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Invariant structure of the hierarchy theory of fractional quantum Hall states with spin
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We describe the invariant structure common to Abelian fractional quantum Hall effect systems with spin. It
appears in a generalization of the lattice description of the polarized hierarchy that encompasses both partially
polarized and unpolarized ground-state systems. We formulate, using the spin-charge decomposition, condi-
tions that should be satisfied so that the description i€Bidvariant. In the case of the spin-singlet hierarchy
construction, we find that there are as many(&$ymmetries as there are levels in the construction. Various
formalisms used before for hierarchigield-theoretic, algebraic, and wave functipase also used to show the
existence of a spin and charge lattice for the systems with spin. The “gluing” of the charge and spin degrees
of freedom in their bulk is described by the gluing theory of lattices. The low-energy field theories and
corresponding quantum Hall lattices should serve as a starting point for the discussion of the stability of these
systems[S0163-18207)06624-1

[. INTRODUCTION extended to partially polarized states with more Landau lev-
els of one-spin particles than of the otéf.Some principles
Not long after Laughlin proposed a thebrfpr the frac- of the spin-singlet hierarchy construction were discussed in
tional quantum Hall effect(FQHE) at filling fraction Ref. 13 also.

v=1/q, q odd, the hierarchy theo?y was proposed as an ___|n€ goal of our paper is to show the existence of a basis-
explanation of the occurrence of the FQHE at filling fractionmdependem description of systems with spin degree of ffee'
p/g whenp is not 1 andy is, as in the Laughlin case, an odd dom, regardless of whether their ground states are partially

; . olarized, unpolarized, or spin singlet. But, in the process of
integer. It describes new ground states of these systems % b P g P

) : . A i éhieving this, we use the spin-charge decomposition and
hierarchies of Laughlin _state_s of qua5|part|cles_, at each Ievq nd a structure of excitations common to all of them, which
the source of the quasmar_tlcles is the La}ughlln state of th% interesting in its own right.
previous level. Some time later Jain proposed his  after a review of the Halperin states in Sec. II, in Sec. Iil
constructiofi of some of these FQHE states as filled Landauye concentrate on the hierarchy spin-singlet systems. At the
levels of composite fermions, i.e., integer quantum Ha”beginning, the first-level hierarchy of a general, two-
states of particles that are electrons with an even number @omponent system with teseudo spin degree of freedom,
flux quanta attached. We can view this construction also ag presented, based on the dual bosonic Chern-Simons field
some kind of hierarchy and, indeed, in Ref. 5 it was provedheory. Then the spin-charge decomposition is introduced,
that various constructionghe standard hierarchy that we and a kind of “gluing” between the charge and spin degrees
mentioned first, the Jain constructjoare different descrip- of freedom of the excitations in the bulk of these systems is
tions of a single underlying physical theory. This theory isdescribed. This leads to information about the excitation lat-
described as a lattice of excitatiohsyhich contains all in- tice in this case. The lattice can be easily identified as a
formation about the quantum numbers and statistics of quespecial case of composite lattice constructions known in
siparticles and properties of the edge states. mathematics as “gluing theory.l‘l We describe it together

If we introduce an additional, spin or pseudospin, degreavith a lattice, which lies in the excitation lattice, that corre-
of freedom, we can construct two-componefground sponds to the order parameters of the systems. Also, in the
states, Halperin stat8syhich are simple generalizations of context of the spin-charge decomposition, we use the invari-
the Laughlin state. Some of the Halperin states that are spiance under change of hierarchy basis to formulate the spin-
singlets (i.e., unique states with respect to the total $pin Singlet condition. One of the bases is identified as the basis

might describe the systems for whiéﬁ)t and S, are good of Jain’s con;truc_tion. The most important f(_aaturg of the hi-
quantum numbers, and Zeeman energy is shralhierarchy grarchy pf spin-singlet states, which the lattices incorporate,
of these states, as an analog of the standard hierarchy in t the existence o.f as many mdependen(Els_lymmetrle_s as
completely spin-polarized case, was first described in Ref. ghere are Ie\{els n the hierarchy constructions. S.ectlons'lv
From the field-theoretical point of view, in the context of aa_nd v de_scrlbe, in the new _formallsm, a ge_nerallzed spin-
very general formulation of the FQHE with the spin degrees'nglet hlerarchy and the hierarchy of partially polarized
of freedom, it was also described in Ref. 9. On the otheStAleS: réspectively.

hand, the Halperin states contain a very simple spin-charge Il HALPERIN STATE AND GLUING

decompositiort® which realizes itself on the edge, and which ' OF CHARGE AND SPIN

served as a starting point for a hierarchy in Ref. 11. Jain’s
construction of spin-singlet stafesses Landau levels filled An extension of the Laughlin state to two-component sys-
with composite fermions of both spins. Naturally, this can betems in the plane is the Halperin st&tgiven by
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for two components and| . It is assumed that, =N ; i.e., tammin€  Aeudi@ot g €8s, 0,80
the state is unpolarized. It describes fermionsifs an odd 2.6

(positive) integer. (The exponential factors are omitted for
simplicity.) In the casem=n+1, this state represents a wherei=x,y and¥, (c=+ and — for T and |) is a
ground spin-singlet state of a system with spin. If not otherbosonic field that represents the electron field up to the sta-
wise specified, we will keem andn general in the follow- tistical transformation embodied ig. (For simplicity we

ing. The pseudospin of two-component systems will also bé@mitted the interaction and Zeeman-energy term.

called spin for short. In Eq2.1) we use, as is customary, the A vortex excitation of finite energy, in a charged bosonic
shortened form of the complete wave function, which wouldsSystem, can occur only if it is accompanied by an increase in
include spin vectors and overall antisymmetrization. Thethe flux of the gauge fieldsa(* or af’) in the amount of an
quasihole excitations carry spin[2({m—n)], which repre- integer number of flux quanta; the flux quantum is & our
sents the net spin localized in the region around the quasknits. To describe the excitations, we can integrate E44)
hole. They carry—1/(m+n) (quasiholes or +1/(m+n)  and(2.3), and relate the total changes in the fluxagfand
(quasielectrons unit of the electric charge. ForS, a, fields, @, andd, respectively, to the total local change
=1/[2(m—n)], whereS, is the z component of the quasi- in the charge and spifQ. andS,=Q¢/2, respectively:

hole spin, and in the case when—n=1, a single quasihole

excitation can be given By —Q.+ iiq; =0 and — Q.+ ii@ =0
¢ 2am+n ¢ S 2xm—-n 3%
" (2.7)
| . .
o Taking  four  choices for @.,d), (m, ),
iljl (= W)W mmn, 2.2 (m,—7), (—m,m), and (—,— ), gives four elementary

excitations with the same quantum numbers as in the wave-

f i h: = _
and analogously fog,= — 1[2(m—n)]=—1/2. For general [ulr/]?rt:]ofn) ’ _a;is)(rrc;]a_cn,)], Q ’QS)[ _[ijgmi 2; i%m— 2;}

m andn, Eg. (2.2) must be generalized to the one that in'[—l/(m+n),—1/(m—n)], respectively. Note that the half-

cludes|m—n| excitations. flux quantum changes id. or ®¢ cannot occur indepen-

The description of the system with each particle having C ; e o
definite spin polarization can be given by an effective Chernebemly’ which is an expression of the charge-spin confine

Simons theord also, in the so-called (1) X U(1) formula- ment, i.e,, “gluing,” in the bulk of the system. Large

. . . : M u 16 ) vortices carry fluxes gm,bw) wherea+b is even. The
thn with two Ab.ellan gauge f|e|d§T anda{’.™ The Chern Aharonov-Bohm-Berry phasé for an interchange of two
Simons constraints that it contains are

vortices, with charges and fluxe®Q},Q?) and @2 ,®?) for
vortex 1, and Q2,Q2) and @2,®2) for vortex 2, is given

0 P2 P2
_Al_¢ 1-s
and ;—QCE‘FQSZ. (2.8)
If we interchange two elementary vortices of the same kind
Vxa =2m(mp +np,), (2.4  the phase or statistical angle is
m
which are simple generalizations of the constraint in the 0= 27— 2™ (2.9

Laughlin case‘{7><§=27rmp). (p; andp, are the densities
of the up and down electrons, respectivelihe field theory
can be also expressed in terms of

We may conclude also that the excitations with fluxes

[£m(m+n),£7(m—n)] are equivalent to one-electron ex-

citations, which can be particles or holes of either spin,

S,=+1/2.

al+al ak—at Even for systems as simple as these Halperin states, we

a@zT and af=——7>—, (2.5  may find the lattice structure of excitations mentioned in the

Introduction. The excitations can be represented as vectors
associated with points of a two-dimensional lattice with

which are charge and spin gauge fields, respectively. Theitomponents being integera=®_./7 and b=® /7, in a

flux is connected with the charge and spin of the system abasis. The expression for the statistical an@e3) defines

can be seen from the previous equations. The Lagrangiathe scalar product in this lattice. For two vectors

density of the theory is then given by vi=(ay,b;) andvy,=(a,,b,), it is
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a;a, bib, The original charge and spin current densitiek;, ,and J3, ,
2(m+m T 2(m=n)" (210 respectively, are now given by

Vi Vo=

We see that the basis used heegs=(1,0), &,=(0,1), is 9A
orthogonal; however, these vectoes,e,, are not in the lat- JE= ehvh N
tice as they fail to satisfy the conditiom+b= even. The 77
condition expresses the fact that the excitation lattice is a c s _
special composite of two one-dimensional lattices, one forl '€ currents.7,, and 7., represent the charge and spin
charge and one for spifiWe defer a complete description of current densities of thg quasparﬂcles, respectlve!y. These
the gluing construction to Sec. Il A, and, here, we give On|ycurrents are measur_ed m_the units of charg_e and spin equal to
a simplified version of it. The charge and spin lattice points the €lementary quasiparticle charge and spin. To have a com-
are @,0),a=0,+1,+2, ... and (®),b=0*1+2,..., plete Io_w—energy theory of the _FQHE we must alsq impose
respectively and, in general, they do not belong to the excith® gluing among these quasiparticles, i.e., specify which
tation lattice. The gluing of the two lattices is specified by afUs€d combinations of them are allowed. _

rule that we impose on possible combinations of points from [N the SU2)-invariant case, wheren=n+1, this dual

the lattices. In our case the ruleas-b= even. theory can be replaced by an explicitly @}invariant field

One way to define the charge and spin lattices is to conth€0ry by introducing, instead of Abelian gauge fiélg, , a
sider the sublattice of the excitation lattice connected witfOn-Abelian gauge fieldd,, = A% 7* where 7*,a=1,2,3 are
the order parameters of the systeifor Halperin states the Pauli matrices. Then, instead of the Chern-Simons term
order-parameter excitations are specified by vectors:
v=[(m+n)i,(m—n)k] for which i +k=even. The excita- (m—n
tions represent multiples of one-electron excitations, which
can be particle or hole witls,= =1/2. The sublattice that
they make can be defined as c_iual to the excitation lattice, i.eyith A, , in the SU2) gauge-invariant theory, we have the
the one yvhose vectors have integer §ca]ar prop{sele Eq. _ SU(2), Chern-Simons term whetle=119%j.¢.,

(2.10] with all other vectors of the excitation lattice. Then, it

is appropriate to define the charge and spin lattices in this

sublattice as th_ose_ with _charge only anql spin only order- Le’””tr(A 9, A +2A Aw‘h)- (2.14
parameter excitations, i.e., those defined by vectors: 4w K’ K

Ve=[(m+n)i,0], i=even, and vs=[0,(m—n)k], k=

even, respectively. Their dual lattices are the ones that wé&his identification of two theories is possible because
used in the preceding description of the gluing. SU(2)c-1 Chern-Simons theory has only excitations with

The Halperin states are the simplest example of the gluing\belian statistic&" and, therefore, can be formulated also in
construction[A description of the lattices specialized to the the Abelian way with one Abelian gauge field.

(3,3, Halperin state was also given in Ref. 17.

By some standard transformatiofsee, for example, Ref.
18), we can transfornt into the one that describes the dual
Chern-Simons theory. In the dual theory in the Laughlin
case, the vortex excitationge., fluxes previouslyare now A. Hierarchy of Halperin states and gluing theory
to be viewed as particles, and what was the particle current
density becomes flux of some gauge field. In its Iow—energyfh
limit the Lagrangian of the dual theory in our case is

9,A
= 6,stx_ (2.12

)
2a EMV)\AS;L&VAS)\ ’ (213)

lll. SPIN-SINGLET HIERARCHY OF HALPERIN STATES
AND GLUING THEORY

It is straightforward to derive the dual Chern-Simons
eory Lagrangian of the hierarchy of the Halperin states
where at each level quasiparticles combine into a new Halp-

(m—n) erin state. It is a simple generalization of the Lagrangian for
L=—T,As— Z—eﬂ”AASM&VAS)\—jZAg the one-component hierarchy given in Ref. 22. The part of
m the Lagrangian for the first-level hierarchy that we will im-
(m+n) 1 mediately use represents constraint conditiongwniform)
~ % e/‘””AwayAer ;e#“AZXt&VAC}\. charge current densities that define the ground state. For the

sake of clarity we set current densities of vortex excitations
(2.1)  to zero. The expression for this part of the Lagrangian is

Mo o N,

m,
A A 0 A A A A
L=+€un EAgxtﬁv(AoT+Aol)_ EGMVAAGT’?VAOT_ 4 €umAo 0 Ao~ EfuuxAgTavAol_ ﬁfﬂmAfﬁayAm
1 K~oav N 1 MgV AN m; Moav AN my M oav AN Ny MK oAV AN
- Ee,uv)\AOT& A - waonﬁ A= EfﬂuxAn& A= EE,M\A“& A - waxAnﬁ Al
Ny YT
o €Al 0"AT, (3.9
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whereAZL . represents an external electromagnetic field, numbers 0 and 1 denote the levels of the hierarchy, and the previous
m andn are nowm, andng. The equations of motion obtained from E§.1) are
N,=moN2+noN®  + aN?

0=N2+m;aN2+naNt | (3.2

with =1 or |, Ng andN}, denote the total numbers of electrons and quasiparticles, respectizely,1 for quasiholes or
a=—1 for quasielectrons, ard,, is the number of flux quanta through the system.is an even integer because we consider
the quasiparticles as bosons.

By defining new gauge fields, analogously to what we did for a single Halperin(&t&tethe Lagrangian densit3.1) can
be rewritten in a form with charge and spin variables only,

(mO_nO) A (m0+n0) A A’leLX VAZD\O (ml_nl) %
L=— T EﬂvagoayAso_ T Euvagoé’VAco+ €uvn p - o E;/.V)\Aglé’VAsl
(ml+ nl) \ aéLO&VAél AgO&VAgl 0 0 1 1
e A AN €y e = TN TEAL - TEAL - TRA . (3

where we included also the vortex excitations with respect tdrom the first level of the hierarchy, are allowed. If we de-
the 0 and 1 levels described by current densiﬁég and note byx a vector from the charge part and pya vector
jf;o, and jff and jf}, respectively. As before the current from the spin part, the operations allowed on the vectors in
densities are measured in the units of the corresponding qu&ds. (3.7) and(3.8) are

siparticle charge and spin. The form of the Lagrangian in Eq.

(3.3 suggests the definition of two matrices, charge def

Mo+ N 1 {1,y +{X2, Y2} ={X1+Xz,y1+ Y2} (3.9

C= ’ (34) . . .
1 my+ng and if « is an integer
and spin
def
Mo—Ng 1 a{x,y}={ax,ay}. (3.10
AS_( 1 ml_”1>' 39

) . These are familiar operations for a direct sum of two vector
They are analogous to the one-dimensional omesno  spaces. In addition, if the scalar product is defined by
andmgy—ng, for the Halperin state in Sec. Il.

The elementary excitations from each level of the con- _
structed hierarchy are of the type discussed in the section on (X1, Y1H{X2, Y2 =X1 X2+ Y1Y2 311

the Halperin state. Therefore, if we introduce vectors ) .
the direct sum is orthogonal.

N§ 5 To any excitation we can assign the corresponding change
N Sz( NS) (3.6 in fluxes in the dual Chern-Simons theo($.3). Then the
1 1 Aharonov-Bohm-Berry phase for an interchange of two iden-
with entries denoting how many, with respect to the level gtical excitations gives the statistical angle for that excitation
or 1, quasiparticles that carry only chargs) (or only spin ~ and it is equal to
(s) are created, no pair of these vectors represents a system
excitation.(The entries can be negative, denoting the number 0 ATINC ATINS
of quasiparticles with opposite charge or spiBecause of —=Ne—= N N . (3.12
the gluing of these particles in the bulk of the system, only ™ 2 2
integral linear combinations of the following elementary ex- o )
citations from the zeroth level of the hierarchy, The charge density in the dual Chern-Simons the@y)

can be read off as a coefficient in front,ﬁpﬁXt and is equal to
[(1) (1” {(1) <_1
o/ '\o/_|’ 0o/ ’'\ 0
C S Cc

[ (0) (0) ] {(0) ( 0 ) ] (As before in the theory a unit of charge corresponds to half
, S , C, S

N°=

| e

1 VAN

pP= "€, Ao;- (3.13
T

and

(3.9 of the flux quantum). Therefore the charge of the excitation
1 is given by
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Qc=(A;YgNC, (3.14 N¢ and N° satisfy conditions Q*2S,=even and

c | .

Q%= 2SP=even(whereQ, 2S,, Q% and XPare inte-
gers. Using this definition and the definition of the scalar
product (3.12, we can see that the dual of the order-

and analogously the spin by

— -1
S,=(AgDaNP3 (3.19 parameter lattice is the excitation lattice. Namely, all vectors
We can rewrite the coupling between the charge density an}° @hdN®, which have integer scalar products with all vec-
external field® as Egr;@of the order-parameter lattice, satisfy the conditions
1 L 1 \ Two sublattices can be defined in the order-parameter lat-
pAex:;EuvagxtﬁyAO(::;EvaAgxtIZO:LViayAic! tice: the charge latticeL., for which Q is even,
o (3.16 25,=0, Q% is even, and 3,=0, and the spin latticé ¢,
' for which Q=0, 2S, is even,Q%®=0, and 2, is even.
where The dual charge lattice.? consists of arbitrary integer-
1 component® vectors, andNs= (5), and the dual spin lattice
V= ) (3.17) L¥ hasN°=(3) and arbitrary integer-componeN¢ vectors.
0 We used these two lattices; andL? , to describe the glu-

Along with the S transformations the vector will change  ing construction. Because their Gram matrices/are/2 and

(to leave the coupling invariant and characterize the nature oks /2, the Gram matrix for the charge lattitg is 2A ¢, and
the coupling between the external fiehf* and internal ~ for the spin latticel s is 2A. M

gauge fields in a new basisTherefore, we may rewrite the The gluing construction of lattices can be defined in a

physical quantityQ, in a basis-independent way as basis-independent way on a small number of vectors. In the
following we will define* such a construction for an integral
QC=VAC‘1N°, (3.18 lattice, i.e., the one with an integer scalar product or integer

Gram matrix}* The lattice L constructed by the gluing

and similar arguments lead to theory contains a sublattice that is a direct sum

_ -1
S,=VA_S'NS3. (3.19 L,oL, (3.23

The given description of the excitations may lead to theof two integral sublattices; and L,. Any vector ofL can
conclusion that they are best described by an orthogonal dpe written as

rect sum of two two-dimensional lattices, one for spif
and one for chargeL}. With fixed bases in them, y=Y1®Ys, (3.29
{€¢;@=0,1} and{e};B=0,1}, the excitations are given by )

o g i . where each component belongs toL” , the dual lattice of
the integer vector3.6), and their scalar products are defined Iponew; gs toLy, _ ,
on these lattices with two Gram matricesAJ”Z)aB L;. Thereforey; is not ne_cessarlly ih;. To _cla53|fy can_dl-
29392 and Q\gl/Z)afeiez. The Gram matrices are read dates fory; we may consider the sets obtained by adding to

off from the expressio3.12) for the statistical angle, which €2c"Vi all vectors fromL;. Then)ﬁ in Eq. (3.24 are repre-
plays the role of the scalar product for the vect@$). But, ~ Sentatives of the cosets of in L. y's must have integer
as in the case of the systems with the Halperin ground state§c@/ar products with one another, and are closed under addi-

the excitation lattice is the result of the gluing construction,ion moduloL,+L,. They are known as glue vectors.
and it is a sublattice of this direct sum. Because of the re- W& may identify our order-parameter lattice construction,

quirement for the flux quantization, only vectdBs6) whose with the basis-independent, abstract notion of the gluing of

components satisfy conditions, two integral latticed_ . andLg (which play the roles ot ;
andL, in the preceding paragraphAs we already said, in
ctNg=even, NIxNi=even, (3.20 the standard-hierarchy basis the matricés, 2nd 2A ; [see
o ) Eq. (3.4) and(3.5)] are the Gram matrices of the two integral
belong to the excitation lattice. lattices L, and Lg. If a;. and a,. denote the standard-

The order-parameter lattice is a sublattice of the excitatior|11ierarchy basis vectors of the lattite,, the matrix 2,

lattice, and can be defined in the following wallote that  gncodes information about their scalar products in the fol-
we use the words “the order-parameter lattice” instead Oflowing way4

“the condensate lattice” of Ref. b.If, in the standard-
hierarchy basis, we define the veciaf;

2A = (3.29

Qe A aZC)

Qicr @y et Ay

0
W=( ) (3.21
Therefore, ife;=(1,0) ande,=(0,1) are the orthogonal ba-
the numbers sis vectors with unit norms, the vectaasg, and a,, can be
expressed as
QP=WA_INS, SP=(WA_'NS)/2  (3.22

a1c=V2(Mp+ng)e; (3.26

have the meaning of the quasiparticle charge and spin. Then
the order-parameter lattice consists of points whose vectosnd
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[ 2 [ 2D, 32 0 0 1 1
= + , . 53] , 52 )
Goc Mo+ Ng - Mo+ Ng 2 3.29 0/ .10/, 1) N1,
whereD .= detA .. The dual(excitation-lattice basis vectors
are
0 0
1 1 (mtny)—1/ 1(mg—ny)—1/
P1c= N 3(mytng) @~ V2D (mgrng 2 328
1 1
and ea( , (3.39
m1+ nl ¢ ml_nl s
b, — [(Mg+nNg) 39 where we also assumed that+n4 is an even number. The
2c 2D, - (3.29 last assumption is appropriate, as we will see, in the case of

the spin-singlet constructions. The glue vectors satisfy the
(They are obtained from the requirement that any dual-latticgluing rule that we found considering the elementary excita-
vector v=pe;+qe,, p and g, in general, rational, has an tions of the first-level hierarchy; we glue only those coset-
integral scalar product with vectors=ka;.+la,., k and| representative vectors for which components for each hierar-
integer, of the integral lattick..) We may check that the chy level(in the standard-hierarchy basigre both even or
volume of the elementary integral-latticeLd) cell is  both odd integers. They have integral norms, integral scalar
4D.=def2A .} times larger than the volume of the elemen- products with one another, and are closed under addition
tary dual lattice cell, i.e., modulo L.®Lg. All other vectors of the order-parameter
lattice L are obtained by adding the ones frdmeL, to
these glue vectors. From the order-parameter lattice the ex-
|y X Ayl citation lattice can be constructed, being dual of the order-
T 7= 4Dc. (3.30  parameter lattice.
|blc>< b20|

This is one way to see that there are{@}, i.e., the de- g spin-singlet condition and first-level spin-singlet hierarchy
terminant of the integral-lattice Gram matrix, coset represen-

tatives ofL. in L¥ .** To find a complete set of them, we
require that

The spin-singlet states of the general two-component hi-
erarchy should have an explicitly $2J-invariant field-
theoretical description. So in that case it should be possible
to cast the low-energy Lagrangian density in E83) in an
explicitly SU(2)-invariant form. The low-energy form in Eq.

O<v-e<ai-e, O0<v-<are, (331 (3.3 contains the possibility to make transformations

that is, we look for all that are in the volume of the integral-

lattice (L) elementary cell. To give an example, we special-

ize to the case for whichy+ny=1. Taking the conditions AL=S.AS., AL=S/AS, (3.39
(3.3) into account, we get

o\ (0 0 Je=ScTer  Ji=SsTs, (3.36
S T DR . |
0/, \1/, 2(m;+ny)—3/ and simultaneous inverse transformations on the gauge fields
and
S IA=AL, S A=Al (3.37)
(1) (1) o ( ! ) (3.33  as found in the polarized case in Refs. 5, 25, and 26. The
1).\2) 7 N 2(mp+ny) =2/ matricesS, andSs must be integer matricefjetS,|=1, and

|detS{ =1, because they must map the excitation vectors
as a set of the coset representatives ofn Ly . (There are  with integer component&.6) into vectors with integer com-
4[(m;+n;)—1]=4D, of them) The components of the ponents in a one-to-one fashioA>?* The form of the
vectors are defined relative to the dual-lattité Y basis vec- SU(2)-; Chern-Simons term in Eq2.14 suggests that,
tors (b, andb,.). The analysis for the spin lattices can be only whenA/ is in a diagonal form, we would be able to cast
repeated in a similar way and the results only differ from thethe theory in a S(®)-explicitly-invariant form. Therefore,
charge case in that we have to change the sigm;of for any spin-singlet construction, we must have this possibil-
i=0,1. For this special casang*=ny=1) the glue vectors ity of having a transformatiors that convertsAg into a
from the definition of the gluing construction are diagonal form. Moreover, repeating the replacement of Eq.
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(2.13 with Eqg. (2.149 in this case, we require that the diag- To understand the physical meaning of the new basis we
onal entries of the transformeX, must be 1 or—1, i.e., that  specialize to the cas®,+ny=1, that is the case where the
we have a theory with as many SU(2) Chern-Simons zeroth level is the completely filled lowest Landau level of
terms as the number of the levels in the hierar@hgluding  both spins. Then the charge and spin matrices are
the zeroth one Only with this requirement does the &)
invariant theory have Abelian statistics, which must be the
statistics of the excitations in any hierarchy built up from the (1 0 Dl 1 0 (3.49
Halperin states. ¢ lo (my+ny)—1)’ s \lo -1/ ™™

The formulated spin-singlet condition implies that the
spin lattice Ls and the dual spin lattick? , in the spin- ) o
singlet hierarchy, should be of the simple square-lattice kindThe latter means that there are two independent spin-singlet
This is implied because of the existence of the basis with théystems. If, in addition, botim, andn, are chosen to be
diagonal form ofA ; where the absolute values of the diago-NONpositive even numbers, i.em;=n,=—2n where
nal matrix are the same. Comparing the Gram matrix or ~ "=1.2,..., thesecond system is described by a Halperin
the spin latticeL and the Gram matrix (1/2\)5_1 for the State in a reverse magnetic field. The filling fraction is
dual spin latticeL , we may conclude that is a square 2+2[(m;+n,)—1]=2-2/(4n+1). The form of the de-
lattice with the basis vectors of twice the length of thoseScription, given by Eq(3.41) of thesg Halpe:rl,n states Of.
describingL* . holes, suggests that we have the basis of Jain’s construction.

In the following, the condition formulated in the first Indeed, the form of the general hierarchy construction, rep-

paragraph of this subsection will be applied to the construc[e“:'emed by the matri®; in Eq. (3.40, tells us that it is the

tion of the first-level spin-singlet hierarchy. We will find all result of th(gzatv_vo operations that characterizes Jain's
two-by-two spin matrices of the fori8.5) with m, even, for constructiorf*>23first combining with one Landau levpéx-
-by- ) . ,

which there exist the integer matric&s (with |deS]=1) emplified in Eq.(3.41)] and then attaching flux to electrons

that transform them into the diagonal form withl or 1 on to get composite fermions. Explicity, it is
the diagonal. The same transformation that is applied to the

spin part will be applied to the charge pa8;€S.=S), and 1 0 1 1
we will identify the new basis as the basis of Jain’s construc- Dl= +(My+ng—1) ,
tion. ¢ \0 (mp+ny)-1 11

We generate our spin-singlet hierarchy by successively (3.42
applying the spin-singlet condition on each level of the hier-

archy. Therefore, the two diagonal matrices that we shouldith the pseudoidentity matriwith all entries equal to ).
consider in the spin parDg,i=1,2 (Ds=S"AS), are which always comes with the spin-independent flux-
attaching operation. The number of the flux quanta attached
is (mg+ng—1)/2, which is an integefAlways, to get physi-
Dl ( 1 0 ) D2= ( 1 ) (3.39 cal quantities that are measured in the unit of one flux quan-
s \0 -1/’ s \o0 1)’ ' tum, we have to divide the defined matrices of the theory by
two because they describe a theory where the unit for flux is
_ ) ) . one half of the flux quantum.
the first diagonal entry is the conditiamny—ny=1 on the Having identified which values ofn, and n, give spin
zeroth level of the hierarchyfWe do not consider the singlets and having recognized that, in the case
Mo —no=—1 condition for a reversed magnetic field be- ,, —n — —2n in the standard-hierarchy picture we have a

cause the corresponding cases reduce to the ones given Byssihole system, we are ready to construct the correspond-
Eq. (3-355]- ing wave function in the fractional-statistics representafion
The first case, because dgt=deD;, corresponds to the  for this case. If we use numbeps and q to describe the

conditon m;—n,=0. The transformation matrix gtatistical angles of the quasiholes of the zeroth levékas

S.=S,=Sin Eg. (3.39 in this case is Egs.(2.8) and(2.9)]
S (3.39 __ Mo
0o -1/’ . ai—ag_—ng’ﬂ—p’ﬂ (343
and the charge part in the new basis is for the exchange of the same-spin quasiholes, and
mg+Ng my+ng—1 No
1_ = =
¢ \me+ne—1 (m0+n0)+(m1+nl)—2)' b m%—néw am (3.4
(3.40

for the exchange of the opposite-spin quasiholes, the wave
(D1 has alln’s with the minus sign. function is of the forr®
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1
W(zy,, ---,ZNi)ZEXP[_ZE |Zi|2]i1;[j (ZiT_ZJ'T)mOiE[j (Zu_zji)mo]i—J[ (Zu_zn)nOJ d2W11' f delvu
Xli_J[ (Zn—le)li_J[ (ZiL_WjT)iIJj |WH—W”|2P£[] |Wi1—Wj¢|2p1i_j[ |WiT_WjL|2qi1:[j (W_iT—W_m)Zn

- — - 1
XLIJ_ (Wil_Wji)znli_J[ (Wu—wn)z"exq’——E |Wi|2}- (3.49

2(mg+np)

The pseudo-wave-functidii,which incorporates the effects of fractional statistics and describes the physics of the system
solely in terms of the quasiparticle coordinates, is

V(Wi ... ,w_w:iljj <w_u—w_jl>p*2“if<lj (w_n—w_,-op“”iljj (Wi, —w;p) 92N, (3.46

The conditiorR® for spin-singlet states for quasiparticles with fractional stati&tiiss

M/2
le e(i,[j])exp{—i6g+1|¥(wy,, ... wy)=0, (3.47

wheree(i,[j]) denotes an exchange between two particles with opposite spin. Bgeausel, we can use a decomposition
of the wave function in the form

‘I’(Wn. .leu):l;[ (Wu_le)p”n_ll;[ (Wm—WjT)erzn_ll;[ (Wil_Wn)p”n_lg (WiT_WjT)l;[ (Wu_le),
i<j <] i<j 1<J <]

(3.48

where a spin-independent factor multiplies the filled lowestexpected, because the quasiparticles are taken to be fermi-
Landau level of both spins that is a spin-singlet, and we seenic in the lowest Landau level just because of their way of
that it obeys the spin-singlet condition. This coincides withcombining together with respect to the internal spin degree
our intuitive expectation that, in the case of the spin-singleof freedom’
hierarchy construction, on the top of the Halpe(eroth- In the second case, wilD§ in Eq. (3.38), the spin-singlet
level) state we have the spin-singlet state of quasiparticles.requirement isn;—n,;=2. The matrixD§ is the same as in
The effects of the statistics in E(B.45 are in the product the previous construction. Whem,=0, i.e., m;=2 (and
with absolute differences, and, as we know from before, ify, andn, are of the Halperin state®?2 andD? describe a
the densities or total numbers of thguasjparticles that  simple Jain's construction: two Landau levels are completely
characterize the ground state are concerned, they affled with composite fermions obtained by attaching
irrelevant™™ (That can be shown by an application of the (4 —1)/2 flux quanta to electrons. In the standard-

Laughlin plasma ar)alod)to the wave function.If we con-  hierarchy picture this is a quasielectron construction. The
sider the quasiparticles as fermionic and, loosely speakingijiing fraction is

pull the factor IT; ;(wi; —wj)ITi<j(w;; —w;,) from the

product with the absolute differences in E®.45 to the 4

product (under the integral sigisnvolving the dlffereEeS v= A[(Mg+ No— D)2+ 1"
of zs and w's, and the factor II;—;(w;;
;w”)HKj(wu—w”) to the product with the differences of
w’s to the nth power, effectively the state of quasiparticles
will be a Halperin spin-singlet state. So in this case, we have The starting point for thath-level-hierarchy construction
also a spin-singlet state on top of another one. This is to bé the spin matrixA (in the standard-hierarchy baksis

(3.49

C. Arbitrary-level spin-singlet hierarchy

My— Ng 1 0 0 0
1 m;—n, 1 0 0
0 1 m,—n, 0 0
A= : 1 0 (3.50
0 0 0 1 m,_1—np_1 1
0 0 0 0 1 m,—n,



56 INVARIANT STRUCTURE OF THE HIERARCHY THEORY ... 1469

The spin-singlet condition, formulated in the previous subsection and easily generalized to any level of the hierarchy, demands
that the diagonal entries are such thdetA (| = 1. We satisfy this condition by demanding that, at each lewélthe hierarchy,

|detAis| =1. This means that the differences—n;, =0, ... n, become fixed numbers characterizing the constructions. To
determine possibilities we define matridélg, k=0, ... n, of the form
my— Nk 1 0 0
1 My 17— Nkt 1 0
M, = 0 1 My 2~ Ny 2 0 (3.5
: 1
0 0 0 1 m,—n,
|
They satisfy the following recursion relation: systems can be described by wave functions that are not of
the form of the Halperin states. Namely, if we take the func-
detMy = (mg—n)deMy ;—deMy.,,  (3.52 tjon of the filled lowest Landau level of both spins and attach

where deM, . ,=1 and de.,=0. Repeatedly requiring a0 €ven number (2 of flux quanta, in the direction oppo-
at each level of the hierarchy thatdet/\i |=1, we have, at site to the external magnetic field, we get a spin-singlet state,
S ’ ’

_rge . _1_ _ . .
the end, the following constraint on the valuesmf and at the f||||n_g fractiony ~=(4n—1)/2, Wh'Ch dlﬁgrs from
n. the Halperin states. These wave functions, projected to the
N

lowest Landau level, are included in Jain’s constructions. As
|detA”|=|detM ,+deM . 4|=|(m,—n,) +1|=1, a consequence, this enlarged constructwith no additional
(3.53 constraints orm,’s andn,’s), covers all filling fractions of
. the even integer—odd integer form.
where the sign depends on the way the lower level was con- By induction, the matrixS,, at each leveln, can be

Strlé(gggﬁse of the nominal Bose statistics of the quasi artitound’ which diagonalizes the matrix; and gives the cor-
L . ; q P responding charge matrix in the basis of Jain’s construction.
cles in this field theory constructionry, is even, and as a

T .
consequence of the earlier requirement,+n, is an even We assume the form &, , a (1+1)x(n+1) matrix, to be

number. The filling fraction in this construction is given by 1 0 0 0 .. 0

. 1 1 -1 0 0 0

vn=2(A¢ ")oo=2 1 . . 1 -1 (_1)k2 0 0

my+nNg— =
o Fng——— Rl I (—f (-1 o[’
M " o, : ; :
3.5

_ (359 1 -1 (=1 (—1)ks z
Becausemg+ng is an odd number and all the rest are even, (3.55
it::teeggrneral form of the filling fraction @n even over an odd where eachk;, i=2,...n—1, can be 0 or 1S] ,, a

. . . . T
At each level of the hierarchy we may constrain the signd1< " matrix, lies in the upper left corner &, . If, for some
of m, andn,, demanding that, in the basis of Jain’s con-choice of &z, ... k,_1), S,_, diagonalizes givemg

struction, we begin(combining one Landau levelwith a matrix for the (—1)th level of the hierarchyso that the
Halperin state. This, as we did in the case of the first-levefiagonal entries are 1 and— 1), andS; diagonalizes in the
quasihole construction, is not necessary. The Chern-Simorgame wayA¢, we will show that|z|=1 and the sign of is
field theory that we use enlarges the principles of theuniquely determined by the way the lower level is con-
standard-hierarchy constructiéRefs. 2 and ¥, and contains ~ structed. From the form &8, [Eg. (3.55], and the previous
also constructions where ground states of (fngasjparticle  assumptions it follows that

Dg(nXn) :
D=S,AlS,= 0 , (3.56
e+z(—1)kn-1
0---0e+z(—1)%-1 e+2z(—1)%-1+(m,—n,)Z?
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whereDg(nXn) is anxn diagonal matrix with all diagonal which means that 3/2 flux quanta are attached in the usual
entries+1 or —1, ande represents its last diagonal entry. way, i.e.,
From the constraint that the off-diagonal element®gfare

also zero follows thaz=(—1)*-1"1e (i.e.,|z|=1).

+3

1 1
), (4.6)

2 0
J(n=1p=1)= 11

IV. GENERALIZED SPIN-SINGLET HIERARCHY 0 2

We may consider also constructions for ground states o nd there is also the flux attachifgithout net flux attached
R .-In the spin part described in Eq. (4.3.
spin-singlet FQHE systems where, at some stage of the hier- pin p b3 a. (4.3
archy, elementary quasiparticles of a Halperin state pair int?m
spinless Laughlin quasiparticles and make a Laughlin state.

This situation, in our formalism, in the case of the first-level

By the way of the gluing theory, as in Sec. lll A, we may
d, in this special case, that the glue vectors are

spin-singlet hierarchy, is described by the following matrix
for the charge degrees of freedom: 0 CEB(O)S' 2 C@(l)s' 4.7
Mt 2 The charge part is given in the basis of the corresponding
= 00 ) (4.1  Ccharge excitation latticeL({) in which the Gram matrix is
2 4p given by (1/2A.* [see Eq.(4.1)] with my+ny=5 and

p=1. We used one-component vectors, in the spin part, as-
sociated with the single direction that describes the spin of
the localized excitations. For a basis of the order-parameter
lattice that is obtained by the way of the gluing we can

1 0 .
AS:(O O) 4.2 choose vectors:

for the spin degrees of freedoifThe factor 2 in the charge
matrix, for the part that describes the new construction,

which is similar to the standard-hierarchy construction in the . ) -
polarized case, is again a consequence of the choice for th¥ith the first and last vectors describing a pure charge and

unit of flux in our formalism). The zero on the diagonal of pure spin order-par.amete.r excitation, respeptl)/eTyle cor-
A, is a consequence of the fact that the description of th&eSPonding three-dimensional Gram matrix is
localized quasiparticle excitations, in this system, can be
given by a three-dimensional lattice.

Again, by applying the matrix transformatid® on both
the spin and charge parts simultaneously we may find differ-
ent expressions of the same construction. In the special case
whenS is given by Eq.(3.39, the charge and spin matrices
are

wherem, andng are of the Halperin zeroth-level state, and
p is an arbitrary integer, and matrix

®(0)s 4.9

O N b

2 0
3 1. 4.9
1 2

It is straightforward to obtain higher level generalizations
of this construction and we will only remark that, in Jain’s
picture, they are always followed by the flux attaching pro-

4n+1 an—-1 cedure to the spin degrees of freedom described previously.

Y=lan—1 an-3+4p

_(1 1)
’ Js_ 1 11 (43)

wheremy+ng=4n+1. Whenn=1 (i.e., in the previous hi-

V. PARTIALLY POLARIZED HIERARCHY

erarchy construction we begin with the=2/5 Halperin At some level of the spin-singlet hierarchy we may allow
staté andp=1, the matrices describe the- 1/2 spin-singlet 0Ny same-spin quasiparticles to make a Laughlin Sttee
state of the following Jain’s construction: equations that we can easily write down to describe this con-

figuration are characterized by the following charge matrix
in the case of the first-level hierarchy:

W= 127 X2X1X1,1- (4.9
xi, i=1,2, denote, in Jain's notatidry filled lowest Landau mgy+nNg 1
level and the first two filled Landau levels without regard to A= 1 ap—-1)° (5.9

the spin degree of freedom, agd, denotes a lowest Landau
level occupied with particles of both spins. Explicitly, the wherep is an arbitrary integer and, as befong, andn, are
flux attaching factory,x; 1, can be rewritten as of the Halperin zeroth-level state. Only in this case, i.e.,
’ whenmg—ny=1, our charge matrix is an integer matrix and
the invariance under the integer mat8xan be considered.

1T (z—-z)*?]1 (ZmT_ZnT)UZH (Zkl_zll)llz If Sis given by Eq.(3.39, the transformed\ . is
1<j ) m<n k<l
mo+no m0+n0_1
<[l (zy—25) 722, 4. = _
lrl (21725 49 Je mo+ne—1 my+ng—1+4p—2/’ .2
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i.e., we again have the basis of Jain’s construction for parmalism was extended to the generalized spin-singlet states
tially polarized state8 Whenmy+ny=1 andp=1, the ma- and partially polarized states.
trix also describes the simplest example of partially polarized The lattice approach, which we used, is a systematic way
states with the lowest Landau level filled with both spins ando classify all Abelian FQHE states with spin. We attempted
the second leve(partially) filled with only one spin projec- to include all states proposed earlier in the literature, in a
tion. description convenient for future applications. The standard-
It is important to point out that, even in the cases of thehierarchy spin-singlet construction that we proposed, in Sec.
higher level constructions, the charge matrix is an integefll B, disagrees with the construction in Ref. 8. If the nomi-
matrix if m;’s andn;’s of the levels with no net spin polar- nal statistics of quasiparticles is taken to be fermionic, as in
ization are chosen to describe a spin-singlet constructiorRef. 8, the algebraic equations of the construction are still
Therefore, the presence of the @Y symmetry(which is  the same ones as in E@®.2) with m; even[as in Eq.(3.2)].
broken in the ground statés followed by the possibility to  This, although not obvious at first sight, can be seen by look-
describe the invariance of the system under change of thieg at the wave functiotiof a specific spin-singlet construc-
hierarchy basis in the picture that treats the charge and spiion) in Eq. (3.45, and reading the comments in the para-
degrees of freedom separately. Then the gluing theory degraph just following.[The fermionic construction requires
scription, with the integral order-parameter charge and spiextra, flux-attaching factor@vith respect to the bosonic one

lattices is appropriate. in the lowest Landau level to be complédt&lore impor-
tantly, our construction is justified by a clear-cut, spin-singlet
VI. CONCLUSION condition in the same subsection.

] _ _ _ _ The experimental findings around filling fraction 3/2 in

In conclusion, the invariance of FQHE systems with SpinRef. 12 are in agreement with our conclusion that, if we do
under change of the hierarchy basis can be also described iyt consider generalized constructions, the spin-singlet states
the spin-charge decomposition picture. We characterized théan occur only at the filling fractions of the form even over
integral charge and spin lattices of the order parameters Qfqq integer. Their results are consistent with the composite-
the systems by stating the conditions that the spin-latticgermion description of partially polarized statt®©nce we
Gram matrix should satisfy to describe @invariant con-  paye the lattice description, presented here, we may consider
structions. In particular, for spin-singlet constructions, a bathe “stability” of various constructions, i.e., the likelihood
sis must exist in which the Gram matrix is diagonal with that they correspond to the systems with well developed pla-
+2 or —2 on the diagonal. This is a consequence of thaeays in experimenfé.It is interesting in this respect to note
existence of as many ) symmetries as there are levels in tnat the lattices corresponding to the states described in Ref.

a specific spin-singlet construction. The physical spin, i..12 have positive-definite Gram matrices.
spin independent of the levels of the hierarchy, in this basis,
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