 27w(2s+ 1):p:

Our Hamiltonian is (5)
P A P so that equivalently, due to the cancellation of the external
- 0’+ e r: o . .
H=3 P, Ll Ve + (1) and averaged CS field, we can rewrite E3). as
o 2m B + :dcs]?
) Hes=2 5 = +Ve+Va, (6)
whereA is the vector potential of the constant external mag- ho
netic field -Bye, so that the average total density ms Now Shankar and Murth¥* analogously to what Bohm

:V/27T|/é_VVith v=1/(2s+1), s=0,1,...(for generality, and  and Pine¥ did in the case of a three-dimensioriaD) Cou-
lg=1/veB, is the magnetic length. We takg=1 andA=1.m  lomb gas, introduce magnetoplasmon degrees of freedom as
is the “bare” electron mass, which is precisely the effectiveseparate and elementary but necessarily satisfying certain
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constraints with particle degrees of freedom in order to avoid ﬁiza t =
overcounting. They do this by introducing a pair of conjugate H = > % + 2 o A(GAG)

fields, a(g) and P(q), for eachq in a disk in the momentum
space,
[a(d),P(§")]=i(2m)*8G+d") (7)

[reminding us(for fixed g) of the harmonic oscillator com-
mutation relation in(x, p) representatiopand further, defin-

ing a longitudinal and a transverse fielélcﬁ) anda(q), re-
spectively, as

P(d) =iGP(d) and &(§) =-ié, X Ga(d). (8)

They rewrite the Hamiltoniafdensity as
1 - ~ o~
H =52 Whs, (- 1V + ies + @™ Wes, + Va+ Ve, (9)

in the second-quantized language, with the requirerfeam-
straind that

a(g)|physical statg=0, (10

for eachq such thatg) < Q whereQ is the radius of the disk.
Now it is convenient to eliminated.q in favor of a andP,
and Shankar and Murthy do tRaapplying the following
unitary transformation,

U= exp{i > P(-
ll<Q

wherep(d)=p;(g)+p,(d), i.e., the total charge density. Now
for the Hamiltonian density we have

ﬁ)@p@}, (11)

1 — .
H=> Eanlbv”[_ iV +a+2m(2s+ )P+ 8812,

+Va+ Ve, (12)

whereW,, ,’s denote the transformed fields, which describe

modified, transformed quasiparticles, afidlis the remnant
of the CS field left uncanceled fdg|>Q. The constraint
gets the following form:

a(q) - wp(ﬁ) |physical statg= 0 for |g] < Q.
(13)
Neglecting 54 from the start and introducig
and
(15

C(ﬁ) = Q—E ﬁj,u’+ eXF{_ Id : rT)j,(r}l
],o

whereV, =V, iV, for an arbitrary vectok?zvxé(+vyéy, we
can rewrite our Hamiltonian as

i,o

dl<Q
m(2s+1)

. |E [C(@AT(@) +c"(GAG)] + Va+ V.
4l<Q

(16)

As expectedw.=eB,/m, i.e., equal to the cyclotron fre-
quency and in deriving the magnetoplasmon term we ne-
glected also total density fluctuatiohs.

Our quasiparticles are bosons and again for the sake of
completeness and easy reference we give brief account of the
so-called final representation in the Murthy-Shankar ap-
proach applied to the case of two species of composite
bosons. First Murthy and Shankar always approximate as

> expli(G-K) - i} = n(2m)?8(G-K)

i,o

17

in the long-wavelength approximation so that also in this
bosonic representation we consistently have

[c(@),c"(d")]~0.

To decouple the oscillators and particles they apply the fol-
lowing canonical transformation,

(18)

U(N\g) = expliSoho}
- exp{xoe S [CGAG - AT(&)c@]}, (19)

ldl<Q
where

1

V4m(2s+ 1)n

and the parametexy should be determined. As we have new
variables() defined through

Q0 = exp{— IS\ o} Q expliSoho}, (21)
Murthy and Shankar also define
Q(N) = exp{— iSHAQ exp(iSph}, (22)
so that in this case we have
A(G,N) = A(G) = ONc(g),
c(Gn) =c(@), |d<Q. (23)

It is easy to check thaty=1 does the job of decoupling and
now we concentrate how variable8“(G), =1,/ are con-
nected with new ones. We use their definitiop®%(d)
=3, expliq-ri .}, o=1,| apply Egs.(21) and (22), find
dp,(d,N\)/d\, and integrate ovex to get
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old/ =\ _ = o + p. 1 (F—F
Po (@—PU(Q) _|:[ (q)+A( q] - T o X i r =r;
\,477(2 1yn |§g 2m  2mn. ;G |q‘E<Q b, pl=iq - )i
- _[C(d) +cl(- ﬁ)]] (24 XPj g+ + @ > AT@AG) + Ve + Va. (30)
ld<Q

Immediately we can conclude that the spin deW@V(ﬁ) To eliminate the bare electron mass in the kinetic energy and
=p(d) - p?"(g) is invariant, low-energy description we choose, as in Refs. 3 and 4, that

old R the number of the oscillators is the same as the number of

ps () = ps(9), (25 particles, so that the diagonal péirtj, o=¢") of the second

term in Eq.(30) exactly cancels the first kinetic energy term.
The bare mass is still present in the off-diagonal part of the
econd term, and if we decompose theum ag*

under the transformation of the final representatjé.
(19)], when we assume that we have the same fixed number
of particles,n,=n;=n/2, in each layer. This is our main

claim in the Murthy-Shankar formalism for the bilayer sys- D expl—iq - (F, - )}
tem. - b
ll<Q
The analysis for the charge density and the form of the ‘ o o
constraint in new variables proceeds as in Refs. 3 and 4 and =P - - 2 exp-ig-(F-f}, (31
finally for the form we get ld>Q

i we are left with as-function interaction among particles and
p(d) :—52 (G X pjexpl—iq - rj ). (26)  another short-range interaction that may be grofhpeidh_
i previously neglected short-range pieces. We are assuming all

In a few lines but also using an assumption that we deal Wltﬁilong that the same kinidayer) of bosons(transformed elec-

Lo - . trong behave as hard core bosons, soderg’ we see that
an infinite systemwithout boundary we can prove that, in he 5 function is ineffective. To eliminate the bare m in
the second-quantized language, the constraint is the o Tu ction IS inefrective. 1o € ate the bare mass
the &-function interaction between the opposite kind bosons
we require that they also behave mutually as hard core
deexp[— iq - r}p(r) bosons. As we will see, this additional requireméndt due
to the fermionic statistigswill be very important in the deri-
i . R - e vation of the low-lying spectrum.
=5 f df exp{=iq -2 [V X WI(AVY,(M] (27) Therefore, as a result of the transformations made, our
7 Hamiltonian has a free oscillator and Coulomb interaction
for |/<Q and as a shorthand notation we uBg,,=%, part only. The interaction part in the old variables with the
also in the following. The proof starts by expressing theintroduced cutoff is
single-particle operator,

vaA+vE— > 2= GVa@p2a)

2 (% Vexp-id -fj}, (28) sli<Q
jo
1 id Id
in the second-quantized language as *5 r%QPO (= OVe(@p25(a), (32

()6 e i with Va(@=2me/|gl and Ve(d)=(2me/|d)exp-dldl},
EU" fdrllf{,(F)(q VIeXA=iq- (0, 29 whered is the distance between layers. If we introduce

then followed by simple regroupings and the neglect of a V(@) = Va(@) + Ve(d) and V() = V(@) — Ve(d),
surface term. So we find that in the long-wavelength ap- (33
proximation we use, the charge density fluctuations exist

only if there are vortex excitations in the systdifhe charge  and

density on the right-hand sidehs) of Eq. (27) is propotional old/ =\ _ old old old/ =y — old old
to the vortex densities of the two kinds of fields. Strictly pe (@ =p7H@) + (@) and pg(@) = PTG ~ (A,
speaking the vortex density is defined only by the phase part (34)

of a bosonic field, but in the small-momentum limit we will \\o can rewrite Eq(32) as
neglect the difference. Later a relaxation of the constraint
and thereby generation of terms quadratic in momenta will

old old
be justified by this differencélf our system is a stable 2D v=2X p (= @Ve(@p(@)
Bose system that would mean that we have the case for in- |q|<Q
compressibility, because to excite a vortex a finite energy is 1 oa old
needed so all charge fluctuations are supressed. But do we * 2 4Ps (= V(D). (35)

have a stable system? We have to get back to the Hamil- ld=Q

tonian expressed in new variables. The Hamiltonian is To get the expression in new variables iiﬁfd(d) we should
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compare Eq(24), Eq.(26), and Eq.(15) and find ness ofz, and 7 the constraint may be rewritten as
— i H@) + md(-4) =0 43
p29(6) = —————[A@G) + A ()] 7e() + 7(= G) (43)
V4m(2s+ 1)

so that fields may effectively decouple, satisfying the con-
s = s straint only approximately. As a result, from the first part in
IJE(, (G Py ) XD~ G T o} (36 Eqg. (35), by relaxing the constraint, we get a kinetic term for
7s. There are no other contributions to the second order in
and also, as we already found out, we have 7. From the first part of Eq(42) and in the spirit of the
p29(6) = py(d). (37) Bogoliubov expansion we may conclude thatis the field
s ° that couples to the external electromagnetic potential. In our
Further decoupling of the oscillators and particle¥iwould  decoupling ansatz, is only very weakly coupled. This co-
amount to higher-order corrections to the expressionsncides with the physical picture that we have for bosonic
found®# and we can safely neglect the presence of oscillatorglipoles that(as dipoles they weakly interact with external
(terms withA’s) in Eq. (36) when discussing the low-energy field and therefore as a system are incompreséible.
excitations. Then the charge pétfe first term in Eq(35)] Applying the Bogoliubov expansion again, and neglecting
can be decomposed into a diagonal and off-diagonal parthe difference between, andn,
The diagonal part can be rewritten as

I |2 ps=WIW, —W[W =~ \n(n + 7y, (44)
> _Zﬁ (38)  we are led to the following Hamiltonian faw, fields,
j,o
S12
i.e., as a kinetic term of particles with masg, where He= 2 %n;r@ 74§ + 22 [ 74— G) + 7L(6)]
1_ 5 V@, ‘ ‘
m 2, 2 o e, (39 XV 7@ + (- ). (45)

Theref t0ad - fh tem in t ,?\s before the hard core boson constraint makes\6)
erelore we came 1o a description ot the system in terms ol 5 o4 part of the interaction ineffective but leaves us with
quasiparticles with a mass that is due to interactions. The

are the expected bosonic dipole objéétsvith interaction sﬁs that describes an unstable system. Therefore we must

: X jmpose separately the hard core constraint of composite
among them described by the off-diagonal part. As overal : ;
neutral objects they shouid make Bose condefisaie the osons on fieldsy,. That amounts locally to the following

ground state and we proceed by taking the Bogoliubov eX[eqwrement,

pansion of the quasiparticle operato#s,,oc=1,| in the pg(r):\II}L\IIT+\IfI\IfL, (46)

second-quantized language as "
where we used the hard boson properti@%\lfo\lfg\lf,,

_ _[ng _ _[no ='W _ o=1and|, and ¥ W w! ¥_ =0. Using the Bo-
¥y = 2 topand ¥ = 2 R (40) goliubov expansion, Eq44), again this becomes
where operatorsy,,o=1,| describe the small fluctuations N[ 7(r) + (N2 =n (47)

around the mean field valueny/2, wheren, is the density

of particles in each condensate. We also introduce that has to be imposed o fields. Note that here we also

used the incompressibility property of the system in the low-
gty _mom energy region for the charge degrees of freedom, on the rhs
Ne= " and 7; 2 (41)  jrrespective of the length scalEq. (42) Fourier transformed

for any g]. We had to make this assumption because we are
new fields that, as we will find out soon, are appropriate forincorporating a piece of short-range physics into the long-

the low-energy description of the system. wavelength description. Please also note that this is an op-
In terms of the new variables, the constraint is, effec-erator identity, where the automatic neglect of the quadratic
tively, terms on the lhs of the equation, in the Bogoliubov expan-

sion, is not allowed.
The constraint we handle in the usual way, switching to
(42)  the Lagrangian formulation with fieldss,n;r and a fieldx

Please note that the equality here should be understood as tWeat enforces the constraifitThe generating functional is

equality of the Fourier transforms of Ihs and rhs fpsmall. ! B o
It is also important to notice that although the constraint Z=fD7lst7lst7\ ex ‘f ded X(759:7s
effectively is p2%§)=0 for G+#0 in the low-energy sector 0
and constrains the first term in E@5) to vanish, the under- tom2 A
lying canonical variablesy, and 7s may assume nonzero +Ho(X) +{[7s(X) + 75(X)]° = LHiN(X, 7)) 1, (48)

values. To find them, especially; in which we are mostly
interested, we do the following decoupling. Due to the small-where

VI, + VW —n=ng—n+ny(n+ 10 + nime+ nins=0.
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1 N R n 0.35 =
H(XD==——V7y -V +—Jd2 X) + LX) V(X — o v
X7 am ) e Vst YL 7s(X) + 75(X) V(X - Y) ol | a v L °
1 * v S °
X[ ) + ni(y)]. (49) 025 21a0 dagonaloaton o °
The constraint approximately commutes with the Hamil- 020_' o °
tonian in the long-wavelength limiusing this property we  ye? | © asaabsana
combined contributions into a single exponentiahd so we 015 4 6 g4
will take \, 7 (imaginary time¢ to be independent. Also, at . s
the mean-field level, we are allowed to assume thas 0.10 - A0 *
space independent. 1 a0
Introducing Bogoliubov transformations o(q, 7) fields, 0.05 4 é °
750, 7) = a(q)expfi wgricoshby + a'(— gexp(- iwqT}sinh 04 0.00 1
(50) 02 00 02 04 06 08 10 12 14 16
. ' an
[wherea() anda'(§) are new canonical fieldswe get after ®
standard transformations that diagonalize the probisee FIG. 1. The stationary point values for the velocity of the out-
also Ref. 12, the following mean-field expression faf: of-phase modéO), the values from the pseudospin theory in the
1 Hartree-Fock approximation from Ref.(8\), and exact diagonal-
Zog= f dn]] - exp{— BEo(N)}, ization results(x) from Ref. 8.
g 1—exd-Be(dN)}

(52)
Bogoliubov velocity though with the values significantly re-

where duced from the Hartree-Fock results. Butdat0.9 all three
data points are very close to each other. For larger values of

=1 _ 2 H C
€(G.N) = V(eg)"+ [NVe(@) + ik, (52) d, d~1lg and larger, both approximation schemes fail to
with eq:q2/2mc, and the domain df's is again the disk with ~ capture the quantum fluctuations that increase with
radiusQ. Also The result fore(qg), the dispersion of the out-of-phase
1 mode in thed=0 case,
Eg\) = 22 [e(GN) — gl -In X (59 e
q q Q) =e=-—, (57)
2m,

with theg summations where the cutdf is understood. The

€(d,\)’s are the usual Bogoliubov energies, the results of thés fairly close to the estimate of Ref. 8 and 7. Namely)
Bogoliubov transformation, now requiring also a suitable :eZIBé_\s’ZqZ,_ while  the Hartree-Fock  result is
to get the final expression for the mode dispersion we are?lg(\7/8)v2¢?. It is interesting to note that if we use the
looking for. We approximata in the saddle point approach expression form, conjectured in the generalized thebty
(see, for example, Ref. 13earching for a stationary point of that includes higher-momentum physics, we exactly get the

F(T,\), from the following expression foE,s, Hartree-Fock result.
It is also interesting to speculate about the discrepancy
Z= f d\ exp(- BF(T,\)}, (54)  between our and the Hartree-Fock result for srdafPart of
it might be due to our low-energy, low-momentum limited

approach, but it might also well be due to the incompletness

i.e., look for th luti f . L
€., look for the solution o of the underlying analogy** of thed+ 0 system description

dF(T,\) compared to the one of a repulsively interacting Bose gas.
N 0, (55) (The analogy of thel=0 case to an ideal Bose gas is com-
. . plete, as we found ouyt.The incompletness might follow
which effectively becomes from the modifications of the composite-boson picture due to
IE4(N) the presence of composite fermions as proposed in Ref. 15.
- 0, (56)  The composite fermions come into relevance very sooth as
acquires a nonzero value, and their number rapidly increases
in the T—0 limit. with d.*% If we are allowed to view bosons and fermions to a

We solved the equation numerically finding only solutionsfirst approximation as weakly interacting through a short-
\o With i) real and positivetherefore, as usuaf,we found range interactiorimore precisely here interacting are differ-
a path and a saddle point in the compleglaneg, and results ences between up and down bosons and fermions, respec-
are depicted in Fig. 1. In Fig. 1 we also plotted the Hartreedively) we can borrow considerations applied to the Bose-
Fock result of Ref. 8, and the same reference exact diagonakermi mixtures in optical traps; see, for example, Refs. 16
ization results atl=0.9z andd=1Ig. To a good approxima- and 17. When we have a small number of fermions the
tion we can claim a linear dependence for snthlbf the  Bogoliubov mode can, in fact, enhance its valigm the
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other hand, decreasand damping follows when fermions to the beginning formulation, and apply a different decom-
proliferate. In that sense we can expect that by consideringosition. Namely we will takdin the limit v,>v))
fluctuations around our mean field solutitwhich maps the ol old - . L

problem to an interacting Bose gas with a Bogoliubov Ps =~ pc ‘ZPE—'Z(qX Pj.o)eXpl—iq - T .} = 2p,.
mode, the value of the Bogoliubov velocity may increase Lo

for smalld, stay almost the same for intermediate values, and (61)

decrease and even acquire damping for latgla this sense . . .
here we have set up a formalism necessary to check the%tﬁ's easy to see that the first term in H§1) would lead to

It is important to address the case when we do not hangne sir; Ig layer withv=1. Next considering the cross term /
the same density of particles in the up and down I&§ét. gie lay o 9 :

Then in general we have, instead of EB5), \

2 2=2p, (-9l p @), (62

old IS ay s g a=Q

= ps= (v = v) =2 (G X By )expi=iq - Fj .}, (58 | o

ps =ps= (1 ””2% (A Py exp=iq - F.h, (58) and taking the expression in EG9) for p|, we get from Eq.
(62) for the | quasiparticle mass,

when, as before, we neglected the magnetoplasmon[part.

andv, (v;+v =1) are the filling factors of each layer sepa- 1. > VeGP sir? Osp - (63)
rately] For p,,0=1,| in ps=p;—p, we assume the follow- Me  g¢<q e
ing form:

Because of the incompressibldoackground we can neglect
1T and | cross terms. If we again also assume irrelevance of

[ I N
PUI-EE (4 X pj expl-iq - rj .} the remaining| dipole-dipole interactiongfor the low-
i momentum physigs our effective Hamiltonian foq quasi-
+C3 (G- By Jexpi-iG -, o). (59 ~Particlesis
j 1 2V4(q)
. . He= 2 - —VWIF¥ + X p——p. (64
The second part is the longitudinal component of the para- q=0 2Me a<Q 2

magnetic current, and the term should appear, in generall
when compressible low-lying degrees of freedom ar
present. IfC in Eq. (59) is the same for both layers thef
=p;+p;, because the total component of the current is zer
in the charge channel due to its incompressible nature. Su
stituting Eq.(58) with Eq. (59) in the projected Hamiltonian
[Eqg. (35] and collecting all diagonal terms of the dipole
expansion, we get

eh Ref. 21 a physical picture of a Bose gas of excitons and
dipoles with densityn, was developed for the case>v,.
The masan, we derived is the result of the low-momentum
Ebeory. As in thed=0, n;=n; case we expect that in the
generalized theofy the cutoff in Eq.(63) would be replaced
by a Gaussian in the momentum space and the expression
would coincide with the one in Ref. 21. In this sense with the
asumption made, also in this case due to the comparison to
V, Vs< b= )2} 1( 1 1) Ref. 21, we can c_Iaim a.co.mplete analogy to a weakly inter-
e , acting Bose gas id— 0 limit.
2 2 2 References 6, 8, and 22 and Ref. @Ahen not consider-
(60) ing spiral statesagree on the dependence of the Bogoliubov
velocity (in the n,=n, case. Possible additions of quantum
as a generalization of Eq39) to the case of imbalanced fluctuations to this value can be extracted from Ref. 24.
layers. This is the mass of thes field defined aszs  There, due to the justified assumption of the suppression of
=\v;7;,— v 77;. So we assumed that we can apply the Bo-charge fluctuations; a Schwinger boson mean field theory
goliubov theory and with neglect of some residual dipole-was used with the requirement on the single occupancy of
dipole interaction in the pseudospin channel, our problenthe Schwinger boson in a lowest-Landau-level basis. In this
reduces to the one expressed in E&p) and (49) in which  work we were primarily concerned with the establishment of
instead of the massy, we havems,. The assumption is the concept of a composite boson, and we only set up the
based on the expectation that the pseudospin channel is costage for considering fluctuations beyond generalized CS
pressible. For not largév,—v||= v, the velocity of the mean-field theory that is based on this concepA
Bogoliubov mode decreases quadratically withas a con-  composite-boson approach may prove useful for the study of
sequence of Eq(60), in agreement with Ref. 20. A more quantum phase transitions in the bilayef>and building of
detailed investigation of the influence of the dipole-dipolethe physical picture of the bilayer in analogy with the picture
interaction is needed for generéw. based on composite fermions in the single Igy®ur mean-

We would like to address also the case of huge imbalancedield theory and the usual theory do not agree somewhat,
when we take, for e_xamplew>vl.21 As v, —0, 1/ms,  although they agree to a much better degree than the usual
— o, andns=\v; 7, —\v, 5, = 5;, which probably signals the CS theory-?® (linear dependence on smalland the absence
incompressible physics of thilayer. Therefore, to find out of the bare magsInclusion of the fluctuations in our hard-
more about the physics dfquasiparticles, we must go back core (belonging to different layerCS boson model that is

4

1 .
— = 2 QZSInZ(quﬁjVU){ —+—

M5y |g<Q vy
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probably related to the model with the single occupancy ofoint of view, we would be able to address in more detail the
Schwinger bosons and comparison to Ref. 24 are planned f@xtraordinary experiments done on the bilajfett

future work. It would be important to probe the significance
of the fluctuations around~ | z. Any strong instability of the
Bogoliubov mode velocity would signal, in the composite-
boson—composite-fermion modé&ee above and Ref. 15
the phase separation of the two fliiend the proposed
first-order transitiort®2° Then, from the composite-boson
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