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Edge theory of ferromagnetic quantum Hall states

M. V. Milovanović
Physics Department, Technion, Haifa 32000, Israel

~Received 7 August 1997; revised manuscript received 17 November 1997!

We propose an effective low-energy theory for ferromagnetic Hall states. It describes the charge degrees of
freedom, on the edge, by a~1 1 1! dimensional chiral boson theory, and the spin degrees of freedom by the~2
1 1! dimensional quantum ferromagnet theory in the spin-wave approximation. The usual chiral boson theory
for spinless electrons is modified to include the charge degrees of freedom with spin. Our total, bulk plus edge,
effective action is gauge invariant and we find a generalized ‘‘chiral anomaly’’ in this case. We describe two,
charged and neutral, sets of edge spin-wave solutions. The spreading of these waves is much larger than the
one for the charge~edge! waves and they have linear dispersion relations.@S0163-1829~98!02416-3#
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I. INTRODUCTION

The bulk properties of the quantum Hall systems at filli
fraction 1/m, m5odd, in the presence of low magnetic field
have been subject of many theoretical and experimenta
vestigations in recent years. The spin degree of freed
plays an important role in these systems. Here we focus
properties of the boundary of these systems, which, in a
cial way, reflect bulk properties. In the spinless case
reflection was already described by Wen.1 The low-energy
~bulk! physics of these systems is identical to that of
quantum ferromagnets with spin waves as excitations. Du
exchange the spins of electrons in the ground state are
aligned in the same direction and the lowest-lying excitatio
are one-spin-flip~spin wave! excitations which leave the
charge of the system unchanged. The lowest-lying char
excitations are topologically nontrivial skyrmion excitation2

for which a local change in the charge density that char
terizes them, is accompanied by a local change in the
density. This scenario, in which a finite number of ove
turned spins follows the creation of the charged excitatio
is supported by experimental findings.3

On the other hand, the physics of the boundary of qu
tum Hall systems without the spin degree of freedom is w
understood.1 In fact for any quantum Hall system, includin
the one which edge physics we would like to understand,
expected that the charge dynamics is reduced to the edg
the system. This is maybe an oversimplification with resp
to a general experimental situation where sharp edges~i.e.,
edges with steep confining potential! are not always presen
Still, the effective one-space-dimensional edge theory–ch
boson theory of quantum Hall systems has received con
erable experimental support in recent years.

Here we present a low-energy effective theory of quant
Hall ferromagnetic systems that describes the charge deg
of freedom restricted to live only on the edge and lowe
lying excitations of the bulk-neutral spin waves. We sho
that, under special conditions~and as solutions of the
theory!, edge spin waves exist, the characteristic width
which is smaller than that of bulk spin waves, which spre
throughout the whole system. These excitations, edge
waves, are characterized by gaps that are smaller than
570163-1829/98/57~16!/9920~8!/$15.00
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Zeeman gap and linear dispersion relations. We find t
classes of these waves, which we call, charged and ne
edge spin waves. One way to induce the charged edge w
is to subtract or add some charge to the edge. By a redi
bution of the charge and, simultaneously, spin of the sys
on the edge~in the manner of spin textures as described fi
in Ref. 2! neutral edge spin waves are possible.

II. EFFECTIVE LOW-ENERGY FIELD THEORY
WITH CHARGE DEGREES OF FREEDOM

ON THE EDGE AND SPIN WAVES

In this section, we will first rederive the edge theory f
spinless electrons1 using the dual form of the Chern-Simon
field-theory description of quantum Hall systems~at filling
fractions 1/m wherem is an odd integer. Then we will us
the dual form of the Chern-Simons formulation of the ferr
magnetic quantum Hall systems~at the same filling fractions
with the spin degree of freedom taken into account! to derive
a low-energy effective theory that describes not only
edge of these systems, but also the lowest-lying excitati
in their bulk-spin waves. At the end we will demonstrate t
gauge invariance of our total, bulk plus edge, action wh
perturbing external electromagnetic fields are present in

A. The edge theory of spinless quantum Hall systems

The systems that we consider are at filling fractions 1m
wherem is an odd integer. We start with the dual formul
tion of the Chern-Simons effective description of these s
tems. In the Chern-Simons formulation the problem of t
2D electron system in magnetic field is mapped to a prob
of Bose liquid with a long-range interaction described by
statistical gauge field. The vortex excitations of the Bo
fluid correspond to the quasiparticle excitations of quant
Hall systems. In the dual form the vortex excitations~i.e.,
fluxes of the gauge field in the preceding formulation! are
viewed as particles, and the charge-current density beco
the flux of some new gauge field. The first terms of t
Lagrangian density in the dual form are
9920 © 1998 The American Physical Society
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L52
m

4p
emnlAm]nAl1

1

2p
emnlAm

ext]nAl2J m
v Am

2
l

4
FmnFmn. ~2.1!

The vector potentialAm ,m50,1,2 represents the newly in
troduced gauge field, which enters the definition of t
charge current densityJm ,m50,1,2:

Jm5emnl

1

2p
]nAl. ~2.2!

Fmn5]mAn2]nAm. The vector potentialAm
ext,m50,1,2 de-

scribes the external electromagnetic field, and two first te
whenAm is ‘‘integrated out’’ give the basic Hall response
the system, i.e., the Hall conductance equal to (1/m)(e2/h).
The third term couples the vortex current densityJ m

v ,m
50,1,2,

J m
v 5

1

2p i
emnl]n]la, ~2.3!

to the gauge fieldAm ~according to the interchanged roles
fluxes and particles!. In Eq. ~2.3! a is the phase of the Bos
field in the former~nondual! formulation and the vortex cur
rent density is nonzero only ifa is a nonanalytic function of
coordinates, i.e.,]n]laÞ]l]na for somel andn.

If our system has a boundary the action for a gene
gauge transformationAm→Am1]mL for which L is not
zero at the boundary is not gauge invariant~i.e., charge con-
serving!. Any electric field along the boundary will produc
a current normal to the boundary because of the nonz
value of the Hall conductance. But with restricted gau
transformations for whichL50 on the boundary we ma
use this action to derive, as was already done in Ref. 1,
kinetic term of the edge theory Lagrangian. These ga
transformations describe a well-defined boundary probl
in which some of the physics of the quantum Hall syste
due to perturbing external electromagnetic fields is
present. Namely, by making all previously gauge-depend
quantities on the edge gauge independent, i.e., physical
are deriving an effective edge theory that gives the ri
physics when charge exchange between the bulk and ed
absent.4,5 ~We defer description of the total action with pe
turbing electromagnetic fields, which is explicitly gauge i
variant to Sec. II C.!

First we neglect the last term in Eq.~2.1! ~as a higher
order term in derivatives!, regard the equation of motion fo
A0 as a constraint, and takeA050. The constraint is

1

2p
~m¹W 3AW 2¹W 3AW ext!52J 0

v, ~2.4!

simply saying that any deviation in the charge density of
system is due to the creation of vortices. The solution of t
equation, up to a gauge transformation is

dAa5Aa2
1

m
Aa

ext52
1

m
]aa. ~2.5!
e
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We assume that there are no vortices in the bulk of the s
tem so thata is analytic. When we plug in the solution~2.5!
in the remaining term of the Lagrangian~we do not consider
the term withAm

ext):

DLeff52
m

4p
ea0bAa]0Ab ~2.6!

we get, up to a total time derivative and with an assumpt
that Am

ext is time independent, that

Leff~x,y,t !5
1

4pm
eab]b~]aa]0a!. ~2.7!

This total divergence can be translated into a surface ter

Leff~x,t !5
1

4pm
]xa]0a, ~2.8!

exactly the kinetic term of the chiral boson theory, if w
consider the system to be defined in the lower half-pla
with y50 as a boundary. We get only the kinetic term of t
edge theory because we started from the theory in which
neglected terms that bring dynamics. We might expect t
the following term in small momentum expansion on t
edge is

2
v

4pm
]xa]xa ~2.9!

with a nonuniversal couplingv. This term gives dynamics to
the edge theory and together with Eq.~2.8! makes the chiral
boson theory Lagrangian density. Thus, we can conclude
the fielda phase of the bosonic field in the standard Che
Simons formulation on the boundary plays the role of t
chiral boson field.

B. Effective low-energy field theory of ferromagnetic quantum
Hall states

The Lagrangian density of the Chern-Simons theory
ferromagnetic quantum Hall states in the dual form is6,7

L52
m

4p
emnlAm]nAl1

1

2p
emnlAm

ext]nAl2JmAm

2
rs

2
~¹W nW !21

D

2
n32

l

4
FmnFmn . ~2.10!

Again the charge current density as a function of the sta
tical gauge fieldAm is given by the relation~2.2!. Now qua-
siparticle current density consists of two contributions: v
tex and skyrmion: J5J m

v 1J m
s . As before vortex

excitations do not change the spin configuration of the fer
magnetic Hall states. Skyrmions, on the other hand, wh
lie lower in the energy spectrum, represent excitations
lowed by reversal of electron spins in the system. The vor
current density is given by Eq.~2.3!, where againa is the
phase of the bosonic field of the standard Chern-Simons
mulation, and the skyrmion current density6,7 is

J m
s 5

1

2p i
emnl]n z̄]lz. ~2.11!
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9922 57M. V. MILOVANOVIĆ
The field z is the two-component spinor of the standa
Chern-Simons formulation,6 in which the bosonic field is de
composed in an amplitude, phase, and spinor part:

Cbosonic5r exp$ ia%z. ~2.12!

The spinor part describes the spin degree of freedom of
bosonic field associated with the original electron field.

The fourth, extra term with respect to the spinless cas
the Lagrangian density is the nonlinears model term with
nW 5 z̄tWz, wheretx ,ty , and tz are Pauli matrices.rs is the
stiffness constant. This term represents the cost in the
change energy when the ground-state ferromagnetic con
ration is modified.

The fifth term is the Zeeman term with constantD
5(gmB/2p)B whereB is the external magnetic field.

To get the low-energy, effective theory that includes t
edge physics, we repeat steps that we described in the p
ous subsection in the spinless case. The constraint equ
in this case, as we varyA0, is

1

2p
~m¹W 3AW 2¹W 3AW ext!52J 0

v2J 0
s . ~2.13!

The solution to this constraint is

dAa5Aa2
1

m
Aa

ext52
1

m
]aa1

i

m
z̄]az. ~2.14!

Now we assume thata is analytic so that no vortex excita
tions in the bulk are allowed. We do not make any restr
tions onz. By plugging in the solution~2.14! in the begin-
ning Lagrangian~2.10! with A050 and without the second
and the last term we get surface terms:

Leff
kin~x,t !5

1

4pm
@]xa]0a22i ]xa~ z̄]0z!

1terms withouta#. ~2.15!

The fielda cannot be found anymore in the bulk Lagrangia
Therefore pure charge degrees of freedom, i.e., those tha
not followed by a change in the spin configuration are n
restricted to live only on the boundary of the system.@This
coincides with the microscopic physical picture that we ha
of these systems. The pure charge~quasihole! excitations,
which lie higher in the energy spectrum than skyrmion ex
tations, in the bulk, can be found in the low-energy appro
mation on the edge of the system. There, on the edge,
excitation energy is smallest~in fact goes to zero!.8# In Eq.
~2.15! we see the most important result of this derivatio
namely a nontrivial coupling between the spin and cha
degrees of freedom on the edge of the system.

In the low-energy approximation that we make@i.e., ne-
glecting the last term in Eq.~2.10!# we find that the charge
current is equal to the sum of skyrmion and vortex curren
As we do not have vortex currents in the bulk of the syste
the condition that the skyrmion current normal to the bou
ary is zero is equivalent to the demand that the charge
rent normal to the boundary is zero. In the absence of
external electromagnetic fields besides the uniform magn
he
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that defines the problem, we will require that no charge c
leave the system, i.e., the skyrmion current normal to
boundary is zero. In that case

]x~ z̄]0z!5]0~ z̄]xz! ~2.16!

and we may rewrite~after a partial integration! the second
surface term in theLeff

kin(x,t) as

1

4pm
@2 i ]xa~ z̄]0z!2 i ]0a~ z̄]xz!#, ~2.17!

Besides, as we did not break the gauge invariance unde
gauge transformation defined as

a→a1b and z→exp$2 ib%z ~2.18!

and present in the bosonic Chern-Simons formulation w
field ~2.12!, we may also demand the same invariance on
edge of the system. This invariance is an expression of
confinement of spin and charge on electrons, and should
ist also on the edge. As a result the surface gauge-invar
kinetic term that contains the fielda is

Leff
kin55

1

4pm
~]xa2 i z̄]xz!~]0a2 i z̄]0z!. ~2.19!

We can conclude that, with respect to the spinless case
stead of

]mam50,x, ~2.20!

in the case with spin we have

]ma2 i z̄]mzm50,x. ~2.21!

By considering couplings with external fields we may al
conclude that these gauge-invariant expressions up to s
appropriate constants represent charge density and curre
the edge similarly to the spinless case. Then Eq.~2.21! for-
mally expresses the physical fact that the charge current
density on the edge have contributions followed by chan
in the spin configuration on the edge. Therefore we exp
that under inclusion of a charge-density interaction te
~which describes the dynamics on the edge! so that the La-
grangian density is

Leff5
1

4pm
~]0a2 i z̄]0z!~]xa2 i z̄]xz!

2
v

4pm
~]xa2 i z̄]xz!2, ~2.22!

we have a complete low-energy description of the cha
degree of freedom on the edge. The equation of motion foa
on the edge simply tells us that the charge on the edge d
with velocity v along the edge in only one direction as
should be in a quantum Hall system.

At this stage of deriving the low-energy, effective theor
the bulk Lagrangian density is

DLeff~x,y,t !52J a
sS 1

m
Aext

a 1
i

m
z̄]azD2

rs

2
~¹W nW !21

D

2
n3 ,

~2.23!
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57 9923EDGE THEORY OF FERROMAGNETIC QUANTUM HALL STATES
wherea5x,y. Now we will apply the spin-wave approxima
tion in which fieldz is decomposed in the following way:

z5S 12 1
2 uCu2

C
D . ~2.24!

The complex bosonic fieldC expresses fluctuations with re
spect to the ground-state configuration and is to be con
ered small and slowly varying, and therefore, we will ke
only terms quadratic inC. Then, the 211 dimensional La-
grangian density~2.23! of the bulk becomes

Leff~x,y,t !5 ir0C̄]0C22rs¹W C̄¹W C2DuCu2.
~2.25!

Now, we will again assume that our system is in the low
half-plane. After a partial integration inside the express
for the system Lagrangian we get an extra~to the chiral
boson Lagrangian! surface term:

DLsurf~x,t !522rsC̄]yC, ~2.26!

and the 211 dimensional Lagrangian density of the bulk,

Leff
bulk~x,y,t !5 ir0C̄]0C12rsC̄¹W 2C2DuCu2.

~2.27!

For a moment we will discuss only the problem of 2D fe
romagnet described by the Lagrangian densities~2.26! and
~2.27! ~in the spin-wave approximation! in order to explain
the meaning of the surface term~2.26!. In that case, the
corresponding Euler-Lagrange equations for the fieldC is

ir0]0C12rs¹W
2C2DC50 ~2.28!

in the bulk, and

]yCuy5050 ~2.29!

on the edge. The normal mode solutions of Eq.~2.28! in the
bulk are spin waves,

C5A exp$ ikW rW%exp$2 iwt% ~2.30!

with the dispersion relation:

w5
D

r0
1

2rs

r0
k2. ~2.31!

To satisfy boundary condition~2.29!, the class of solutions is
further reduced to the form:

C5Acos$kyy%exp$ ikxx%exp$2 iwt%. ~2.32!

The condition~2.29! ensures that spin currents normal to t
boundary are zero. Namely, if we use the Noether expres
for them,

J m
a 52

i

2

dLQFM

d~]mzi !
t i j

a zj1H.c., ~2.33!

whereta,a51,2,3 are Pauli matrices andLQFM ~a Lagrang-
ian density of a quantum ferromagnet! is

LQFM5 ir0z̄]0z2
rs

2
~¹W nW !21

D

2
z̄t3z, ~2.34!
d-

r
n

on

we may find in the spin-wave approximation the followin
expressions for them:

J y
35 irs~C̄]yC2]yC̄C!,

J y
15 irs~]yC̄2]yC!,

J y
25 irs~]yC̄1]yC!. ~2.35!

We neglected the terms of order higher than two inC; the
single condition~2.29! ensures that all of them are zero at t
boundary.

The edge spin-wave solutions of the form

C5B exp$by%exp$ ikxx%exp$2 iwt%, ~2.36!

b positive, satisfy the equation in the bulk, but the conditi
~2.29! forcesb to be zero. Therefore, in the case of a pu
quantum ferromagnet, the constraint of the spin conserva
on the boundary, does not allow the existence of the e
spin excitations.

Now, we will summarize our effective theory for a qua
tum Hall system with a boundary, having in mind the sp
cific geometry in which the system is in the lower half of th
plane. The bulk Lagrangian density~in the spin-wave ap-
proximation! is given by

Lbulk5 ir0C̄]0C12rsC̄¹W 2C2DuCu2

1higher order terms, ~2.37!

and the edge Lagrangian density is

Ledge~x,t !522rsC̄]yC1
1

4pm
~]xa

f]0a f2v]xa
f]xa

f !

1higher order terms, ~2.38!

where

]ma f5]ma2
i

2
~C̄]mC2]mC̄C!. ~2.39!

C. The proof of gauge invariance of the effective field theory

In the spinless case the effective action of the bulk,

Lbulk52
m

4p
emnlAm]nAl1

1

2p
emnlAm

ext]nAl ~2.40!

when the fieldAm is integrated out, is

Lbulk
eff 5

1

4pm
emnlAm

ext]nAl
ext. ~2.41!

On the other hand the edge action with external electrom
netic field included is1,4
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Ledge5
1

4pm
@]xa]0a2v~]xa!2#

3
1

2pm
~vAx

ext2A0
ext!]xa

2
1

4pm
~vAx

ext2A0
ext!Ax

ext . ~2.42!

Under the gauge transformationa→a1L and Am
ext→Am

ext

1]mL the total action,Lbulk1Ledge or Lbulk
eff 1Ledge, is in-

variant. Namely, the chiral anomaly4 term

1

4pm
L~]0Ax

ext2]xA0
ext!, ~2.43!

which we get by the gauge transformation of the bulk act
is of the same absolute value but of opposite sign as the
that we get gauge transforming the edge action~2.42!.

In our previous derivation we assumed that only the v
tor potential of the constant magnetic field is present
~2.40! and, therefore, the fieldAm did not have any dynam
ics; by the equation of motion of the action it was co
strained to satisfymeab]aAb5eab]aAb

ext. Because of the ab
sence of the perturbing external electromagnetic fields
whole dynamics of the system was on the edge describe
the chiral boson theory@the first two terms in Eq.~2.42!#.

Similarly, in the case with spin, more general effecti
bulk action with external perturbing electromagnetic fields

Lbulk52
m

4p
emnlAm]nAl1

1

2p
emnlAm

ext]nAl2J m
s Am

2
rs

2
~¹W nW !21

D

2
n3 . ~2.44!

Compare with Eq.~2.10! and note the absence of the vort
current J m

v in the action. As we pointed out before th
signifies the fact that the charge excitations without s
changes are to be found on the edge of the system in
low-energy approximation.

If we integrate outAm field we get

Lbulk
eff 5

1

4pm
emnlAm

ext]nAl
ext1

1

4pm
emnlAm

ext]n~ i z̄]lz!

1terms withoutAm
ext. ~2.45!

For the edge the complete action@see Eq.~2.22!# with exter-
nal electromagnetic fields is

Ledge5
1

4pm
@~]xa2 i z̄]xz!~]0a2 i z̄]0z!

2v~]xa2 i z̄]xz!2#

1
1

2pm
~vAx

ext2A0
ext!~]xa2 i z̄]xz!

2
1

4pm
~vAx

ext2A0
ext!Ax

ext. ~2.46!
n
rm

-
n

e
by

s

n
he

Again, in this case, the extra term that we get by sett
Am

ext→Am
ext1]mL in Eq. ~2.45!,

1

4pm
L@]0~Ax

ext1 i z̄]xz!2]x~A0
ext1 i z̄]0z!# ~2.47!

is canceled by the term that comes out from takingAm
ext

→Am
ext1]mL and a→a1L in Eq. ~2.46!. Therefore the

gauge invariance of the total action,Lbulk1Ledge @or Lbulk
eff

1Ledge, Eqs.~2.44! and ~2.46!#, is proved.
As we takeAm

ext to be the vector potential of the consta
magnetic field and apply the spin-wave approximation
action ~2.44! is transformed into Eq.~2.25! and the edge
action becomes Eq.~2.22!.

III. SOLUTIONS OF THE FIELD THEORY

As we vary the surface terms of the low-energy effect
Lagrangian@Eqs.~2.37! and~2.38!# with respect toa andC̄
~or C) we get two equations. As we varya, we get

]x]0a f5vc]x
2a f ~3.1!

and, by varyingC̄ and using the previous equation,

2rs]yC1
1

4pm
~2 i !@]xC]0a f2]0C]xa

f

2vc2]xC]xC]xa
f #50. ~3.2!

When ]ma f50,m50,x, i.e., there are no charge excitation
on the boundary, the spin waves~2.32! are solutions of the
bulk and surface equations. WhenC50, i.e., there are no
spin excitations in the system; the only solutions of the eq
tions are charge-density waves of the chiral boson theor

From the bulk equation~2.28! we get the following dis-
persion relation for the edge spin waves~2.36!:

w5
D

r0
1

2rs

r0
~kx

22b2!. ~3.3!

The coefficientb, which characterize the extension of th
edge spin waves into the bulk of the system, comes from
boundary equation~3.2!. The one-dimensional charge de
sity and current are given by

j 05
1

2pm
]xa

f and j x5
1

2pm
]0a f , ~3.4!

respectively. Fora f5a f(x1vct), the general solution of Eq
~3.1!, we have

vc]xa
f5]0a f , i.e., vcj 05 j x , ~3.5!

and we may rewrite Eq.~3.2! as

24rs]xC1 i j 0]0C1 i j 0vc]xC50. ~3.6!

A. Charged edge spin-wave solutions

The solution of the form~2.36! of Eq. ~3.6! with b5
const exists only ifj 0 is, by itself, a constant, i.e., if there i
a constant charge density along the boundary of the sys
For the ground statej 050, and the previous condition~with
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57 9925EDGE THEORY OF FERROMAGNETIC QUANTUM HALL STATES
j 0Þ0) means that some~extra! charge is added to (j 0.0) or
subtracted from the system (j 0,0). Plugging in the form
~2.36! into Eq. ~3.6!, and using Eq.~3.3!, we obtain the fol-
lowing candidates for solutions withb equal to

b1,252
r0

j 0
6

r0

u j 0uA11
j 0
2

2rsr0
2 ~D12rskx

22vcr0kx!,

~3.7!

from which only those withb positive can describe the edg
spin waves. In the approximations in which the second te
under the square root in Eq.~3.7! is small,

b'
j 0

4rsr0
~D12rskx

22vcr0kx! for j 0.0

and b'2
r0

u j 0u
for j 0,0. ~3.8!

For j 0→0 the second solution is unacceptable because
effective theory assumes~spatially! slowly varying quanti-
ties, which is not the case with the solution withb large.

Also, we may notice looking at Eq.~3.8! asymmetry be-
tween thej 0.0 andj 0,0 cases. One way to understand t
asymmetry is to first consider the single-particle picture
adding and subtracting charge to the edge of these syst
In this picture of systems without spin, adding or subtract
charge is always equivalent to simple shifts~translations! of
the boundary. In the case of the systems with spin there i
additional possibility to add charge as shown in Fig. 1.

We believe that this single-particle picture is behind t
many-body state–charged edge spin wave forj 0.0. This
can be supported by the following consideration. First,
may try to interpret the solution as a solution of a generali
pure-spin~quantum-ferromagnet! problem, in which the sec
ond and third term in Eq.~3.6! correspond to some surfac
terms in that problem. For a finite Zeeman coupling and
the small-momentum approximation, the solution withj 0
.0 corresponds to the following term:

j 0

r0
DC̄C ~3.9!

with an effective magnetic fieldBeff52( j 0 /r0)B on the
boundary. As we add electrons, we effectively create a m
netic field in the opposite direction of the external magne
field. This magnetic field makes possible the creation of
spin edge solution. As we add more electrons (j 0 larger! the
effective magnetic field increases in its magnitude and fav
edge spin waves localized near the boundary (b larger!.
Therefore the edge-spin-wave, one-spin flip will be more
calized on the boundary if there are more pairs~see Fig. 1!
each of them energetically unfavorable because each of t
consists of two electrons in the same orbital.

FIG. 1. Adding charge to the edge of then51 filling fraction in
the single-particle picture.
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The corresponding term~in the pure-spin problem! for the
second solution~with j 0,0) is

2
2rsj 0

r0
]yC̄]yC. ~3.10!

It is of the opposite sign from the gradient term in the bu
and, therefore, favors the solution that disorders the spin c
figuration of the ground state and, we expect, as it is usua
these systems, that it is also followed by a redistribution
the charge on the boundary.

We also expect that these charged edge spin waves ca
created without any change in the total charge of the syst
i.e., by simple redistributions of the ground-state charge
the boundary wherej 0 is a parameter that characterizes the
Therefore, when considering the total energy of excitatio
we will neglect the energy term of the chiral boson Lagran
ian. Then the surface contribution is

Esurface52rsb
2 ~3.11!

and the contribution from the bulk is given by Eq.~3.3! to
get Eq.~3.11! we normalized the wave to describe one ele
tron spin flip:

C5Ab

p
exp$by1 ikx2 iwt%. ~3.12!

As a consequence, we may write the total energy of exc
tions as

Etot5
D

r0
1

2rs

r0
k21b2S 4rs2

2rs

r0
D . ~3.13!

Becauser051/2pm the last term in Eq.~3.13! is always
negative, and atk50 Etot is always lower than the constan
Zeeman term. When Eq.~3.8! is substituted forb in the
expression~3.13!, the energy~3.13! is of the following form:

Etot5c01c1k1c2k21•••, ~3.14!

~wherec’s do not depend onk!. By having a linear term ink
this dispersion relation is asymmetric aroundk50.

B. Neutral edge spin-wave solutions

We define the neutral edge spin waves by requiring t
the field a, which lives on the boundary, associated w
pure ~not carrying also spin! charge degrees of freedom,
zero (a50). As a consequence there is one less surf
equation to be satisfied, because the constraint equa
~3.1! and ~3.2! cannot be satisfied simultaneously. And,
we will see, the constraint also implies losing one of the t
~charge and spin! local conservation laws. Namely, loca
spin currents normal to the boundary will be nonzero in g
eral. It will be also shown that these excitations are neut
i.e., the total change in the charge of the system, when th
excitations occur, is zero.

With the conditiona50 the charge current and densi
on the boundary are proportional to

]ma f52
i

2
~C̄]mC2]mC̄C!m50,x ~3.15!
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These charge degrees of freedom must satisfy Eq.~3.1!, and
from that it follows that the dispersion relation for the wav
is w5vck. This dispersion relation follows when a gener
solution that is a superposition of the waves of the fo
~2.36! is considered. The frequency of the wave is also eq
to Eq.~3.3!. This enables us to findb in this case. It is given
by the following expression:

b25
D

2rs
1k22

vcr0

2rs
k, ~3.16!

i.e., in the small-momentum approximationb'AD/2rs. But
the waves do not satisfy Eq.~3.2!, which, in the spin-wave
approximation, is equivalent to the condition~2.29!. This
means that the spin currents normal to the boundary of
system are, in general, nonzero and exchange of the sp
the system with outside is allowed. Nevertheless,J y

350
@see Eq.~2.35!# everywhere on the boundary and, also, t
total spin of the system is conserved, i.e.,

E
2`

1`

J y
2dx50 and E

2`

1`

J y
1dx50. ~3.17!

Although the bulk excitation energy (w5vck) is gapless,
these excitations have a gap. To see this we have to calc
their total energy and include the surface contribution~3.11!,
with b given by Eq.~3.16!. As a final result we have

Etot52D1vck~122rs!14rsk
2. ~3.18!

The requirementEtot.0 for eachk fixes the allowed range
of the parameters in Eq.~3.18! and in the theory. The exci
tations are allowed to propagate in both directions, thou
the spectrum is asymmetric aroundk50 because of the pres
ence of the linear term inEtot . The gap~the smallest excita-
tion energy for certaink) of these excitations is alway
smaller than the Zeeman gap.

To prove the neutrality of these excitations we start wit
general edge spin-wave solution:

C~x,y,t !5(
k
Ab

p
exp$by1 ikx2 iwt%a~k!,

~3.19!

wherea(k) are arbitrary~complex! coefficients in this ex-
pansion. The density of charge on the boundary of the s
tem can be expressed as

rsurface~x,t !5
]xa

f

2pm
5

1

2pm S 2
i

2D ~C̄]xC2]xC̄C!

5
b

2p2m
S 2

i

2D (
k,k8

exp$2 i ~k2k8!x%

3exp$ i ~wk2wk8!t% i ~k81k!a~k!* a~k8!.

~3.20!

The same quantity in the bulk is proportional to the topolo
cal density6 and equal to

rbulk~x,y,t !5
~2 i !

2pm
~]xz̄]yz2]yz̄]xz!. ~3.21!
l
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In the spin-wave approximation we have

rbulk~x,y,t !5
~2 i !

2pm
~]xC̄]yC2]yC̄]xC!

5
2 ib2

2p2m
(
k,k8

exp$2by%exp$2 i ~k2k8!x%

3exp$ i ~wk2wk8!t%

3~2 i !~k1k8!a~k!* a~k8!. ~3.22!

Clearly, the total change in the charge of the boundary,

Qsurface5E
2`

1`

rsurface~x,t !dx5
b

pm(
k

ka~k!* a~k!,

~3.23!

is of the same amount, but of opposite sign than the on
the bulk @Qbulk5*2`

1`dx*2`
0 dyrbulk(x,y,t)#.

At the end of this section we would like to comment o
the nature of these neutral edge spin waves. As they
completely skyrmionic, their charge is fully specified b
their spin configuration. Their spread increases with the
creasing of the Zeeman energy, which is a well-known sk
mion property. As they carry fixed~unit! amount of spin they
vanish when the Zeeman coupling is zero. Due to the cl
relationship between their charge and spin and the linea
of the chiral boson dispersion relation, the dispersion relat
of these spin waves is also linear.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we proposed an effective edge theory
ferromagnetic quantum Hall states. It describes their~1 1 1!
dimensional charge degrees of freedom by a chiral bo
theory and their~2 1 1! dimensional spin degrees of free
dom by the effective theory of a quantum ferromagnet in
spin-wave approximation. We found two classes of the e
spin-wave solutions. The class with the charged edge s
waves is obtained by removing or adding electrons to
edge of the system. The second class of the neutral edge
waves does not require any change in the total charge of
system. All these edge spin excitations are characterized
linear dispersion relations and gaps in the excitation ene

We did not consider most-general surface terms for
spin degrees of freedom, which would be present in a m
general theory, because we wanted to emphasize and e
ine the influence of the terms that describe the charge
grees of freedom. The latter terms, collected in the ch
boson theory, give a complete effective description of
charge degrees of freedom on the edge.

Reference 9 pointed out that for small Zeeman energ
and soft confining potentials a reconstruction~from narrow
and spin-polarized edge! to the edge with spin texture
should occur. Because of our assumption of the edge w
the same polarization as that of the bulk, our theory is va
only for steep enough~see for estimates in Ref. 9! confining
potentials.

In conclusion, we would like to comment on the relatio
ship between our work and the recent work concerning e
excitations and edge reconstruction atn51.10 There, the
Hartree-Fock procedure was used to determine the en
spectrum of some proposed edge spin-flip excitations~in
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fact, a special form of these excitations was first suggeste
Ref. 11!. These excitations reconstruct the edge when
Zeeman energy is small and the confining potential soften
They are followed by an outward movement of charge a
exist even at zero Zeeman energy. The latter property is
shared by our neutral edge excitations and charged edge
citations for j 0.0 and, therefore, they should not be co
fused with those of Ref. 10~the neutral edge waves eve
require, as we described, special boundary conditions to
ist!. On the other hand, the detailed description of
charged edge excitations forj 0,0 ~which can be associate
with the outward movement of charge! is impossible in the
yi,

R

in
e
d.
d
ot
ex-

x-
e

scope of our theory. The theory gives only an inkling of t
possible instability of the ground state with respect to th
creation.
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