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Invariant structure of the hierarchy theory of fractional quantum Hall states with spin

M. Milovanović* and N. Read
Departments of Physics and Applied Physics, P.O. Box 208284, Yale University, New Haven, Connecticut 06520

~Received 21 November 1996!

We describe the invariant structure common to Abelian fractional quantum Hall effect systems with spin. It
appears in a generalization of the lattice description of the polarized hierarchy that encompasses both partially
polarized and unpolarized ground-state systems. We formulate, using the spin-charge decomposition, condi-
tions that should be satisfied so that the description is SU~2! invariant. In the case of the spin-singlet hierarchy
construction, we find that there are as many SU~2! symmetries as there are levels in the construction. Various
formalisms used before for hierarchies~field-theoretic, algebraic, and wave functions! are also used to show the
existence of a spin and charge lattice for the systems with spin. The ‘‘gluing’’ of the charge and spin degrees
of freedom in their bulk is described by the gluing theory of lattices. The low-energy field theories and
corresponding quantum Hall lattices should serve as a starting point for the discussion of the stability of these
systems.@S0163-1829~97!06624-1#
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I. INTRODUCTION

Not long after Laughlin proposed a theory1 for the frac-
tional quantum Hall effect~FQHE! at filling fraction
n51/q, q odd, the hierarchy theory2,3 was proposed as a
explanation of the occurrence of the FQHE at filling fracti
p/q whenp is not 1 andq is, as in the Laughlin case, an od
integer. It describes new ground states of these system
hierarchies of Laughlin states of quasiparticles; at each le
the source of the quasiparticles is the Laughlin state of
previous level. Some time later Jain proposed
construction4 of some of these FQHE states as filled Land
levels of composite fermions, i.e., integer quantum H
states of particles that are electrons with an even numbe
flux quanta attached. We can view this construction also
some kind of hierarchy and, indeed, in Ref. 5 it was prov
that various constructions~the standard hierarchy that w
mentioned first, the Jain construction! are different descrip-
tions of a single underlying physical theory. This theory
described as a lattice of excitations,5 which contains all in-
formation about the quantum numbers and statistics of q
siparticles and properties of the edge states.

If we introduce an additional, spin or pseudospin, deg
of freedom, we can construct two-component~ground!
states, Halperin states,6 which are simple generalizations o
the Laughlin state. Some of the Halperin states that are
singlets ~i.e., unique states with respect to the total sp!
might describe the systems for whichSW tot

2 andStot
z are good

quantum numbers, and Zeeman energy is small.7 A hierarchy
of these states, as an analog of the standard hierarchy in
completely spin-polarized case, was first described in Re
From the field-theoretical point of view, in the context of
very general formulation of the FQHE with the spin degr
of freedom, it was also described in Ref. 9. On the ot
hand, the Halperin states contain a very simple spin-cha
decomposition,10 which realizes itself on the edge, and whic
served as a starting point for a hierarchy in Ref. 11. Ja
construction of spin-singlet states4 uses Landau levels filled
with composite fermions of both spins. Naturally, this can
560163-1829/97/56~3!/1461~11!/$10.00
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extended to partially polarized states with more Landau l
els of one-spin particles than of the other.4,12Some principles
of the spin-singlet hierarchy construction were discussed
Ref. 13 also.

The goal of our paper is to show the existence of a ba
independent description of systems with spin degree of fr
dom, regardless of whether their ground states are part
polarized, unpolarized, or spin singlet. But, in the process
achieving this, we use the spin-charge decomposition
find a structure of excitations common to all of them, whi
is interesting in its own right.

After a review of the Halperin states in Sec. II, in Sec.
we concentrate on the hierarchy spin-singlet systems. At
beginning, the first-level hierarchy of a general, tw
component system with the~pseudo! spin degree of freedom
is presented, based on the dual bosonic Chern-Simons
theory. Then the spin-charge decomposition is introduc
and a kind of ‘‘gluing’’ between the charge and spin degre
of freedom of the excitations in the bulk of these systems
described. This leads to information about the excitation
tice in this case. The lattice can be easily identified a
special case of composite lattice constructions known
mathematics as ‘‘gluing theory.’’14 We describe it togethe
with a lattice, which lies in the excitation lattice, that corr
sponds to the order parameters of the systems. Also, in
context of the spin-charge decomposition, we use the inv
ance under change of hierarchy basis to formulate the s
singlet condition. One of the bases is identified as the b
of Jain’s construction. The most important feature of the
erarchy of spin-singlet states, which the lattices incorpor
is the existence of as many independent SU~2! symmetries as
there are levels in the hierarchy constructions. Sections
and V describe, in the new formalism, a generalized sp
singlet hierarchy and the hierarchy of partially polariz
states, respectively.

II. HALPERIN STATE AND GLUING
OF CHARGE AND SPIN

An extension of the Laughlin state to two-component s
tems in the plane is the Halperin state,6 given by
1461 © 1997 The American Physical Society
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Cmmn~z1↑•••zN↑,z1↓•••zN↓!

5)
i, j

~zi↑2zj↑!
m3)

k, l
~zk↓2zl↓!

m)
r,s

~zr↑2zs↓!
n,

~2.1!

for two components↑ and↓. It is assumed thatN↑5N↓ ; i.e.,
the state is unpolarized. It describes fermions ifm is an odd
~positive! integer. ~The exponential factors are omitted fo
simplicity.! In the casem5n11, this state represents
ground spin-singlet state of a system with spin. If not oth
wise specified, we will keepm andn general in the follow-
ing. The pseudospin of two-component systems will also
called spin for short. In Eq.~2.1! we use, as is customary, th
shortened form of the complete wave function, which wou
include spin vectors and overall antisymmetrization. T
quasihole excitations carry spin 1/@2(m2n)#, which repre-
sents the net spin localized in the region around the qu
hole. They carry21/(m1n) ~quasiholes! or 11/(m1n)
~quasielectrons! unit of the electric charge. ForSz
51/@2(m2n)#, whereSz is the z component of the quasi
hole spin, and in the case whenm2n51, a single quasihole
excitation can be given by7

)
i51

N↓

~zi↓2w!Cmmn, ~2.2!

and analogously forSz521/@2(m2n)#521/2. For general
m andn, Eq. ~2.2! must be generalized to the one that i
cludesum2nu excitations.

The description of the system with each particle havin
definite spin polarization can be given by an effective Che
Simons theory15 also, in the so-called U~1! 3 U~1! formula-
tion with two Abelian gauge fieldsa↑

m anda↓
m .16 The Chern-

Simons constraints that it contains are

¹W 3aW ↑52p~mr↑1nr↓! ~2.3!

and

¹W 3aW ↓52p~mr↓1nr↑!, ~2.4!

which are simple generalizations of the constraint in
Laughlin case (¹W 3aW 52pmr). (r↑ andr↓ are the densities
of the up and down electrons, respectively.! The field theory
can be also expressed in terms of

ac
m5

a↑
m1a↓

m

2
and as

m5
a↑

m2a↓
m

2
, ~2.5!

which are charge and spin gauge fields, respectively. T
flux is connected with the charge and spin of the system
can be seen from the previous equations. The Lagran
density of the theory is then given by
-

e

e

i-
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e
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L5(
s

iCs
†~]01 i ~ac01sas0!2 iA0!Cs

1(
s i

1

2M
Cs

†@] i1 i ~aci1sasi!2 iAi #
2Cs

1
1

4p

2

m1n
emnlacm]nacl1

1

4p

2

m2n
emnlasm]nasl ,

~2.6!

where i5x,y andCs (s51 and 2 for ↑ and ↓) is a
bosonic field that represents the electron field up to the
tistical transformation embodied inL. ~For simplicity we
omitted the interaction and Zeeman-energy term.!

A vortex excitation of finite energy, in a charged boson
system, can occur only if it is accompanied by an increas
the flux of the gauge fields (a↓

m or a↑
m) in the amount of an

integer number of flux quanta; the flux quantum is 2p in our
units. To describe the excitations, we can integrate Eqs.~2.4!
and ~2.3!, and relate the total changes in the flux ofac and
as fields,Fc andFs , respectively, to the total local chang
in the charge and spin,Qc andSz5Qs/2, respectively:

2Qc1
1

2p

2

m1n
Fc50 and 2Qs1

1

2p

2

m2n
Fs50.

~2.7!

Taking four choices for (Fc ,Fs), (p,p),
(p,2p), (2p,p), and (2p,2p), gives four elementary
excitations with the same quantum numbers as in the wa
function approach; (Qc ,Qs)5@1/(m1n),1/(m2n)],
@1/(m1n),21/(m2n)], @21/(m1n),1/(m2n)],
@21/(m1n),21/(m2n)], respectively. Note that the half
flux quantum changes inFc or Fs cannot occur indepen
dently, which is an expression of the charge-spin confi
ment, i.e., ‘‘gluing,’’ in the bulk of the system. Larg
vortices carry fluxes (ap,bp) where a1b is even. The
Aharonov-Bohm-Berry phaseu for an interchange of two
vortices, with charges and fluxes, (Qc

1 ,Qs
1) and (Fc

1 ,Fs
1) for

vortex 1, and (Qc
2 ,Qs

2) and (Fc
2 ,Fs

2) for vortex 2, is given
by

u

p
5Qc

1
Fc

2

2p
1Qs

1
Fs

2

2p
. ~2.8!

If we interchange two elementary vortices of the same k
the phase or statistical angle is

u5
m

m22n2
p. ~2.9!

We may conclude also that the excitations with flux
@6p(m1n),6p(m2n)# are equivalent to one-electron ex
citations, which can be particles or holes of either sp
Sz561/2.

Even for systems as simple as these Halperin states
may find the lattice structure of excitations mentioned in
Introduction. The excitations can be represented as vec
associated with points of a two-dimensional lattice w
components being integers,a5Fc /p and b5Fs /p, in a
basis. The expression for the statistical angle~2.8! defines
the scalar product in this lattice. For two vecto
v15(a1 ,b1) andv25(a2 ,b2), it is
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v1•v25
a1a2

2~m1n!
1

b1b2
2~m2n!

. ~2.10!

We see that the basis used here,e15(1,0), e25(0,1), is
orthogonal; however, these vectors,e1 ,e2, are not in the lat-
tice as they fail to satisfy the conditiona1b5 even. The
condition expresses the fact that the excitation lattice i
special composite of two one-dimensional lattices, one
charge and one for spin.~We defer a complete description o
the gluing construction to Sec. III A, and, here, we give on
a simplified version of it.! The charge and spin lattice poin
are (a,0),a50,61,62, . . . and (0,b),b50,61,62, . . . ,
respectively and, in general, they do not belong to the e
tation lattice. The gluing of the two lattices is specified by
rule that we impose on possible combinations of points fr
the lattices. In our case the rule isa1b5 even.

One way to define the charge and spin lattices is to c
sider the sublattice of the excitation lattice connected w
the order parameters of the system.5 For Halperin states the
order-parameter excitations are specified by vect
v5@(m1n) i ,(m2n)k# for which i1k5even. The excita-
tions represent multiples of one-electron excitations, wh
can be particle or hole withSz561/2. The sublattice tha
they make can be defined as dual to the excitation lattice,
the one whose vectors have integer scalar products@see Eq.
~2.10!# with all other vectors of the excitation lattice. Then,
is appropriate to define the charge and spin lattices in
sublattice as those with charge only and spin only ord
parameter excitations, i.e., those defined by vect
vc5@(m1n) i ,0#, i5even, and vs5@0,(m2n)k#, k5
even, respectively. Their dual lattices are the ones that
used in the preceding description of the gluing.

The Halperin states are the simplest example of the glu
construction.@A description of the lattices specialized to th
~3,3,1! Halperin state was also given in Ref. 17.#

By some standard transformations~see, for example, Ref
18!, we can transformL into the one that describes the du
Chern-Simons theory. In the dual theory in the Laugh
case, the vortex excitations~i.e., fluxes previously! are now
to be viewed as particles, and what was the particle cur
density becomes flux of some gauge field. In its low-ene
limit the Lagrangian of the dual theory in our case is

L52J m
s As

m2
~m2n!

2p
emnlAsm]nAsl2J m

c Ac
m

2
~m1n!

2p
emnlAcm]nAcl1

1

p
emnlAm

ext]nAcl .

~2.11!
a
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The original charge and spin current densities ,Jm
c andJm

s ,
respectively, are now given by

Jc
m5emnl

]nAcl

p
, Js

m5emnl
]nAsl

p
. ~2.12!

The currents,J m
c and J m

s , represent the charge and sp
current densities of the quasiparticles, respectively. Th
currents are measured in the units of charge and spin equ
the elementary quasiparticle charge and spin. To have a c
plete low-energy theory of the FQHE we must also impo
the gluing among these quasiparticles, i.e., specify wh
fused combinations of them are allowed.

In the SU~2!-invariant case, wherem5n11, this dual
theory can be replaced by an explicitly SU~2!-invariant field
theory by introducing, instead of Abelian gauge fieldAsm , a
non-Abelian gauge fieldAm5Am

a ta where ta,a51,2,3 are
Pauli matrices. Then, instead of the Chern-Simons term

~m2n!

2p
emnlAsm]nAsl , ~2.13!

with Asm , in the SU~2! gauge-invariant theory, we have th
SU(2)k Chern-Simons term wherek51,19,20 i.e.,

k

4p
emnltr~Am]nAl1 2

3AmAnAl! . ~2.14!

This identification of two theories is possible becau
SU(2)k51 Chern-Simons theory has only excitations wi
Abelian statistics21 and, therefore, can be formulated also
the Abelian way with one Abelian gauge field.

III. SPIN-SINGLET HIERARCHY OF HALPERIN STATES
AND GLUING THEORY

A. Hierarchy of Halperin states and gluing theory

It is straightforward to derive the dual Chern-Simo
theory Lagrangian of the hierarchy of the Halperin sta
where at each level quasiparticles combine into a new H
erin state. It is a simple generalization of the Lagrangian
the one-component hierarchy given in Ref. 22. The part
the Lagrangian for the first-level hierarchy that we will im
mediately use represents constraint conditions on~uniform!
charge current densities that define the ground state. Fo
sake of clarity we set current densities of vortex excitatio
to zero. The expression for this part of the Lagrangian is
L41emnl

1

2p
Aext

m ]n~A0↑
l 1A0↓

l !2
m0

4p
emnlA0↑

m ]nA0↑
l 2

m0

4p
emnlA0↓

m ]nA0↓
l 2

n0
2p

emnlA0↑
m ]nA0↓

l 2
n0
2p

emnlA0↓
m ]nA0↑

l

2
1

2p
emnlA0↑

m ]nA1↓
l 2

1

2p
emnlA0↓

m ]nA1↑
l 2

m1

4p
emnlA1↑

m ]nA1↑
l 2

m1

4p
emnlA1↓

m ]nA1↓
l 2

n1
2p

emnlA1↑
m ]nA1↓

l

2
n1
2p

emnlA1↓
m ]nA1↑

l , ~3.1!
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whereAext
m represents an external electromagnetic field, numbers 0 and 1 denote the levels of the hierarchy, and the

m andn are nowm0 andn0. The equations of motion obtained from Eq.~3.1! are

Nf5m0Ns
01n0N2s

0 1aN2s
1 ,

05Ns
01m1aNs

11n1aN2s
1 ~3.2!

with s5↑ or ↓, Ns
0 andNs

1 denote the total numbers of electrons and quasiparticles, respectively,a511 for quasiholes or
a521 for quasielectrons, andNf is the number of flux quanta through the system.m1 is an even integer because we consid
the quasiparticles as bosons.

By defining new gauge fields, analogously to what we did for a single Halperin state~2.5!, the Lagrangian density~3.1! can
be rewritten in a form with charge and spin variables only,

L52
~m02n0!

2p
emnlAs0

m ]nAs0
l 2

~m01n0!

2p
emnlAc0

m ]nAc0
l 1emnl

Aext
m ]nAc0

l

p
2

~m12n1!

2p
emnlAs1

m ]nAs1
l

2
~m11n1!

2p
emnlAc1

m ]nAc1
l 2emnl

ac0
m ]nAc1

l

p
2emnl

As0
m ]nAs1

l

p
2J_m

c0Ac0
m 2J_m

s0As0
m 2J_m

c1Ac1
m 2J_m

s1As1
m , ~3.3!
t t

t
qu
Eq

n
n
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st
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nl
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where we included also the vortex excitations with respec
the 0 and 1 levels described by current densitiesJ m

c0 and
J m

s0 , andJ m
c1 andJ m

s1 , respectively. As before the curren
densities are measured in the units of the corresponding
siparticle charge and spin. The form of the Lagrangian in
~3.3! suggests the definition of two matrices, charge

Lc5Sm01n0 1

1 m11n1
D , ~3.4!

and spin

Ls5Sm02n0 1

1 m12n1
D . ~3.5!

They are analogous to the one-dimensional ones,m01n0
andm02n0, for the Halperin state in Sec. II.

The elementary excitations from each level of the co
structed hierarchy are of the type discussed in the sectio
the Halperin state. Therefore, if we introduce vectors

Nc5SN0
c

N1
cD Ns5SN0

s

N1
sD ~3.6!

with entries denoting how many, with respect to the leve
or 1, quasiparticles that carry only charge (c) or only spin
(s) are created, no pair of these vectors represents a sy
excitation.~The entries can be negative, denoting the num
of quasiparticles with opposite charge or spin.! Because of
the gluing of these particles in the bulk of the system, o
integral linear combinations of the following elementary e
citations from the zeroth level of the hierarchy,

H S 10D
c

,S 10D
s
J , H S 10D

c

,S 21

0 D
s
J ~3.7!

and

H S 01D
c

,S 01D
s
J , H S 01D

c

,S 0

21D
s
J ~3.8!
o

a-
.

-
on

0

em
r

y
-

from the first level of the hierarchy, are allowed. If we d
note byx a vector from the charge part and byy a vector
from the spin part, the operations allowed on the vectors
Eqs.~3.7! and ~3.8! are

$x1 ,y1%1$x2 ,y2%5
def

$x11x2 ,y11y2% ~3.9!

and if a is an integer

a$x,y%5
def

$ax,ay%. ~3.10!

These are familiar operations for a direct sum of two vec
spaces. In addition, if the scalar product is defined by

$x1 ,y1%$x2 ,y2%5x1x21y1y2 ~3.11!

the direct sum is orthogonal.
To any excitation we can assign the corresponding cha

in fluxes in the dual Chern-Simons theory~3.3!. Then the
Aharonov-Bohm-Berry phase for an interchange of two ide
tical excitations gives the statistical angle for that excitat
and it is equal to

u

p
5Nc

Lc
21Nc

2
1Ns

Lc
21Ns

2
. ~3.12!

The charge density in the dual Chern-Simons theory~3.3!
can be read off as a coefficient in front ofAm

ext and is equal to

r5
1

p
emnl]nA0c

l . ~3.13!

~As before in the theory a unit of charge corresponds to h
of the flux quantum.! Therefore the charge of the excitatio
is given by
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Qc5~Lc
21!0INI

c , ~3.14!

and analogously the spin by

Sz5~Ls
21!0INI

s 1
2 . ~3.15!

We can rewrite the coupling between the charge density
external field23 as

rAext5
1

p
emnlAext

m ]nA0c
l 5

1

p
emnlAext

m (
i50,1

Vi]
nAic

l ,

~3.16!

where

V5S 10D . ~3.17!

Along with theS transformations the vectorV will change
~to leave the coupling invariant and characterize the natur
the coupling between the external fieldAm

ext and internal
gauge fields in a new basis!. Therefore, we may rewrite th
physical quantityQc in a basis-independent way as

Qc5VLc
21Nc, ~3.18!

and similar arguments lead to

Sz5VLs
21Ns 1

2 . ~3.19!

The given description of the excitations may lead to
conclusion that they are best described by an orthogona
rect sum of two two-dimensional lattices, one for spinLs*
and one for chargeLc* . With fixed bases in them
$ea

c ;a50,1% and $eb
s ;b50,1%, the excitations are given b

the integer vectors~3.6!, and their scalar products are defin
on these lattices with two Gram matrices, (Lc

21/2)ab

5ea
ceb

c and (Ls
21/2)ab5ea

seb
s . The Gram matrices are rea

off from the expression~3.12! for the statistical angle, which
plays the role of the scalar product for the vectors~3.6!. But,
as in the case of the systems with the Halperin ground sta
the excitation lattice is the result of the gluing constructio
and it is a sublattice of this direct sum. Because of the
quirement for the flux quantization, only vectors~3.6! whose
components satisfy conditions,

N0
c6N0

s5even, N1
c6N1

s5even, ~3.20!

belong to the excitation lattice.
The order-parameter lattice is a sublattice of the excita

lattice, and can be defined in the following way.~Note that
we use the words ‘‘the order-parameter lattice’’ instead
‘‘the condensate lattice’’ of Ref. 5.! If, in the standard-
hierarchy basis, we define the vectorW,

W5S 01D , ~3.21!

the numbers

Qqp5WLc
21Nc, Sz

qp5~WLs
21Ns!/2 ~3.22!

have the meaning of the quasiparticle charge and spin. T
the order-parameter lattice consists of points whose vec
d

of

e
i-

s,
,
-

n

f

en
rs

Nc and Ns satisfy conditions Q62Sz5even and
Qqp62Sz

qp5even~whereQ, 2Sz , Qpq, and 2Sz
qp are inte-

gers!. Using this definition and the definition of the scal
product ~3.12!, we can see that the dual of the orde
parameter lattice is the excitation lattice. Namely, all vect
Nc andNs, which have integer scalar products with all ve
tors of the order-parameter lattice, satisfy the conditio
~3.20!.

Two sublattices can be defined in the order-parameter
tice: the charge latticeLc , for which Q is even,
2Sz50, Qqp is even, and 2Sz50, and the spin latticeLs ,
for which Q50, 2Sz is even,Qqp50, and 2Sz is even.
The dual charge latticeLc* consists of arbitrary integer
componentNc vectors, andNs5(0

0), and the dual spin lattice
Ls* hasNc5(0

0) and arbitrary integer-componentNs vectors.
We used these two lattices,Lc* andLs* , to describe the glu-
ing construction. Because their Gram matrices areLc

21/2 and
Ls

21/2, the Gram matrix for the charge latticeLc is 2Lc , and
for the spin latticeLs is 2Ls .

14

The gluing construction of lattices can be defined in
basis-independent way on a small number of vectors. In
following we will define14 such a construction for an integra
lattice, i.e., the one with an integer scalar product or inte
Gram matrix.14 The lattice L constructed by the gluing
theory contains a sublattice that is a direct sum

L1%L2 ~3.23!

of two integral sublatticesL1 and L2. Any vector ofL can
be written as

y5y1%y2 , ~3.24!

where each componentyi belongs toLi* , the dual lattice of
Li . Therefore,yi is not necessarily inLi . To classify candi-
dates foryi we may consider the sets obtained by adding
eachyi all vectors fromLi . Thenyi in Eq. ~3.24! are repre-
sentatives of the cosets ofLi in Li* . y’s must have integer
scalar products with one another, and are closed under a
tion moduloL11L2. They are known as glue vectors.

We may identify our order-parameter lattice constructio
with the basis-independent, abstract notion of the gluing
two integral latticesLc andLs ~which play the roles ofL1
andL2 in the preceding paragraph!. As we already said, in
the standard-hierarchy basis the matrices 2Lc and 2Ls @see
Eq. ~3.4! and~3.5!# are the Gram matrices of the two integr
lattices Lc and Ls . If a1c and a2c denote the standard
hierarchy basis vectors of the latticeLc , the matrix 2Lc
encodes information about their scalar products in the
lowing way:14

2Lc5S a1c•a1c a1c•a2c
a1c•a2c a2c•a2c

D . ~3.25!

Therefore, ife15(1,0) ande25(0,1) are the orthogonal ba
sis vectors with unit norms, the vectorsa1c anda2c can be
expressed as

a1c5A2~m01n0!e1 ~3.26!

and
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a2c5A 2

m01n0
e11A 2Dc

m01n0
e2 , ~3.27!

whereDc5detLc . The dual~excitation!-lattice basis vectors
are

b1c5A 1

2~m01n0!
e12A 1

2Dc~m01n0!
e2 , ~3.28!

and

b2c5A~m01n0!

2Dc
e2 . ~3.29!

~They are obtained from the requirement that any dual-lat
vector v5pe11qe2, p and q, in general, rational, has a
integral scalar product with vectorsw5ka1c1 la2c , k and l
integer, of the integral latticeLc .) We may check that the
volume of the elementary integral-lattice (Lc) cell is
4Dc5det$2Lc% times larger than the volume of the eleme
tary dual lattice cell, i.e.,

ua1c3a2cu
ub1c3b2cu

54Dc . ~3.30!

This is one way to see that there are det$2Lc%, i.e., the de-
terminant of the integral-lattice Gram matrix, coset repres
tatives ofLc in Lc* .

14 To find a complete set of them, w
require that

0<v•e1,a1•e1 , 0<v•e2,a2•e2 , ~3.31!

that is, we look for all that are in the volume of the integra
lattice (Lc) elementary cell. To give an example, we speci
ize to the case for whichm01n051. Taking the conditions
~3.31! into account, we get

S 00D
c

,S 01D
c

, . . . ,S 0

2~m11n1!23D
c

, ~3.32!

and

S 11D
c

,S 12D
c

, . . . ,S 1

2~m11n1!22D
c

~3.33!

as a set of the coset representatives ofLc in Lc* . „There are
4@(m11n1)21#54Dc of them.… The components of the
vectors are defined relative to the dual-lattice (Lc* ) basis vec-
tors (b1c andb2c). The analysis for the spin lattices can b
repeated in a similar way and the results only differ from
charge case in that we have to change the sign ofni ,
i50,1. For this special case (m06n051) the glue vectors
from the definition of the gluing construction are
e

-

-

e

S 00D
c

% S 00D
s

, S 11D
c

% S 11D
s

,

S 0

~m11n1!21D
c

% S 0

~m12n1!21D
s

,

S 1

m11n1
D
c

% S 1

m12n1
D
s

, ~3.34!

where we also assumed thatm11n1 is an even number. The
last assumption is appropriate, as we will see, in the cas
the spin-singlet constructions. The glue vectors satisfy
gluing rule that we found considering the elementary exc
tions of the first-level hierarchy; we glue only those cos
representative vectors for which components for each hie
chy level ~in the standard-hierarchy basis! are both even or
both odd integers. They have integral norms, integral sc
products with one another, and are closed under addi
modulo Lc%Ls . All other vectors of the order-paramete
lattice L are obtained by adding the ones fromLc%Ls to
these glue vectors. From the order-parameter lattice the
citation lattice can be constructed, being dual of the ord
parameter lattice.

B. Spin-singlet condition and first-level spin-singlet hierarchy

The spin-singlet states of the general two-component
erarchy should have an explicitly SU~2!-invariant field-
theoretical description. So in that case it should be poss
to cast the low-energy Lagrangian density in Eq.~3.3! in an
explicitly SU~2!-invariant form. The low-energy form in Eq
~3.3! contains the possibility to make transformations

Lc85Sc
ÁLcSc , Ls85Ss

ÁLsSs , ~3.35!

Jc85ScJc , Js85SsJs , ~3.36!

and simultaneous inverse transformations on the gauge fi

Sc
21Ac5Ac8 , Ss

21As5As8 ~3.37!

as found in the polarized case in Refs. 5, 25, and 26.
matricesSc andSs must be integer matrices,udetScu51, and
udetSsu51, because they must map the excitation vect
with integer components~3.6! into vectors with integer com-
ponents in a one-to-one fashion.5,23,24 The form of the
SU(2)k51 Chern-Simons term in Eq.~2.14! suggests that,
only whenLs8 is in a diagonal form, we would be able to ca
the theory in a SU~2!-explicitly-invariant form. Therefore,
for any spin-singlet construction, we must have this possi
ity of having a transformationSs that convertsLs into a
diagonal form. Moreover, repeating the replacement of
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~2.13! with Eq. ~2.14! in this case, we require that the dia
onal entries of the transformedLs must be 1 or21, i.e., that
we have a theory with as many SU(2)k51 Chern-Simons
terms as the number of the levels in the hierarchy~including
the zeroth one!. Only with this requirement does the SU~2!-
invariant theory have Abelian statistics, which must be
statistics of the excitations in any hierarchy built up from t
Halperin states.

The formulated spin-singlet condition implies that t
spin latticeLs and the dual spin latticeLs* , in the spin-
singlet hierarchy, should be of the simple square-lattice k
This is implied because of the existence of the basis with
diagonal form ofLs where the absolute values of the diag
nal matrix are the same. Comparing the Gram matrix 2Ls for
the spin latticeLs and the Gram matrix (1/2)Ls

21 for the
dual spin latticeLs* , we may conclude thatLs is a square
lattice with the basis vectors of twice the length of tho
describingLs* .

In the following, the condition formulated in the firs
paragraph of this subsection will be applied to the constr
tion of the first-level spin-singlet hierarchy. We will find a
two-by-two spin matrices of the form~3.5! with m1 even, for
which there exist the integer matricesSs ~with udetSsu51)
that transform them into the diagonal form with21 or 1 on
the diagonal. The same transformation that is applied to
spin part will be applied to the charge part (Ss5Sc5S), and
we will identify the new basis as the basis of Jain’s constr
tion.

We generate our spin-singlet hierarchy by successiv
applying the spin-singlet condition on each level of the hi
archy. Therefore, the two diagonal matrices that we sho
consider in the spin part,Ds

i ,i51,2 (Ds
i 5SiÁLs

i Si), are

Ds
15S 1 0

0 21D , Ds
25S 1 0

0 1D ; ~3.38!

the first diagonal entry is the conditionm02n051 on the
zeroth level of the hierarchy.@We do not consider the
m02n0521 condition for a reversed magnetic field b
cause the corresponding cases reduce to the ones give
Eq. ~3.38!#.

The first case, because detLs5detDs , corresponds to the
condition m12n150. The transformation matrix
Sc5Ss5S in Eq. ~3.35! in this case is

S15S 1 1

0 21D , ~3.39!

and the charge part in the new basis is

Dc
15S m01n0 m01n021

m01n021 ~m01n0!1~m11n1!22D .
~3.40!

(Ds
1 has alln’s with the minus sign.!
e

.
e

c-

e

-

ly
-
ld

by

To understand the physical meaning of the new basis
specialize to the casem01n051, that is the case where th
zeroth level is the completely filled lowest Landau level
both spins. Then the charge and spin matrices are

Dc
15S 1 0

0 ~m11n1!21D , Ds
15S 1 0

0 21D . ~3.41!

The latter means that there are two independent spin-sin
systems. If, in addition, bothm1 and n1 are chosen to be
nonpositive even numbers, i.e.,m15n1522n where
n51,2, . . . , thesecond system is described by a Halpe
state in a reverse magnetic field. The filling fraction
212/@(m11n1)21#5222/(4n11). The form of the de-
scription, given by Eq.~3.41! of these Halperin states o
holes, suggests that we have the basis of Jain’s construc
Indeed, the form of the general hierarchy construction, r
resented by the matrixDc

1 in Eq. ~3.40!, tells us that it is the
result of the two operations that characterizes Ja
construction;4,5,23first combining with one Landau level@ex-
emplified in Eq.~3.41!# and then attaching flux to electron
to get composite fermions. Explicitly, it is

Dc
15S 1 0

0 ~m11n1!21D 1~m01n021!S 1 1

1 1D ,
~3.42!

with the pseudoidentity matrix~with all entries equal to 1!,
which always comes with the spin-independent flu
attaching operation. The number of the flux quanta attac
is (m01n021)/2, which is an integer.~Always, to get physi-
cal quantities that are measured in the unit of one flux qu
tum, we have to divide the defined matrices of the theory
two because they describe a theory where the unit for flu
one half of the flux quantum.!

Having identified which values ofm1 and n1 give spin
singlets and having recognized that, in the ca
m15n1522n, in the standard-hierarchy picture we have
quasihole system, we are ready to construct the corresp
ing wave function in the fractional-statistics representatio25

for this case. If we use numbersp and q to describe the
statistical angles of the quasiholes of the zeroth level as@see
Eqs.~2.8! and ~2.9!#

u i5
m0

m0
22n0

2p5pp ~3.43!

for the exchange of the same-spin quasiholes, and

ud52
n0

m0
22n0

2p5qp ~3.44!

for the exchange of the opposite-spin quasiholes, the w
function is of the form25
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C~z1↑ , . . . ,zN↓!5expH 2
1

4( uzi u2J)
i, j

~zi↑2zj↑!
m0)

i, j
~zi↓2zj↓!

m0)
i , j

~zi↓2zj↑!
n0E d2w1↑•••E d2wM↓

3)
i , j

~zi↑2wj↓!)
i , j

~zi↓2wj↑!)
i, j

uwi↑2wj↑u2p)
i, j

uwi↓2wj↓u2p)
i , j

uwi↑2wj↓u2q)
i, j

~w̄i↑2w̄j↑!
2n

3)
i, j

~w̄i↓2w̄j↓!
2n)

i , j
~w̄i↓2w̄j↑!

2nexpH 2
1

2~m01n0!
( uwi u2J . ~3.45!

The pseudo-wave-function,25 which incorporates the effects of fractional statistics and describes the physics of the s
solely in terms of the quasiparticle coordinates, is

C~w̄1↑ , . . . ,w̄M↓!5)
i, j

~w̄i↓2w̄j↓!
p12n)

i, j
~w̄i↑2w̄j↑!

p12n)
i, j

~w̄i↓2w̄j↑!
q12n. ~3.46!

The condition26 for spin-singlet states for quasiparticles with fractional statistics21 is

S (
j51

M /2

e~ i ,@ j # !exp$2 ius%11DC~w̄1↑ , . . . ,w̄M↓!50, ~3.47!

wheree( i ,@ j #) denotes an exchange between two particles with opposite spin. Becausep2q51, we can use a decompositio
of the wave function in the form

C~w̄1↑ , . . . ,w̄M↓!5)
i, j

~w̄i↓2w̄j↓!
p12n21)

i, j
~w̄i↑2w̄j↑!

p12n21)
i, j

~w̄i↓2w̄j↑!
p12n21)

i, j
~w̄i↑2w̄j↑!)

i, j
~w̄i↓2w̄j↓!,

~3.48!
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where a spin-independent factor multiplies the filled low
Landau level of both spins that is a spin-singlet, and we
that it obeys the spin-singlet condition. This coincides w
our intuitive expectation that, in the case of the spin-sing
hierarchy construction, on the top of the Halperin~zeroth-
level! state we have the spin-singlet state of quasiparticle

The effects of the statistics in Eq.~3.45! are in the product
with absolute differences, and, as we know from before
the densities or total numbers of the~quasi!particles that
characterize the ground state are concerned, they
irrelevant.24 ~That can be shown by an application of th
Laughlin plasma analogy1 to the wave function.! If we con-
sider the quasiparticles as fermionic and, loosely speak
pull the factor ) i, j (wi↑2wj↑)) i, j (wi↓2wj↓) from the
product with the absolute differences in Eq.~3.45! to the
product ~under the integral signs! involving the differences
of z’s and w’s, and the factor ) i, j (w̄i↑
2w̄j↑)) i, j (w̄i↓2w̄j↓) to the product with the differences o
w̄’s to the 2nth power, effectively the state of quasiparticl
will be a Halperin spin-singlet state. So in this case, we h
also a spin-singlet state on top of another one. This is to
t
e

t

.

if

re

g,

e
e

expected, because the quasiparticles are taken to be fe
onic in the lowest Landau level just because of their way
combining together with respect to the internal spin deg
of freedom.7

In the second case, withDs
2 in Eq. ~3.38!, the spin-singlet

requirement ism12n152. The matrixDc
2 is the same as in

the previous construction. Whenn150, i.e., m152 ~and
m0 andn0 are of the Halperin states! Ds

2 andDc
2 describe a

simple Jain’s construction: two Landau levels are complet
filled with composite fermions obtained by attachin
(m01n021)/2 flux quanta to electrons. In the standar
hierarchy picture this is a quasielectron construction. T
filling fraction is

n5
4

4@~m01n021!/211
. ~3.49!

C. Arbitrary-level spin-singlet hierarchy

The starting point for thenth-level-hierarchy construction
is the spin matrixLs ~in the standard-hierarchy basis!:
Ls
n5S m02n0 1 0 ••• 0 0

1 m12n1 1 ••• 0 0

0 1 m22n2 ••• 0 0

A A A � 1 0

0 0 0 1 mn212nn21 1

0 0 0 0 1 mn2nn

D . ~3.50!
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The spin-singlet condition, formulated in the previous subsection and easily generalized to any level of the hierarchy, d
that the diagonal entries are such thatudetLsu51. We satisfy this condition by demanding that, at each leveli of the hierarchy,
udetLs

i u51. This means that the differencesmi2ni , i50, . . . ,n, become fixed numbers characterizing the constructions
determine possibilities we define matricesMk , k50, . . . ,n, of the form

Mk5S mk2nk 1 0 ••• 0

1 mk112nk11 1 ••• 0

0 1 mk122nk12 ••• 0

A A A � 1

0 0 0 1 mn2nn

D . ~3.51!
o

r

y

n

n
n-

ve
o
th

t of
c-
ch
-
ate,

the
As

ion.

n-
They satisfy the following recursion relation:

detMk5~mk2nk!detMk112detMk12 , ~3.52!

where detMn1151 and detMn1250. Repeatedly requiring
at each leveli of the hierarchy thatudetLs

i u51, we have, at
the end, the following constraint on the values ofmn and
nn :

udetLs
nu5udetMn6detMn11u5u~mn2nn!61u51,

~3.53!

where the sign depends on the way the lower level was c
structed.

Because of the nominal Bose statistics of the quasipa
cles in this field theory construction (mn is even!, and as a
consequence of the earlier requirement,mn1nn is an even
number. The filling fraction in this construction is given b

nn52~Lc
21!0052

1

m01n02
1

m11n12 �2
1

mn1nn

.

~3.54!

Becausem01n0 is an odd number and all the rest are eve
the general form of the filling fraction isan even over an odd
integer.

At each level of the hierarchy we may constrain the sig
of mn and nn , demanding that, in the basis of Jain’s co
struction, we begin~combining one Landau level! with a
Halperin state. This, as we did in the case of the first-le
quasihole construction, is not necessary. The Chern-Sim
field theory that we use enlarges the principles of
standard-hierarchy construction~Refs. 2 and 7!, and contains
also constructions where ground states of the~quasi!particle
n-

ti-

,

s

l
ns
e

systems can be described by wave functions that are no
the form of the Halperin states. Namely, if we take the fun
tion of the filled lowest Landau level of both spins and atta
an even number (2n) of flux quanta, in the direction oppo
site to the external magnetic field, we get a spin-singlet st
at the filling fractionn215(4n21)/2, which differs from
the Halperin states. These wave functions, projected to
lowest Landau level, are included in Jain’s constructions.
a consequence, this enlarged construction~with no additional
constraints onmn’s andnn’s!, covers all filling fractions of
the even integer–odd integer form.

By induction, the matrixSn , at each leveln, can be
found, which diagonalizes the matrixLs

n and gives the cor-
responding charge matrix in the basis of Jain’s construct
We assume the form ofSn

Á , a (n11)3(n11) matrix, to be

Sn
Á5S 1 0 0 0 ••• 0

1 21 0 0 ••• 0

1 21 ~21!k2 0 ••• 0

1 21 ~21!k2 ~21!k3 ••• 0

A A A A � A

1 21 ~21!k2 ~21!k3 ••• z

D ,

~3.55!

where eachki , i52, . . . ,n21, can be 0 or 1.Sn21
Á , a

n3n matrix, lies in the upper left corner ofSn
Á . If, for some

choice of (k2 , . . . ,kn21), Sn21
Á diagonalizes givenLs

n21

matrix for the (n21)th level of the hierarchy~so that the
diagonal entries are11 and21), andSn

Á diagonalizes in the
same wayLs

n , we will show thatuzu51 and the sign ofz is
uniquely determined by the way the lower level is co
structed. From the form ofSn

Á @Eq. ~3.55!#, and the previous
assumptions it follows that
Ds5Sn
ÁLs

nSn5S 0

Ds~n3n! A

0

e1z~21!kn21

0•••0e1z~21!kn21 e12z~21!kn211~mn2nn!z
2

D , ~3.56!
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whereDs(n3n) is an3n diagonal matrix with all diagona
entries11 or 21, ande represents its last diagonal entr
From the constraint that the off-diagonal elements ofDs are
also zero follows thatz5(21)kn2111e ~i.e., uzu51).

IV. GENERALIZED SPIN-SINGLET HIERARCHY

We may consider also constructions for ground states
spin-singlet FQHE systems where, at some stage of the h
archy, elementary quasiparticles of a Halperin state pair
spinless Laughlin quasiparticles and make a Laughlin st
This situation, in our formalism, in the case of the first-lev
spin-singlet hierarchy, is described by the following mat
for the charge degrees of freedom:

Lc5Sm01n0 2

2 4pD , ~4.1!

wherem0 andn0 are of the Halperin zeroth-level state, an
p is an arbitrary integer, and matrix

Ls5S 1 0

0 0D ~4.2!

for the spin degrees of freedom.~The factor 2 in the charge
matrix, for the part that describes the new constructi
which is similar to the standard-hierarchy construction in
polarized case, is again a consequence of the choice fo
unit of flux in our formalism.! The zero on the diagonal o
Ls is a consequence of the fact that the description of
localized quasiparticle excitations, in this system, can
given by a three-dimensional lattice.

Again, by applying the matrix transformationS on both
the spin and charge parts simultaneously we may find dif
ent expressions of the same construction. In the special
whenS is given by Eq.~3.39!, the charge and spin matrice
are

Jc5S 4n11 4n21

4n21 4n2314pD , Js5S 1 1

1 1D , ~4.3!

wherem01n054n11. Whenn51 ~i.e., in the previous hi-
erarchy construction we begin with then52/5 Halperin
state! andp51, the matrices describe then51/2 spin-singlet
state of the following Jain’s construction:

Cn5 1/25x2x1x1,1. ~4.4!

x i , i51,2, denote, in Jain’s notation,4 a filled lowest Landau
level and the first two filled Landau levels without regard
the spin degree of freedom, andx1,1 denotes a lowest Landa
level occupied with particles of both spins. Explicitly, th
flux attaching factor,x1x1,1, can be rewritten as

)
i, j

~zi2zj !
3/2)

m,n
~zm↑2zn↑!

1/2)
k, l

~zk↓2zl↓!
1/2

3)
r ,s

~zr↑2zs↓!
21/2, ~4.5!
of
r-
to
e.
l

,
e
he

e
e

r-
se

which means that 3/2 flux quanta are attached in the u
way, i.e.,

Jc~n51,p51!5S 2 0

0 2D 13S 1 1

1 1D , ~4.6!

and there is also the flux attaching~without net flux attached!
in the spin part described byJs in Eq. ~4.3!.

By the way of the gluing theory, as in Sec. III A, we ma
find, in this special case, that the glue vectors are

S 00D
c

% ~0!s , S 52D
c

% ~1!s . ~4.7!

The charge part is given in the basis of the correspond
charge excitation lattice (Lc* ) in which the Gram matrix is
given by (1/2)Lc

21 @see Eq.~4.1!# with m01n055 and
p51. We used one-component vectors, in the spin part,
sociated with the single direction that describes the spin
the localized excitations. For a basis of the order-param
lattice that is obtained by the way of the gluing we c
choose vectors:

S 52D
c

% ~1!s , S 00D
c

% ~2!s , S 48D
c

% ~0!s ~4.8!

~with the first and last vectors describing a pure charge
pure spin order-parameter excitation, respectively!. The cor-
responding three-dimensional Gram matrix is

S 4 2 0

2 3 1

0 1 2
D . ~4.9!

It is straightforward to obtain higher level generalizatio
of this construction and we will only remark that, in Jain
picture, they are always followed by the flux attaching pr
cedure to the spin degrees of freedom described previou

V. PARTIALLY POLARIZED HIERARCHY

At some level of the spin-singlet hierarchy we may allo
only same-spin quasiparticles to make a Laughlin state.8 The
equations that we can easily write down to describe this c
figuration are characterized by the following charge mat
in the case of the first-level hierarchy:

Lc5Sm01n0 1

1 4p21D , ~5.1!

wherep is an arbitrary integer and, as before,m0 andn0 are
of the Halperin zeroth-level state. Only in this case, i.
whenm02n051, our charge matrix is an integer matrix an
the invariance under the integer matrixS can be considered
If S is given by Eq.~3.39!, the transformedLc is

Jc5S m01n0 m01n021

m01n021 m01n02114p22D , ~5.2!
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i.e., we again have the basis of Jain’s construction for p
tially polarized states.4 Whenm01n051 andp51, the ma-
trix also describes the simplest example of partially polari
states with the lowest Landau level filled with both spins a
the second level~partially! filled with only one spin projec-
tion.

It is important to point out that, even in the cases of
higher level constructions, the charge matrix is an inte
matrix if mi ’s andni ’s of the levels with no net spin polar
ization are chosen to describe a spin-singlet construc
Therefore, the presence of the SU~2! symmetry ~which is
broken in the ground state! is followed by the possibility to
describe the invariance of the system under change of
hierarchy basis in the picture that treats the charge and
degrees of freedom separately. Then the gluing theory
scription, with the integral order-parameter charge and s
lattices is appropriate.

VI. CONCLUSION

In conclusion, the invariance of FQHE systems with s
under change of the hierarchy basis can be also describ
the spin-charge decomposition picture. We characterized
integral charge and spin lattices of the order parameter
the systems by stating the conditions that the spin-lat
Gram matrix should satisfy to describe SU~2!-invariant con-
structions. In particular, for spin-singlet constructions, a
sis must exist in which the Gram matrix is diagonal w
12 or 22 on the diagonal. This is a consequence of
existence of as many SU~2! symmetries as there are levels
a specific spin-singlet construction. The physical spin,
spin independent of the levels of the hierarchy, in this ba
is a sum of the spin quantum numbers connected with e
SU~2! symmetry. The excitation lattices of all these syste
are described as lattices of the gluing theory with spin o
and charge only excitations glued in a special way. The
,
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malism was extended to the generalized spin-singlet st
and partially polarized states.

The lattice approach, which we used, is a systematic w
to classify all Abelian FQHE states with spin. We attempt
to include all states proposed earlier in the literature, in
description convenient for future applications. The standa
hierarchy spin-singlet construction that we proposed, in S
III B, disagrees with the construction in Ref. 8. If the nom
nal statistics of quasiparticles is taken to be fermionic, as
Ref. 8, the algebraic equations of the construction are
the same ones as in Eq.~3.2! with m1 even@as in Eq.~3.2!#.
This, although not obvious at first sight, can be seen by lo
ing at the wave function~of a specific spin-singlet construc
tion! in Eq. ~3.45!, and reading the comments in the par
graph just following.@The fermionic construction require
extra, flux-attaching factors~with respect to the bosonic one!
in the lowest Landau level to be complete.# More impor-
tantly, our construction is justified by a clear-cut, spin-sing
condition in the same subsection.

The experimental findings around filling fraction 3/2
Ref. 12 are in agreement with our conclusion that, if we
not consider generalized constructions, the spin-singlet st
can occur only at the filling fractions of the form even ov
odd integer. Their results are consistent with the compos
fermion description of partially polarized states.4 Once we
have the lattice description, presented here, we may cons
the ‘‘stability’’ of various constructions, i.e., the likelihoo
that they correspond to the systems with well developed
teaus in experiments.27 It is interesting in this respect to not
that the lattices corresponding to the states described in
12 have positive-definite Gram matrices.
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