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We systematically discuss candidate wave functions for the ground state of the bilayer �=1 as the distance
between the layers is varied. Those that describe increased intralayer correlations at finite distance show a
departure from the superflid description for smaller distances. They may support finite energy meron excita-
tions and a dissipative collective mode in the place of the Goldstone mode of the ordered phase, i.e., describe
a vortex metal phase, or imply even an incompressible, pseudospin liquid, behavior. Therefore they describe
possible outcomes of quantum disordering at finite distance between the layers. The vortex metal phase may
show up in experiments in the presence of disorder at lower temperatures and explain the observed “imperfect
superfluidity,” and the pseudospin liquid phase may be the cause of the thermally activated �gapped� behavior
of the longitudinal and Hall resistances at higher temperatures in counterflow experiments.
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I. INTRODUCTION

The bilayer �=1 quantum Hall �QH� system consists of
two layers of two-dimensional �2D� electron gases, each with
a filling factor 1 /2, that are brought together at distance com-
parable to the average distance between electrons inside lay-
ers and the tunneling is negligible. The physics of the bilayer
has been the focus of much of experimental and theoretical
work. We will mention only two major experimental find-
ings. First in the experiment of Spielman et al.1 there was a
very pronounced �“spectacular”� zero-bias peak in the tun-
neling conductance between layers. Second in the experi-
ments of Kellogg et al.2 and Tutuc et al.,3 in the counterflow
setting of the bilayer �where in each layer the current is of
opposite sign than the other� the resulting longitudinal and
Hall resistances were dropping to zero in the limit of zero
temperature. Both types of experiments signal a superfluid
behavior in the pseudospin �relative between layers� channel
of the system. An elaborated theoretical work of Moon et al.4

described this behavior in the framework of an easy-plane
ferromagnet �where the layer index represents the electron
pseudospin degree of freedom� and ensuing XY model de-
scription. Therefore the superfluid behavior was expected.
Usually it is described as a consequence of an excitonic con-
densate inside the bilayer where each exciton stems from the
electron coupling to its correlation hole just opposite in the
other layer. Nevertheless some discrepancies were noticed.
In the first experiment of Spielman et al. the peak due to
some unknown source of dissipation, is not as high and nar-
row as in the analog, Josephson tunneling experiments in
superconductors. In the second experiment of Kellogg et al.
and Tutuc et al. there were no Kosterlitz-Thouless transition
signatures in the measured counterflow resistance. It seems
merons �vortices� are liberated �due to some unknown cause�
from their confinement in the expected superfluid down to
very low temperatures.

These findings point out that a careful investigation of
quantum fluctuations or quantum disordering at finite d �dis-
tance between the layers� is necessary. One way to approach
this question is to adopt the Laughlin approach to the frac-

tional QH effect and look for approximate but very close to
the ground states wave functions at finite d. That this is pos-
sible it was numerically demonstrated in Ref. 5 for not large
d. The functions that approximate the true ground states in-
corporate the effects of quantum disordering by allowing the
presence of composite fermions �CFs� next to composite
bosons �CBs�, another transformed electrons, characterizing
the Bose condensate of the assumed superfluid. CFs connect
in a special way to the condensate to ensure and maintain the
rigidity of the Bose condensate.

In this work we will systematically discuss candidates that
we expect would approximate very well the ground state
wave functions at finite d. Some of them we expect would be
in a competition with the ones that are ferromagnetically
ordered and possess a Goldstone mode. Among them we will
point out one that describes an incompressible �in all chan-
nels� state. If the state were a true ground state, it would
be a ground state of topological phase that supports
quasiparticles—merons with finite excitation energy. In fact
this would be a realization of what is usually called a spin
liquid phase with two kinds of semionic quasiparticles—i.e.,
a double spin liquid, with the only difference that here we
work with pseudospin instead of spin. We will use inter-
changeably the words double pseudospin liquid and pseu-
dospin liquid, for short, denoting the same phase. This
gapped phase might be the one that appears in counterflow
experiments causing activated �gapped� behavior of the lon-
gitudinal and Hall resistances for a range of higher tempera-
tures. Another competing possibility with possibly finite ex-
citation energy for merons is a compressible version in
which quantum disordering has allowed weakly coupled
meron-antimeron pairs, i.e., a vortex metal phase. This state
supports a dissipative collective mode that comes in the
place of the Goldstone mode of the ordered phase. The phys-
ics of this state should be relevant for the explanation of the
dissipation effects in the experiments, in which disorder, at
lower temperatures, would dissociate the expected closed
loops of meron-antimeron pairs in the topological phase.

The paper is organized as follows: Sections II–IV contain
results of our paper, and Secs. V and VI provide discussion
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and conclusions. Section II is an introduction to the wave-
functional approach to the bilayer, Sec. III in two different
approaches with compatible conclusions describes the phys-
ics of a candidate wave function—vortex metal state, and
Sec. IV introduces its modification due to CF pairing—a
pseudospin liquid state.

II. WAVE-FUNCTIONAL APPROACH TO THE BILAYER
�=1 SYSTEM

If the distance between the layers is of the order or less
the magnetic length—average distance between electrons in-
side the layers, interlayer Coulomb interaction will force the
system, at total filling factor one and in the conditions of QH
effect, to form the �111� state. The state is a simple generali-
zation of the single-layer filling-factor-one case, i.e., com-
pletely filled lowest Landau level �LLL� of one species elec-
trons, precisely it is

�111�z↑,z↓� = �
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓� ,

�1�

where zi↑ and zi↓ are two-dimensional complex coordinates
of electrons in upper and lower layer, respectively, and we
omitted the Gaussian factors. If layers are far apart each one
will be a separate system at filling factor one-half. Numerous
studies6 show that the ground state at that filling factor is a
generalization of the Laughlin construction which includes a
single Slater determinant of noninteracting particles in zero
magnetic field, i.e.,

�1/2�w� = P�� f�w,w̄��
i�j

�wi↑ − wj↑�2� , �2�

where � f is the determinant and P represents projection to
LLL. In Refs. 6 and 7 it was shown that relevant, underlying
composite particles in this case are CFs. On the other hand,
the relevant, weakly interacting composite particles in the
�111� case are CBs.8,9

Now let us start from the �111� case, increase the distance,
and introduce one-half correlations in the �111� state in a
minimal way, preserving �111� intercorrelations of newly in-
troduced CFs with all other remaining CBs. This means that
though we are perturbing the �111� state, we are assuming its
inherent rigidity. The wave function that describes this is

�bbf = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

� � f�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

� � f�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

� �
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

� �
p,q

�zi↓ − wq↑��
m,n

�zm↓ − wn↓�� , �3�

where we omitted the Gaussian factors, P denotes the pro-
jection to the LLL, A denotes the antisymmetrization be-
tween Bose and Fermi variables in each layer separately, and
� f’s are Slater determinants of free waves. In the thermody-
namic limit the relationship between the flux and number of
particles is

N� = Nb↑ + Nb↓ + Nf↑ + Nf↓ = 2Nf↑ + Nb↑ + Nb↓

= 2Nf↓ + Nb↑ + Nb↓ �4�

Consequently we must have Nf↑=Nf↓ but there is no con-
straint on the relative number of bosons.

In fact, once we adopt the hypothesis that with increasing
d �distance� CFs are slowly nucleating we are left, because of
the flux-counting arguments, with only two �simple, Laugh-
lin� possibilities for interpolating ground state. The second
possibility has instead of the last two lines in �3� for the
intercorrlations between the Bose and Fermi parts, the fol-
lowing expression:

�
i,j

�zi↑ − wj↑�2�
k,l

�zk↓ − wl↓�2. �5�

These intercorrelations are of the Fermi part type, i.e., they
are intralayer correlations, a consequence of possibly more
important intralayer Coulomb interactions.

In this case we have

N� = 2Nf↑ + 2Nb↑ = 2Nf↓ + 2Nb↓ = 2Nf↑ + Nb↑ + Nb↓

= 2Nf↓ + Nb↑ + Nb↓, �6�

i.e., both Bose and Fermi numbers are constrained to Nf↑
=Nf↓ and Nb↑=Nb↓.

In the small particle �5+5� numerical study in Ref. 5, the
first possibility had much larger overlaps, presented in Ref.
5, with the true ground state as it was evolving with distance
�and the ratio between bosons and fermions was changing�
than the second possibility �Eq. �5��. The overlaps of the first
possibility were slowly decreasing with distance so that no
definite conclusions can be drawn about the precise evolu-
tion of the system near the transition region. But for smaller
d the relevance of the first possibility for the evolution was
established.

We will not discuss the states that we naturally expect
would interpolate between these two limits, small d �Eq. �3��
and near the transition �Eq. �5�� limit. In these states some of
the fermions would connect via bose �111� type intercorrela-
tions to the Bose part and some via Fermi type.

It is no wonder that the first possibility is more relevant
for smaller d. It also allows the imbalanced �N1�N2� situa-
tion, which is required due to the theoretical and experimen-
tal insight gained1,4,10,11 about the existence of the Goldstone
mode connected with the particle number difference. �The
projected to definite particle number picture, which we here
discuss, must incorporate that physics.� Later we will show
that the state is incompressible �in the charge channel�, at
least in the scope of a suggested Chern-Simons picture.

A. Chern-Simons approach

In this section we will employ the classical CS approach,
described in Ref. 8 and Ref. 7 with its usual RPA �random
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phase approximation� to find out the linear response of the
system that supports the ground state in Eq. �3�. This ap-
proach is advanced in Ref. 12 but at the same time there, a
conclusion is drawn that the classical CS approach in the
RPA allows us with not much work to find out qualitatively
the physics of the linear response. Here we have still another
problem; there is no obvious way to implement antisymme-
trization procedure of the wave function in Eq. �3�. The an-
tisymmetry of electronic wave functions comes naturally and
automatically only in only CB or only CF theories. Therefore
to simplify matters from the start we choose the classical CS
approach and neglect the antisymmetrization requirement.

Without the antisymmetrization the wave function in �3�
would be the ground state �in the RPA and when the projec-
tion to LLL is neglected� of the following CS theory:

L = �
�
�i��

†��0 + ia0
� − iA0 − i�B0���

+
1

2m
�

k

��
†��k + iak

� − iAk − i�Bk�2���
+ �

�
�i��

†��0 + ia0 − iA0 − i�B0���

+
1

2m
�

k

��
†��k + iak − iAk − i�Bk�2���

+ �
�

1

2�

1

2
a0

���� � a���

−
1

2�
�
	 dr���	��r��Va�r� − r����	��r���

−	 dr���	↑�r��Ve�r� − r����	↓�r��� , �7�

where � is the layer index, taking ↑ and ↓ values as a vari-
able, �� and ��, are CF and CB �-layer fields, respectively,
and Va and Ve are intra- and inter-Coulomb interactions.
�	�’s are given as sums of CBs and CFs, i.e., �	�=�	�

F

+�	�
B, as the most natural choice for the electron density in

this distinguishable picture. External fields, A and B, couple
to charge and pseudospin �up minus down� degrees of free-
dom, respectively. The CS, gauge fields, a↑ and a↓, are re-
lated to a as

a =
a↑ + a↓

2
,

and in this way, in the mean field approximation, reproduce
the relations encoded in the ground state given by Eq. �3�.

The antisymmetrization can be implemented by the fol-
lowing constraint:

S� · S� =
N�

2
�N�

2
+ 1� , �8�

for each layer separately so that N� denotes the number of

electrons in the layer. S� denotes a generalized spin of the

layer obtained by integrating over the volume of the system
of the following field density:

�̂�
†�r��

��

2
�̂��r�� .

�̂�r�� denotes a spinor for which we have

�̂��r�� = 
 Ub
†��

Uf ,�
† ��

� ,

where Ub and Uf ,� are the CS unitary transformations, i.e.,

Ub�r� = exp�i	 d2r� arg�r − r���	b��r�� + 	b−��r��

+ 	 f��r�� + 	 f−��r���� �9�

and

Uf��r� = exp�i	 d2r� arg�r − r��

��2	 f��r�� + 	b��r�� + 	b−��r���� , �10�

�� and ��, are the already introduced Bose and Fermi field,
respectively, and �� are the usual Pauli matrices. The idea
behind the constraint in Eq. �8� is simple; it uses the fact that
spin 1

2 particles, N� of them, must necessarily, in the states

for which the constraint in Eq. �8� is true, i.e., have S� ·S� at its
largest possible value, be completely symmetric in the spin
space and necessarily antisymmetric in the real space.

We still must fix Sz, which is the second constraint, i.e.,
the number difference between CBs and CFs in the layer, to
project the artificially introduced spin 1

2 problem to the re-
duced Hilbert space and our problem.

What we can immediately notice is that the constraint in
Eq. �8� will introduce the terms that interchange bosons and
fermions at different points instantaneously which conforms
to our idea of indistinguishability. Although it is easy to for-
mulate it is very hard to implement the constraint. Only,
maybe, if we have overwhelming number of bosons or fer-
mions we will be allowed to neglect the constraint as it is
usual in the case of bose fluids with the natural decomposi-
tion into classical-macroscopic, condensate part and normal
part.

Nevertheless there is a much deeper reason that allows us
to neglect the antisymmetrization requirement. The reason is
that, just like in a hierarchical construction and as it will be
much more clear later, CFs represent meron excitations
�meron-antimeron pairs, see the Appendix � that quantum
disorder the �111� state. As it is usual when we discuss the
dual picture of the FQHE,13 we do not extend the antisym-
metrization requirement to the quasiparticle part of the elec-
tron fluid.

We want to prove that indeed the static density-density
response that follows from the Lagrangian in Eq. �7� shows
the incompressibility of the system with the ground state in
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Eq. �3� in which the antisymmetrization is neglected. The
charge of the system is related to �a� as

�	 = �	↑ + �	↓ =
ik�a

2�
,

where, as we work in the transverse gauge, ��a� � =�a is the
transverse space component of the vector. For the response
calculations �with B0=B=0� we will adopt the conventions
introduced in Ref. 7. Integrating out the quadratic terms in
fermionic fields to the second order in gauge fields �RPA�,7
then introducing density-angle variable for the bosonic fields
and expanding the action in them neglecting the amplitude-
density derivatives,8 we get

Leff = �
�

1

2
�K00

� ��a0
��2 + K11

� ��a��2� +
1

2�

1

2�
�

a0
��− k�ika��k�

+ �
�

�	B��− k��i
���k� − �a0
��k��

+ �
�

�− �
	̄b

2m
�k2��

2 + ��a�2�

−
1

2

k2��a�2

�2��2 Vc�k� −
1

2
Vs�k�
�	B↑ − �	B↓ +

1

2�
ikas
2

,

where Vc�k�=
Va�k�+Vc�k�

2 , Vs�k�=
Va�k�−Ve�k�

2 , K00=K00
↑ =K00

↓ , and
K11=K11

↑ =K11
↓ are density-density and current-current re-

sponse functions of a free fermionic system, respectively,7

�↑, �↓ are bosonic angle variables and 	̄b averaged bosonic
density per layer. In the static �
=0� case we are left with
the following charge part, decoupled from the pseudospin
part in the RPA:

Leff = K00��a0�2 + K11��a�2 +
1

2�
a0ika

+ �	c
b�a0 −

2	̄b

2m
��a�2 −

1

2

k2��a�2

�2��2 Vc�k� .

The integration over �	c
b gives the constraint a0=A0 and con-

sequently the integration over �a gives for the �static�
density-density response,

� 1

2�
�2

k2

2	̄b

m
+

k2Vc�k�
�2��2 − 2K11

,

where K11=− k2

12�m .7 As long as there is a finite density of
bosons �	̄b� the system is quantum Hall, incompressible �and
the above expression vanishes in k→0 limit�. Even the pres-
ence of composite fermions, i.e., particles which we would
naively consider to represent gapless degrees of freedom in
the system, does not lead to compressibility. A small fluctua-
tion in the charge density ��	 f =�	 f

↑+�	 f
↓� of the composite

fermions lead to a fluctuation in the bosonic charge density
for which we know we need a finite amount of energy to
create.8

III. A STATE WITH POSSIBLY DECONFINED MERONS

The second possibility, state

�bf f = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − z↓�

�� f�w↑,w̄↑��
i�j

�wi↑ − wj↑�2� f�w↓,w̄↓�

��
i�j

�wi↓ − wj↓�2�
i,j

�zi↑ − wj↑�2�
k,l

�zk↓ − wl↓�2�
�11�

should be relevant for the transition into two decoupled
Fermi seas region. In the following section we will explore
its properties; in the first part we will show that in this state
possibly a finite energy is needed to excite meron, and in the
second part we will show that the state is compressible in the
pseudospin channel and nearly supports a gapless pseudospin
mode. The first property tells us that in this state merons may
be deconfined relative to the �111� and Eq. �3� states in which
merons as vortices of the pseudospin superflud are confined.
If it were not for the second property, the state would possi-
bly describe a quantum Hall, topological phase with four
kinds of gapped, meron quasiparticle excitations.

A. The screening of meron

In the following we will show that the screening charges
of the meron excitation in the plasma analogy of the state in
Eq. �11� are localized, not of long range, and may not lead to
the usual logarithmic divergence with the size of the system
of the energy required to excite a meron.

Namely we will use an effective expression from Ref. 14
for the meron excitation that in the �relative change in� den-
sity calculations for the meron state leads to results valid in
the long wavelength limit. The effective expression is the
one reduced from the well-known expression in the �111�
state,4 and in Ref. 14 it was shown that leads to the logarith-
mic divergence in the energy to excite meron in both �111�
and the first mixed state �Eq. �3�� that describe the pseu-
dospin condensate at small d. Therefore the effective expres-
sion gives the expected behavior of a meron excitation in
these states. As in the Laughlin quasihole construction, the
meron effective construction multiplies the ground state, �o.
Explicitly the construction is

�
i

zi↑ − w

�zi↑ − w�
exp��

i

C

2�zi↑ − w���o, �12�

where C is a constant, found to be equal to C=0.80 in the
case of the �111� state. We emphasize that Eq. �12� is an
effective expression, modeled for the task of density calcu-
lations, and in no way an expression that would be valid in
the short distance limit or stand for a meron construction in
the lowest Landau level.

In the plasma language of Ref. 14, and as an interpretation
of the squared norm of the construction �Eq. �12�� we have
that an impurity at point w connects via the interaction
C / �zi↑� to the ↑ particles of the plasma defined by the state,
�o. To obtain the charge contributions �↑ and ↓� far away
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from the center of excitation in the second state �Eq. �11��,
i.e., if we take in Eq. �11� that �o is the second state, we use
the same type of approximations explained in Refs. 15 and
14. We assume that the classical partition function of the
classical system that is defined by the square norm of the
second state has the property of screening, and therefore that
the essential physics including the description of the screen-
ing charges of impurities can be found by summing so-called
chain diagrams. The contributions to the screening charges of
an impurity can be easily visualized as a type of chain dia-
grams shown in Figs. 2 and 3 which connect impurity �w� to
the probing point �r� on the right-hand side. In the figures the
straight line denotes the 1

r interaction, i.e., 1
q in the momen-

tum space by which the meron in Eq. �12� connects to ↑
particles, the wriggly line denotes the ln�r��� 1

q2 � interaction,
i.e., the Coulomb interaction of 2D plasma, and there are two
kinds of vertices. For bosonic quasiparticles we have a vertex
that is equal to their densities, n↑ or n↓, but for fermionic
quasiparticles the value of the vertex is the static structure
factor of free Fermi gas, i.e., s↑�q� or s↓�q� for which we
have s↑�q�=s↑�q��q in the long wavelength limit. To calcu-
late the screening charges let us introduce two infinite sums;
the one for ↑ particles is depicted in Fig. 1 and equals

⇑ =
4s↑V

2n↑
2

1 − 2s↑V
→

q→0

− 2Vn↑
2, �13�

where V� 1
q2 , and similarly we have ⇓ for ↓ particles.

Using these infinite sums we are able to write the effec-
tive interaction between n↑ vertices in a compact form,

V�n↑,n↑� =
n↑Vn↑

1 − V�n + ⇑ + ⇓ �
+

⇑

1 −
⇑
n↑

+
n↑V ⇑ + ⇑ Vn↑

1 − V�n + ⇑ + ⇓ �
1

1 − 2
⇑
n↑

→
q→0

− n↑. �14�

In Eq. �14� we also stated the value of the interaction in the
long wavelength limit. The introduction of the infinite sums
comes naturally because of the type of intercorrelations that
exist in the electronic wave function. In this way we can
express the effective interaction between a bosonic and fer-
mionic ↑ vertex, V�n↑ ,s↑�, as

V�n↑,s↑� = n↑
2s↑V

1 − 2s↑V
+ V�n↑,n↓�

2s↑V

1 − 2s↑V
→

q→0

0, �15�

with 0 as the value in the long wavelength limit. Similarly
we have for the effective interaction between fermionic ↑
vertices,

V�s↑,s↑� = �s↑�2 2V

1 − 2s↑V
+ V�s↑,n↓�

2s↑V

1 − 2s↑V
→

q→0

− s↑�q� .

�16�

Now we can combine all these effective interaction expres-
sions to find out the screening charges with up pseudospin of
the meron excitation in Eq. �12�. The first contribution �	bb
in Fig. 2� is due to the meron connection to ↑ Bose quasi-
particles and, if we denote the direct interaction to ↑ Bose
quasiparticles by Vm� 1

q , it is

Vm + Vm

V�n↑,n↓�
n↑

→
q→0

0. �17�

Then the second contribution �	bf in Fig. 2� is through the
direct interaction to up Bose quasiparticles that ends up with
up fermionic quasiparticles; it is

Vm

V�n↑,s↓�
s↑

→
q→0

0. �18�

The third contribution �	 fb in Fig. 2� comes from the direct
connection to up fermionic quasiparticles that ends up with
up Bose quasiparticles. This contribution is similar to the
previous one and has the same limit. The last, fourth contri-
bution �	 f f in Fig. 2� connects through up Fermi quasiparti-
cles again up Fermi quasiparticles, and equals

Vm + Vm

V�s↑,s↓�
s↑

. �19�

This contribution is again equal to zero according to Eq. �16�
in the long wavelength limit.

For the meron screening by down quasiparticles we need
V�n↑ ,n↓� interaction, and similarly to the same pseudospin
interaction we get

V�n↑,n↓� =
n↑Vn↑

1 − V�n + ⇑ + ⇓ �
+

n↑V ⇓ + ⇑ Vn↓

1 − V�n + ⇑ + ⇓ �
1

1 − 2
�

n�

,

�20�

where � is ⇑ or ⇓ and n� is n↑ or n↓ whether we attach � to
the right-hand or left-hand side of a diagram, respectively. In
this way we get, in the long wavelength limit,

FIG. 1. The infinite sum of Eq. �13�

FIG. 2. The up density screening.
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V�n↑,n↓� →
q→0

0. �21�

Because of this, any contribution of the down screening
charges in which participate Bose quasiparticles is equal to
zero. In fact V�n↑ ,n↓� participate in each of four possible
contributions, see Fig. 3, leading us to the conclusion that
both 	↑ and 	↓ screening charges tend to zero in the long
wavelength limit. Therefore the screening charges are short
ranged and localized just as in the case of any one-
component quantum Hall system—a topological phase.

A comment is in order here. Although our plasma ap-
proach is straightforward and leads clearly to the localized
meron screening charges it does not automatically lead to an
overall finite meron excitation energy because we can draw a
conclusion only for the charging part of the energy �charge
�↑ and ↓� difference squared�. But it certainly signals a pos-
sibility for meron deconfinement.

B. The pseudospin degrees of freedom

Now, in the scope of already introduced Chern-Simons
theory, we want to investigate the pseudospin channel of the
state in Eq. �11�. In particular we want to know whether the
pseudospin degrees of freedom are compressible and support
a gapless mode. For this we need a variant of the Chern-
Simons theory introduced in Eq. �7� for the first state intro-
duced in Eq. �3�. In this case we have four gauge fields
ai

F� ,ai
B� ; i=0,1 ,�= ↑ ,↓,

�� � a�F� = 2��2	F� + 2	B�� ,

�� � a�B� = 2��2	F� + 	B↑ + 	B↓� , �22�

acting on �� and ��, Fermi and Bose fields, respectively. In
fact, as can be easily seen, we have only three independent
gauge fields ac= aB↑+aB↓

2 = aF↑+aF↓

2 , afs= aB↑−aB↓

2 , and as= aF↑−aF↓

2 ,
and, therefore,

ika1
fs

2�
= 	F↑ − 	F↓ �23�

and

ika1
s

2�
= 	↑ − 	↓. �24�

Then, similarly as before, we can write down the effective
Lagrangian for the pseudospin part,

Lps =
1

2�
a0

s ika1
fs +

1

2�
a0

fsik�a1
s − a1

fs�

−
1

2
� k

2�
�2

Vs�a1
s �2 + �a0

s �2K00 + �a1
s �2K11 + �	sB0

+
1

4

m
2

	̄bk2 ��	s
b�2 − a0

fs�	s
b −

	̄b

m
�a1

fs�2. �25�

We first integrate out a0
fs, which gives us the expected con-

straint on the pseudospin density of bosons, �	s
B. Using this

constraint and then integrating out a1
fs and a1

s we get for the
pseudospin density-density response the following expres-
sion:

Leff =

1

2
� k

2�
�2

B0
2

W4 + � k

2�
�2

Vs − 2K11 −
1

2

m
2

	̄b�2��2

, �26�

where

W4 = −
�1

2

m
2

	̄b
2�2��2�2

� k

2�
�2 1

2K00
−

1

2

m
2

	̄b�2��2 +
2	̄b

m

. �27�

First in the limit 
→0 �and then k→0� we see that the
system is compressible. Second, taking into account that

K11 � −
k2

12�m
+ i

2	̄ f

kF




k
, �28�

we see that the pseudospin gapless mode, in the case of the

�111� state simply 
o=�2Vs

m 	̄bk, does not exist as an eigen-
mode in this case. It is nearly so if we have in mind that the
fraction of bosons in this state is to be considered small, and
so is the imaginary part of K11 when for the frequency we
consider the one that takes to zero the real part of the de-
nominator in Leff.

In fact also for the state in Eq. �3� we find that there is a
pseudospin eigenmode with a dispersion relation 
=
o�k�
+ ick3 where c is a constant. Therefore it is slightly dissipa-
tive what we do not expect from the Goldstone mode.4 In the
following section we will consider the variational construc-
tions, Eq. �3� and Eq. �11�, with p pairing of composite fer-
mions, introduced in Ref. 16, that cures the dissipation prob-
lem of the construction in Eq. �3� and leads, as we will show,
to incompressible behavior also in the pseudospin channel of
the state in Eq. �11�.

FIG. 3. The down density screening
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IV. COMPOSITE FERMION PAIRING AND A POSSIBILITY
FOR A PSEUDOSPIN LIQUID

In Ref. 16 p-wave CF pairing was proposed as a way of
lowering ground state energy of the state in Eq. �3�. That was
explicitly shown on a basis of Monte Carlo calculations in
which the paired states are excellent variational ansatzes with
respect to the true ground states. In the context of the phe-
nomenological Chern-Simons theories based on the proposed
wave functions it is not hard to show that in the case of
p-wave CF pairing the state in Eq. �3� acquires a pseudospin
mode without an imaginary term which must be then a Gold-
stone mode predicted by the theory of the ordered state for
small d.4

The calculation begins by noting that p-wave pairing of
CFs is simply a condensation into “11-1” state by the way of
the Cauchy identity,

�
i�j

�wi↑ − wj↑��
k�l

�wk↓ − wl↓��
p,q

�wp↑ − wq↓�−1

= det� 1

wp↑ − wq↓
� . �29�

In fact, as stated in Ref. 16, the p pairing they found is with
the pairing function g�w�� 1

w* , i.e., a px− ipy instead of px

+ ipy pairing, and in the context of the Chern-Simons theory
that means that the gauge fields on CFs acquire negative
sign, so that in the end we have

ik

2�
a1

F� =
ik

2�
a1

B� = 	�
F + 	−�

F + 	�
B + 	−�

B . �30�

Then it is easy to show, similarly as before, by integrating
out �	s

F and �	s
B, in the pseudospin channel, that the Gold-

stone mode has dispersion 
�k�=�2Vs

m �	̄b+ 	̄ f� ·k. We get the
same result if we consider px+ ipy pairing instead of px− ipy.

On the other hand, if we consider the state in Eq. �11�
with Fermi-type intercorrelations between the Fermi and
Bose part and introduce the px− ipy pairing between CFs, in
the CS language we have

ik

2�
a1

F� = 	�
F + 	−�

F + 2	�
B �31�

and

ik

2�
a1

B� = 	�
B + 	−�

B + 2	�
F, �32�

i.e., ik
2�a1

fs=	1
F−	2

F and ik
2�a1

s =	1
B−	2

B. Then the pseudospin
part of the effective Lagrangian is

Lps
eff =

1

2�
a0

s ika1
fs +

1

2�
a0

fsika1
s +

1

4

m
2

	̄Bk2 ��	s
B�2 − a0

fs�	s
B

−
	̄B

m
�a1

fs�2 +
1

4

m
2

	̄Fk2 ��	s
F�2 − a0

s�	s
F −

	̄F

m
�a1

s �2

−
1

2
� k

2�
�2

Vs�a1
s + a1

fs�2 −
ik

2�
�a1

s + a1
fs�Bo. �33�

In few steps, by reducing Lps
eff into an effective, quadratic

expression in Bo we can find out the density-density cor-
relator. It vanishes in the k→0 limit and signals that the state
in Eq. �11� in which CFs pair is an incompressible state. It is
our expectation that in this state exist four kinds of merons,
characteristic also to the ordered pseudospin state. Therefore
the state, if a ground state of an electron system, should
represent a quantum Hall, i.e., in the low-energy limit, a
topological phase.

Even in existing numerical work we find a support for our
expectation. In Ref. 17, in the data that represent the excita-
tion spectrum of the bilayer �=1 system at d=1.5lB �lB is the
magnetic length�, i.e., in the transition region, obtained by
exact diagonalization on a torus, we can see signatures of the
nearby topological phase. Namely, in the low-lying spectrum
dissociated from the Goldstone mode excitations, exists a
fourfold degenerate energy level that we expect represents
expected four ground states on the torus of the topological
theory.18 �We do not interpret these states as ordered spiral
states as in Ref. 17 because no nearby, low-lying excitations
can be seen in the existing data.� Because of the importance
of the intralayer correlations in the transition region, the
mixed state with Fermi-type intercorrelations between the
Bose and Fermi part should compete with the true ground
state and is very relevant to the physics of the region. The
topological theory in question is U2�1� � U2�1� because it
supports two kinds of semionic quasiparticles.18 �Meron frac-
tional statistics is semionic.� On the other hand, the counter-
flow experiments2,3 do not support a “perfect” superfluid sce-
nario with a Kosterlitz-Thouless transition. Instead the data
on the counterflow longitudinal resistance show an activated
behavior, for a range of higher temperatures, very similar to
the usual data of a quantum Hall phase. Therefore it might be
that due to an increased importance of the intralayer correla-
tions in the counterflow experiments, the topological phase
stabilizes and with it a gapped behavior even in Hall
resistance.2,3 Because of the nonchiral flow of the currents in
the experiment the relevant topological theory should be
U2�1� � U2�1� double nonchiral pseudospin liquid. The
theory is invariant under combined time reversal and Z2, an
exchange of layer indicies, operations implied by the experi-
mental setup. Furthermore it is well known that the zero-bias
peak in the tunneling conductance is not as of the usual
Josephson effect in superconductors due to dissipation. The
reason for this should also be found in the physics of the
state in Eq. �11� that incorporates the effect of the increased
intralayer correlations in the transition region in which the
experiment occured.

V. DISCUSSION: PHASE DIAGRAM FROM THE
WAVE-FUNCTIONAL APPROACH

When we take into account what we found out in the
preceding sections, in the scope of the wave-functional ap-
proach, the phase diagram, in the absence of disorder, may
well have an intermediate phase between the superfluid
phase and the two decoupled Fermi-liquid-like phases. The
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wave-functional approach tells us �Secs. III and IV� that in
the intermediate phase the pseudospin stiffness may go to
zero �meron deconfinement� but the density of composite
bosons stays finite. The density of bosons disappears at the
transition to the two decoupled CF Fermi seas.

This scenario of the influence of quantum disordering in a
superfluid is often described as a result of creation of vortex-
antivortex pairs �loops� that cause phase fluctuations. The
phase fluctuations may cause the disappearance of the super-
fluid long range order, but may leave the ordering amplitude
�boson density� nonzero. In the Appendix we will argue that
creation of �2+2� CFs in the �111� condensate of CBs as in
the construction in Eq. �3� can be viewed as creation of two
closely spaced pairs of merons. Each pair consists of two
merons of the same vorticity but opposite charge. On the
other hand, the creation of �2+2� CFs in the condensate of
CBs as in the construction in Eq. �11� leads to meron pairs
that are not closely spaced inside each pair. �The construc-
tion in Eq. �11� suits the increasing intralayer correlations
with d.� This motivates a picture of the intermediate phase as
either a condensate of closed meron-antimeron loops of any
size—a pseudospin liquid 18 �Sec. IV� or a soup of dissoci-
ated meron-antimeron pairs �loops�, i.e., a vortex metal �Sec.
III�. The presence of disorder may stabilize the vortex metal
phase as in Fig. 4, or maybe a phase separated version.19

VI. CONCLUSION

By systematically investigating possible candidates for
ground state wave functions for the bilayer �=1 system we
reached the conclusion that the ordered state that supports a
Goldstone mode in the pseudospin channel for general d can
be described as a mixture of CBs and p-paired CFs with
dominant Bose �111� type intercorrelations between the two
components. Because of the increasing intralayer correla-
tions with d, a state that competes with the ordered one can
be described as a mixture of CBs and p-paired CFs with
dominant Fermi-type intercorrelations between two compo-
nents. This state that describes a topological phase with four
gapped meron quasiparticles may cause �already observed�
activated �decaying exponentially with a gap� behavior of the
counterflow longitudinal and Hall resistances at higher tem-
peratures. At lower temperatures, because of the presence of
disorder, a compressible in the pseudospin channel version of

this state, a vortex metal, may come out and cause the ob-
served phenomenology of the bilayer “imperfect superfluid.”

There is a vast literature on the bilayer. We are planning a
separate paper on the features of the vortex metal phase and
comparisons to the previous, experimental and theoretical
work. Here we will mention only theoretical work that like
ours stresses the importance of the interactions and quantum
disordering. In Ref. 20 an excitonic square lattice solid phase
was proposed. Here we discussed only translationally invari-
ant, homogenous possibilities and inhomogenous states, Ref.
20, may also come as candidates. �The inhomogenous, phase
separated version of the mixed CB-CF states was first pro-
posed in Ref. 21 before the homogenous kind.5� In Ref. 22
interactions only drive a phase transition into a state with
algebraic �quasi-�long-range superfluid order. The numerics,
without impurities and not biased by boundary conditions
and special number of electrons to the Wigner crystal forma-
tion, Ref. 17, tells us that only the true superfluid order exists
in the pertinent experimental region. Therefore we want to
stress again what our work suggests. Quantum disordered
states �“double pseudospin liquid”� are nearby the true super-
fluid ground states for distance between the layers pertinent
to the experiments. We need also impurities to stabilize a
version of these disordered states, “vortex metal state,” at
lower temperatures. Quantum disordering caused by interac-
tions is necessary but not a sufficient condition for the ex-
planation of the dissipative phenomenology of the experi-
ments.
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APPENDIX

In this Appendix we will give arguments that the four
�2+2� CF inclusion into the �111� state, i.e.,

S↑��z1↑ − z2↑��exp�ik�z�1↓� − exp�ik�z�2↓���

� S↓��z1↓ − z2↓��exp�ik�z�1↓� − exp�ik�z�2↓����111,

�A1�

where S↑ and S↓ are symmetrizers inside each layer, and we
omitted for the sake of simplicity the overall projection to
the LLL, corresponds to two meron pairs, of opposite �up
and down� vorticity. Inside each pair merons have the same
vorticity but opposite charge. Therefore the two meron con-
structions that can act on the �111� state and produce such a
pair is �see Eq. �12��

FIG. 4. The possible phase diagram of the bilayer as a function
of the distance between layers in the presence of disorder at zero
temperature.
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Ŝ↑�w1�Ŝ↑�w2� � �
i

zi↑ − w1

�zi↑ − w1�
exp�− �

i

C

2�zi↑ − w1��
� �

j

zj↑ − w2

�zj↑ − w2�
exp��

j

C

2�zj↑ − w2�� ,

�A2�

and analogously for the down pair. These expressions are
effective, i.e., valid in the long distance approximation. Nev-
ertheless in this Appendix we will take that they are qualita-
tively correct even for shorter distances. Then in the quasi-
particle �“fractional statistics”� representation23 the wave
function that describes the two merons in Eq. �A1� is

��w1,w2� = �w1 − w2�−1/2f�w1,w2� , �A3�

where due to the mutual semionic statistics between quasi-
particles we have the difference, �w1−w2�, to the power − 1

2 ,
and f�w1 ,w2� is a symmetric function of coordinates, in our
case,

f�w1,w2� = �exp�ik�w� 1� − exp�ik�w� 2��
�w� 1 − w� 2�
�w� 1 − w� 2�

. �A4�

There are no Gaussian factors because, when calculated, the
interaction of a meron with a positive background of the
corresponding plasma,

	 d2z
1

�z − w�
exp�−

�z�2

2
� , �A5�

is a bounded function of w, and when exponential gives a
factor that weakly depends on w.

To get the wave function in terms of electronic coordi-
nates we must calculate23

	 d2w1	 d2w2
1

�w1 − w2�
f�w1,w2�Ŝ↑�w1�Ŝ↑�w2�

�	 d2w3	 d2w4
1

�w3 − w4�
f�w3,w4�Ŝ↓�w3�Ŝ↓�w4��111.

�A6�

The combined exponentials in the two meron construction
can be expanded as in the following:

exp��
i

C

2�zi↑ − w2��exp�− �
i

C

2�zi↑ − w1��
= 1 +

C

2 �
i

�z�i − w� 1���

�z�i − w� 1�2�z�i − w� 1�

−
C

2 �
i
� ��2

�z�i − w� 1�2�z�i − w� 1�
+ 3

�z�i − w� 1���

�z�i − w� 1�4�z�i − w� 1�
�

+
1

2!
�C

2
�2

�
i

��z�i − w� 1����2

�z�i − w� 1�6 +
1

2!
�C

2
�2

��
i�j

�z�i − w� 1��� · �z� j − w� 1���

�z�i − w� 1�2�z�i − w� 1��z� j − w� 1�2�z� j − w� 1�
+ o����3� ,

�A7�

where �� =w� 2−w� 1, and for the sake of clarity we suppressed
the up arrow. To the same order of accuracy we can rewrite
the above expression as

1 +
C

2 �
i

�z�i − w� 2���

�z�i − w� 2�2�z�i − w� 2�

+
1

2!
�C

2
�2

�
i

�z�i − w� 1��� · �z�i − w� 2���

�z�i − w� 2�2�z�i − w� 1��z�i − w� 1�2�z�i − w� 2�

+
1

2!
�C

2
�2

�
i�j

�z�i − w� 1��� · �z� j − w� 2���

�z�i − w� 2�2�z�i − w� 1��z� j − w� 1�2�z� j − w� 2�
.

�A8�

The contribution of the first two terms must be negligible or
zero after the integration over w� 1 and w� 2 which brings aver-
ages of random phases with respect to electron distributions
encoded in �111. The contribution of the third term, after
picking sigularities at zi, is identical to zero, but the contri-
bution of the fourth term, after picking up singularities at zi↑
and zj↑ is

f�zi↑,zj↑��zi↑ − zj↑��
k�i

�zk↑ − zi↑�
�zk↑ − zi↑�

�
l�j

�zl↑ − zj↑�
�zl↑ − zj↑�

. �A9�

for the up part of the construction in Eq. �A6�. We get a
similar contribution for the down construction, and therefore,
up to some phase factors, we get Eq. �A1�. The phase factors
are there to ensure the right flux count through the system,
the problem we neglected by writing our wave functions �Eq.
�3� and Eq. �11�� in the thermodynamic limit.

By examining �2+2� CF construction in which Fermi-
type intercorrelations are dominant, i.e., the one as the con-
struction in Eq. �11� for �2+2� CFs, we can find out that the
small distance approximation as in Eq. �A8� is not appli-
cable. Moreover its form suggests that much higher order
terms of the expansion in Eq. �A7� are relevant, and therefore
two merons are well separated in this construction.
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