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We propose an effective low-energy theory for ferromagnetic Hall states. It describes the charge degrees of
freedom, on the edge, by(a + 1) dimensional chiral boson theory, and the spin degrees of freedom §§g the
+ 1) dimensional quantum ferromagnet theory in the spin-wave approximation. The usual chiral boson theory
for spinless electrons is modified to include the charge degrees of freedom with spin. Our total, bulk plus edge,
effective action is gauge invariant and we find a generalized “chiral anomaly” in this case. We describe two,
charged and neutral, sets of edge spin-wave solutions. The spreading of these waves is much larger than the
one for the chargéedge waves and they have linear dispersion relati¢8§163-182@08)02416-3

[. INTRODUCTION Zeeman gap and linear dispersion relations. We find two
classes of these waves, which we call, charged and neutral
The bulk properties of the quantum Hall systems at fillingedge spin waves. One way to induce the charged edge waves
fraction 1/, m=odd, in the presence of low magnetic fields, is to subtract or add some charge to the edge. By a redistri-
have been subject of many theoretical and experimental inbution of the charge and, simultaneously, spin of the system
vestigations in recent years. The spin degree of freedoron the edgein the manner of spin textures as described first
plays an important role in these systems. Here we focus oim Ref. 2 neutral edge spin waves are possible.
properties of the boundary of these systems, which, in a spe-
cial way, reflect bulk properties. In the spinless case this

reflection was already described _by_W‘em_he low-energy Il. EFEECTIVE LOW-ENERGY EIELD THEORY
(bulk) physics of these systems is identical to Fhat of 2D WITH CHARGE DEGREES OF FREEDOM
quantum ferromagnets with spin waves as excitations. Due to ON THE EDGE AND SPIN WAVES

exchange the spins of electrons in the ground state are all

aligned in the same direction and the lowest-lying excitations In this section, we will first rederive the edge theory for
are one-spin-flip(spin wave excitations which leave the spinless electrofausing the dual form of the Chern-Simons
charge of the system unchanged. The lowest-lying chargefield-theory description of quantum Hall systerfa filling
excitations are topologically nontrivial skyrmion excitatiéns fractions 1m wherem is an odd integer. Then we will use
for which a local change in the charge density that characthe dual form of the Chern-Simons formulation of the ferro-
terizes them, is accompanied by a local change in the Spifagnetic quantum Hall systentat the same filling fractions
density. This scenario, in which a finite number of over-yit the spin degree of freedom taken into accotmierive
fcurned spins follows the creation pf the charged excitations, low-energy effective theory that describes not only the
is supported by experimental findings. edge of these systems, but also the lowest-lying excitations

On the other han.d’ the physips of the boundary Of. Quan, iheir bulk-spin waves. At the end we will demonstrate the
tum Hall systems without the spin degree of freedom is well

understood. In fact for any quantum Hall system, including gauge invarnance of our total, bul.k plus edge, action .Wh.en
the one which edge physics we would like to understand, it ié)erturblng external electromagnetic fields are present in it.

expected that the charge dynamics is reduced to the edge of
the system. This is maybe an oversimplification with respect
to a general experimental situation where sharp edoes
edges with steep confining potentiare not always present. The systems that we consider are at filling fractions 1/
Still, the effective one-space-dimensional edge theory—chiravherem is an odd integer. We start with the dual formula-
boson theory of quantum Hall systems has received considion of the Chern-Simons effective description of these sys-
erable experimental support in recent years. tems. In the Chern-Simons formulation the problem of the

Here we present a low-energy effective theory of quantun®D electron system in magnetic field is mapped to a problem
Hall ferromagnetic systems that describes the charge degreef Bose liquid with a long-range interaction described by a
of freedom restricted to live only on the edge and lowest-statistical gauge field. The vortex excitations of the Bose
lying excitations of the bulk-neutral spin waves. We showfluid correspond to the quasiparticle excitations of quantum
that, under special conditionsand as solutions of the Hall systems. In the dual form the vortex excitatione.,
theory), edge spin waves exist, the characteristic width offluxes of the gauge field in the preceding formulaji@me
which is smaller than that of bulk spin waves, which spreadviewed as particles, and the charge-current density becomes
throughout the whole system. These excitations, edge spithe flux of some new gauge field. The first terms of the
waves, are characterized by gaps that are smaller than thegrangian density in the dual form are

A. The edge theory of spinless quantum Hall systems
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m N 1 | ext We assume that there are no vortices in the bulk of the sys-
L== €A A oA A - T LA tem so that is analytic. When we plug in the solutig@.5)
in the remaining term of the Lagrangi@we do not consider

the term withAS):
-2 FWFMV 2.1

m
2 €aobAadoPp (2.6)

ALe=— 41

The vector potentiah ,,u=0,1,2 represents the newly in-
troduced gauge field, which enters the definition of the

charge current density,, ,x=0,1,2: we get, up to a total time derivative and with an assumption

that Afj‘t is time independent, that

J VAN, (2.2

_ o 1
”_E‘“’)‘an- Len(X,y,1) = mfabab(aaaﬁoa) 2.7

F,.,=d"A"—d"A*. The vector potentiaAi"t,Mzo,l,Z de- This total divergence can be translated into a surface term:
scribes the external electromagnetic field, and two first terms

whenA , is “integrated out” give the basic Hall response of 1

the system i.e., the Hall conductance equal tanj{£%/h). Len(X,) = 7 dxadoa, (2.8
The third term couples the vortex current den , o . .
-012 P S 1 exactly the kinetic term of the chiral boson theory, if we

consider the system to be defined in the lower half-plane
1 with y=0 as a boundary. We get only the kinetic term of the
jv mava a, (2.3 edge theory because we started fr_om the the_ory in which we
neglected terms that bring dynamics. We might expect that
the following term in small momentum expansion on the

to the gauge field\, (according to the interchanged roles of edge is

fluxes and particlosIn Eg. (2.3 « is the phase of the Bose
field in the former(nondua) formulation and the vortex cur- v
rent density is nonzero only & is a nonanalytic function of - 4—z?xat?xa 2.9
coordinates, i.e.9”d a+ 3"« for some\ andv. 7m

If our system has a boundary the action for a generalvith a nonuniversal coupling. This term gives dynamics to
gauge transformatio®,—A,+d,A for which A is not the edge theory and together with Ef.8) makes the chiral
zero at the boundary is not gauge invarigiré., charge con-  boson theory Lagrangian density. Thus, we can conclude that
serving. Any electric field along the boundary will produce the field @ phase of the bosonic field in the standard Chern-
a current normal to the boundary because of the nonzergimons formulation on the boundary plays the role of the
value of the Hall conductance. But with restricted gaugechiral boson field.
transformations for whiclh=0 on the boundary we may
use this action to derive, as was already done in Ref. 1, thg Effective low-energy field theory of ferromagnetic quantum
kinetic term of the edge theory Lagrangian. These gauge Hall states
transformations describe a well-defined boundary problem,
in which some of the physics of the quantum Hall systems 1he Lagrangian density of the Chern-Simons ”;eory for
due to perturbing external electromagnetic fields is nof€romagnetic quantum Hall states in the dual forfis

present. Namely, by making all previously gauge-dependent

quantities on the edge gauge independent, i.e., physical, we ,— _ ﬂfwa 9,A\+ iewaext& A, — T, A*

are deriving an effective edge theory that gives the right 4m 27 woy a
physics when charge exchange between the bulk and edge is A N

absent® (We defer description of the total action with per- _ %(V*ﬁ)hr S5 2 FF,. (2.10

turbing electromagnetic fields, which is explicitly gauge in-
variant to Sec. Il Q.

First we neglect the last term in E¢R.1) (as a higher
order term in derivatives regard the equation of motion for
Ap as a constraint, and taldg,=0. The constraint is

Again the charge current density as a function of the statis-
tical gauge fieldA* is given by the relatiori2.2). Now qua-
siparticle current density consists of two contributions: vor-
tex and skyrmion: jzjfﬁjz. As before vortex
excitations do not change the spin configuration of the ferro-
i(mv’xﬁ\_v’xﬁ\ext): ~ 7, (2.4 Ir_nag;;netic_HaII states. Skyrmions, on the other hanq, which
ie lower in the energy spectrum, represent excitations fol-
lowed by reversal of electron spins in the system. The vortex
simply saying that any deviation in the charge density of thecyrrent density is given by Eq2.3), where againx is the
system is due to the creation of vortices. The solution of thiq)hase of the bosonic field of the standard Chern-Simons for-

equation, up to a gauge transformation is mulation, and the skyrmion current denSityis
SA=A ! A= ! 2 s_ Lo 2.1
a— MNa~ a a — Eaaa' ( 5) j,u_ 2 i €0 Z0"Z. ( . 1)
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The field z is the two-component spinor of the standardthat defines the problem, we will require that no charge can
Chern-Simons formulatiofijn which the bosonic field is de- leave the system, i.e., the skyrmion current normal to the

composed in an amplitude, phase, and spinor part: boundary is zero. In that case

W posonic= P EXPi )z (2.12 £7x(Z_‘S’OZ) = 50(2_5)(2) (2.16
The spinor part describes the spin degree of freedom of thand we may .rewriteggfter a partial integrationthe second
bosonic field associated with the original electron field. ~ surface term in thefg(x,t) as

The fourth, extra term with respect to the spinless case in 1
tDE_L?granglan density is the nonlme.(armoc.iel term with e —i0,a(Zd62) —idoa(20,2)], (2.17)
n=zrz, wherer,,7,, and 7, are Pauli matricesps is the
stiffness constant. This term represents the cost in the ®Besides, as we did not break the gauge invariance under the
change energy when the ground-state ferromagnetic Conﬁgld;'auge transformation defined as
ration is modified.
The fifth term is the Zeeman term with constaft a—a+pB and z—exp —ipB}z (2.18
= (gug/27)B whereB is the external magnetic field. ] ] ] ] ]
To get the low-energy, effective theory that includes the"’}nd present in the bosonic Chern-Slmons'form'ulat|on with
edge physics, we repeat steps that we described in the preie!d (2.12, we may also demand the same invariance on the

ous subsection in the spinless case. The constraint equati§§ge of the system. This invariance is an expression of the
in this case, as we varky, is confinement of spin and charge on electrons, and should ex-

ist also on the edge. As a result the surface gauge-invariant
1 o kinetic term that contains the field is
E(mVxA—VerX‘)z—Jg—Jg. (2.13

' 1 — _
LN== " (da—izd2)(dpa—izdez). (2.19
The solution to this constraint is € 4m % X
) We can conclude that, with respect to the spinless case in-
5A:A_£Aext:_£aa+l_z_o.,z (2.14 stead of
a a m @ m a m as: .
d,ap=0Xx, (2.20

Now we assume that is analytic so that no vortex excita- . . .
tions in the bulk are allowed. We do not make any restric-" the case with spin we have
tions onz. By plugging in the solutior(2.14) in the begin-
ning Lagrangian(2.10 with A;=0 and without the second
and the last term we get surface terms: By considering couplings with external fields we may also
conclude that these gauge-invariant expressions up to some
appropriate constants represent charge density and current on

d,a—iz2d,zu=0X. (2.2

) 1 _
L&D = [ dxadoa—2i dya(2dp2)

m the edge similarly to the spinless case. Then @1 for-
_ mally expresses the physical fact that the charge current and
+terms withouta]. (2.19  density on the edge have contributions followed by changes

] ) ~in the spin configuration on the edge. Therefore we expect
The fielda cannot be found anymore in the bulk Lagrangian.that under inclusion of a charge-density interaction term

Therefore pure charge degrees of freedom, i.e., those that afghich describes the dynamics on the edge that the La-
not followed by a change in the spin configuration are nowgrangian density is

restricted to live only on the boundary of the systdirhis

coincides with the microscopic physical picture that we have 1 — —

of these systems. The pure charggiasihol¢ excitations, Leti=7——(doa—12dZ)(dxa—12dx2)

which lie higher in the energy spectrum than skyrmion exci-

tations, in the bulk, can be found in the low-energy approxi- v —

mation on the edge of the system. There, on the edge, their - m(&xa—lzaxz) ' (2.22

excitation energy is smallesin fact goes to zerd’] In Eq.

(2.15 we see the most important result of this derivation,we have a complete low-energy description of the charge

namely a nontrivial coupling between the spin and chargelegree of freedom on the edge. The equation of motiowfor

degrees of freedom on the edge of the system. on the edge simply tells us that the charge on the edge drifts
In the low-energy approximation that we malkes., ne-  with velocity v along the edge in only one direction as it

glecting the last term in Eq2.10] we find that the charge should be in a quantum Hall system.

current is equal to the sum of skyrmion and vortex currents. At this stage of deriving the low-energy, effective theory,

As we do not have vortex currents in the bulk of the systemthe bulk Lagrangian density is

the condition that the skyrmion current normal to the bound-

ary is zero is equivalent to the demand that the charge cury (Xyt)=—T°3

rent normal to the boundary is zero. In the absence of any~ Y a

external electromagnetic fields besides the uniform magnetic (2.23

1 i— Ps = - A
EAgXﬁ' EZ(ﬁZ) - E(Vﬂ)z‘f‘ En3,
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wherea=x,y. Now we will apply the spin-wave approxima- we may find in the spin-wave approximation the following

tion in which fieldz is decomposed in the following way:

_(1—%|«If|2) -
z= v . (2.249

The complex bosonic field expresses fluctuations with re-
spect to the ground-state configuration and is to be consid-
ered small and slowly varying, and therefore, we will keep

only terms quadratic in#'. Then, the 2-1 dimensional La-
grangian density2.23 of the bulk becomes

Lei(X,y,1)=ipoW dg¥ — 2p VUV — A| W2,
(2.25

Now, we will again assume that our system is in the lower

expressions for them:
T 3=ipy(Va, ¥ —g,0W),
j;z ips((quT_ r7yq’)u

To=ipy(d, ¥+, V). (2.39
We neglected the terms of order higher than twolinthe
single condition2.29 ensures that all of them are zero at the
boundary.

The edge spin-wave solutions of the form

¥ =B exp{ Bytexpfik,x}exp[—iwt}, (2.36

half-plane. After a partial integration inside the expression

for the system Lagrangian we get an exfta the chiral
boson Lagrangignsurface term:

ALguf(X,t) = —ZpS\IT&y\If, (2.26
and the 2+1 dimensional Lagrangian density of the bulk,

LAY, D) =1peV do ¥ +2p W VW — AW |2,
(2.27)

B positive, satisfy the equation in the bulk, but the condition
(2.29 forces B to be zero. Therefore, in the case of a pure
quantum ferromagnet, the constraint of the spin conservation
on the boundary, does not allow the existence of the edge
spin excitations.

Now, we will summarize our effective theory for a quan-
tum Hall system with a boundary, having in mind the spe-
cific geometry in which the system is in the lower half of the
plane. The bulk Lagrangian densifin the spin-wave ap-

For a moment we will discuss only the problem of 2D fer- proximation is given by

romagnet described by the Lagrangian densi{®26) and

(2.27) (in the spin-wave approximationn order to explain
the meaning of the surface ter(2.26). In that case, the
corresponding Euler-Lagrange equations for the fiklds

ipodoW +2p VW — AW =0 (2.28

in the bulk, and
ay‘If|y=0=0 (2.29

on the edge. The normal mode solutions of E428 in the
bulk are spin waves,

W=A explikr}exp{—iwt} (2.30
with the dispersion relation:
A 2
w=—+ P22, (2.3
Po  Po

To satisfy boundary conditiof2.29, the class of solutions is

further reduced to the form:

W =Acogk,y}explik.xjexpg —iwt}. (2.32

The condition(2.29 ensures that spin currents normal to the

Louk=ipo¥ oW +2p W V2P — A| |2
(2.37)

+higher order terms,

and the edge Lagrangian density is

— 1
Leggd X, 1) =—2ps Vo,V + 4—((7xafr90af —vdya'dah)

mm
+higher order terms, (2.39
where
f I — T
d,a'=d,a— E(W&M\P—aﬂ\lﬂlf). (2.39

C. The proof of gauge invariance of the effective field theory

In the spinless case the effective action of the bulk,

boundary are zero. Namely, if we use the Noether expression

for them,

i oL
e Pk
2 5(9*z))

+H.c., (2.33

wherer®,a=1,2,3 are Pauli matrices anthgy (a Lagrang-
ian density of a quantum ferromagpét

. A
(Vn)2+ 52732,

Ps

> (2.39

Lorm=ipozdoz—

Lot — o AL DA+ e B ATG A (2.40
bulk 4776 JAZEON 2776 TURSAZADN .

when the fieldA , is integrated out, is

1
eff _ VA p Xt ext
Ebulk_477m et A’u (9VA}\ .

(2.4

On the other hand the edge action with external electromag-
netic field included is*
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1 ) Again, in this case, the extra term that we get by setting
£edge:4_77__m[(S’XCV‘"?O“—U(ﬁxa) ] AiXt—>AiXt+ d,A in Eq. (2.45),
t t 1 exty i - exty i -
xzwm(uAix—AgX)axa 4TrmA[(90(AX +iz0,2) — (A5 +izdpz)] (2.47)

is canceled by the term that comes out from takifi!&lﬁ‘t
(VA= ATHAST. (242 —A%49,A and a—a+A in Eq. (2.46. Therefore the
gauge invariance of the total actiofiy,+ Legge [OF e
Under the gauge transformatian— a4+ A and AfLX‘—>AfLX‘ + Legger EQs.(2.44) and(2.46)], is proved.
+3,A the total action,Cou+ Ledge OF Loyt Ledge IS IN- As we takeA® to be the vector potential of the constant

variant. Namely, the chiral anomé&lyerm magnetic field and apply the spin-wave approximation the
action (2.44) is transformed into Eq(2.295 and the edge
action becomes Ed2.22.

 47m

1
e A(9A— 5,AY, (2.43

Ill. SOLUTIONS OF THE FIELD THEORY

which we get by the gauge transformation of the bulk action ,
is of the same absolute value but of opposite sign as the term AS We vary the surface terms of the low-energy effective
that we get gauge transforming the edge act@d2). Lagrangian Egs.(2.37) and(2.38] with respect tax and¥

In our previous derivation we assumed that only the vec{or ¥') we get two equations. As we vagy, we get
tor potential of the constant magnetic field is present in . »
(2.40 and, therefore, the fiel&* did not have any dynam- dxdoa' =vcdya (3.1)
ics; by the equation of motion of the action it was con-
strained to satisfyne®®9, A, = €2°9,ASX". Because of the ab-
sence of the perturbing external electromagnetic fields the

and, by varying\? and using the previous equation,

1
whole dynamics of the system was on the edge described by 2psdy 'V + m(— D[V dpa’ — ¥ dya'
the chiral boson theorfthe first two terms in Eq(2.42)]. ™
Similarly, in the case with spin, more general effective —0:20,¥ 3,V da']=0. (3.2

bulk action with external perturbing electromagnetic fields is . ) o
Whend,a'=0,u=0x, i.e., there are no charge excitations

m 1 on the 60undary, the spin wavéz.32 are solutions of the
Louk= — EE‘MAMO'?VAmL EEMV)\AEXt(?yA)\_jZAM bulk and surface equations. Whan=0, i.e., there are no
spin excitations in the system; the only solutions of the equa-
Ps ==, A tions are charge-density waves of the chiral boson theory.
— 5 (Vn)*+ 5 ns. (2.44 From the bulk equatiori2.28 we get the following dis-
persion relation for the edge spin wav@s36):
Compare with Eq(2.10 and note the absence of the vortex
current 7, in the action. As we pointed out before this W=£+2—ps(k2—ﬂ2). (3.3
signifies the fact that the charge excitations without spin pPo pPo
changes are to be found on the edge of the system in t
low-energy approximation.
If we integrate outA , field we get

hJFhe coefficient8, which characterize the extension of the
edge spin waves into the bulk of the system, comes from the
boundary equatiori3.2). The one-dimensional charge den-
sity and current are given by

1 1 _
e = e e*MASK AT e “ A (i20\2)

f

jo=s——dsa' and j,= doa’, (3.9

+terms  withoutAS". (2.45 2mm
respectively. For'=af(x+v,t), the general solution of Eq.
(3.1, we have

2mm

For the edge the complete actifsee Eq(2.22] with exter-
nal electromagnetic fields is

1 vc&xafzaoaf, i.e., vejo=lx» (3.5
ﬁedge=47_r—m[((9x0é—iZ—f7xZ)(f90a—iZ_’902) and we may rewrite Eq.3.2) as
_4ps(9xqf+”0(90\1,+|JOUC(9X\I’:0 (36)

—v(dga—i23y2)?]

A. Charged edge spin-wave solutions

The solution of the form(2.36 of Eq. (3.6) with 8=
const exists only if o is, by itself, a constant, i.e., if there is
(0A— AZY A (2.46 a constant charge (_jensity along the bc_)undary o_f _the_system.

For the ground statg,=0, and the previous conditiofwith

(VA= AT (dya—iz0y2)

27m

47m
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+ . j l 1 The corresponding teriin the pure-spin problepfor the
] ‘ ] ] [ ] J" ] ’ [ ] second solutioriwith j,<<0) is
200 —
2o, aw, (3.10
FIG. 1. Adding charge to the edge of the 1 filling fraction in Po

the single-particle picture. It is of the opposite sign from the gradient term in the bulk

and, therefore, favors the solution that disorders the spin con-
figuration of the ground state and, we expect, as it is usual in
these systems, that it is also followed by a redistribution of

the charge on the boundary.

We also expect that these charged edge spin waves can be
created without any change in the total charge of the system,
i.e., by simple redistributions of the ground-state charge on
the boundary wherg, is a parameter that characterizes them.
(3.7) Therefore, when considering the total energy of excitations

. . - _ we will neglect the energy term of the chiral boson Lagrang-
from which only those withB positive can describe the edge jan. Then the surface contribution is

spin waves. In the approximations in which the second term

jo# 0) means that somextrg charge is added tg ¢>0) or
subtracted from the systenj < 0). Plugging in the form
(2.36) into Eq.(3.6), and using Eq(3.3), we obtain the fol-
lowing candidates for solutions witB equal to

-2
Po . Po Jo
Bi=— —*r—=\/ 1+ —(A+2pki—vcpoky),

E_|jo| 2pspg

under the square root in E(.7) is small, Esurface 2PsB° (3.11)
io 5 _ and the contribution from the bulk is given by E®.3 to
B~ Apep (A+2pki—vcepoky)  for jo=>0 get Eq.(3.11) we normalized the wave to describe one elec-
sPo tron spin flip:
Po .
d B=2— f <O0. 3.8
and B2y for do 38 v= \/gexp{ﬂyﬂkx—iwt}. (312

For jo— 0 the second solution is unacceptable because our . .
effective theory assumespatially slowly varying quanti- As a consequence, we may write the total energy of excita-
ties, which is not the case with the solution wighlarge. tions as

Also, we may notice looking at Ed3.8) asymmetry be- A 2
tween thej ;>0 andj <0 cases. One way to understand the Ep=— + isk2+ B2
asymmetry is to first consider the single-particle picture of 0
adding and subtracting charge to the edge of these syste
In this picture of systems without spin, adding or subtracti
charge is always equivalent to simple shifi®nslation$ of
the boundary. In the case of the systems with spin there is
additional possibility to add charge as shown in Fig. 1.

We believe that this single-particl_e picturg is behin_d the E o= Co-+ C1k+ Cok2+ - - -, (3.14
many-body state—charged edge spin wave jfpr0. This
can be supported by the following consideration. First, we(wherec’s do not depend oR). By having a linear term itk
may try to interpret the solution as a solution of a generalizedhis dispersion relation is asymmetric arous 0.
pure-spin(quantum-ferromagngproblem, in which the sec-
ond and third term in Eq(3.6) correspond to some surface B. Neutral edge spin-wave solutions
terms in that problem. For a finite Zeeman coupling and in
the small-momentum approximation, the solution wijth
>0 corresponds to the following term:

2
4pe— ﬁ) . (3.13
Po

rT]§ecausep0=1/21-rm the last term in Eq(3.13 is always
ngnegative, and &=0 E,; is always lower than the constant
Zeeman term. When Ed3.8) is substituted forg in the
a&pressior(&la, the energy3.13 is of the following form:

We define the neutral edge spin waves by requiring that

the field @, which lives on the boundary, associated with

pure (not carrying also spincharge degrees of freedom, is

o — zero (@=0). As a consequence there is one less surface

—AVV¥ (3.9 equation to be satisfied, because the constraint equations
Po (3.1 and (3.2) cannot be satisfied simultaneously. And, as

with an effective magnetic fiel.4=—(jo/po)B on the We will see, the constraint also implies losing one of the two

boundary. As we add electrons, we effectively create a magicharge and spinlocal conservation laws. Namely, local

netic field in the opposite direction of the external magneticSPin currents normal to the boundary will be nonzero in gen-

field. This magnetic field makes possib'e the creation of th@ral It will be also Sh_OWﬂ that these excitations are neutl’a|,

spin edge solution. As we add more electropslargey the  1-€., the total change in the charge of the system, when these

effective magnetic field increases in its magnitude and favor§xcitations occur, Is zero. .

edge spin waves localized near the boundagy lérge). With the conditiona=0 the charge current and density

Therefore the edge-spin-wave, one-spin flip will be more lo-0n the boundary are proportional to

calized on the boundary if there are more pagse Fig. 1 i

each of them energetically unfavorable because each of them f__ T IPETY -

consists of two electrons in the same orbital. Ipe == 5 (VW =0, V¥ u=0x (319
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These charge degrees of freedom must satisfy(Ed), and  In the spin-wave approximation we have
from that it follows that the dispersion relation for the waves (=)
is w= vck. Thl_s dispersion rt_e_la’uon follows when a general Poui X,Y,t) = —(&X‘?&y‘l’—&y‘l_’&x‘lf)
solution that is a superposition of the waves of the form 2mm
(2.36) is considered. The frequency of the wave is also equal

to Eqg.(3.3). This enables us to find in this case. It is given ?

S exp28y}exp—i(k—k')x)

by the following expression: :27-,2mk,k,
A X exp{i(wy—wy)t
B2:2_+k2_ Uchok, (3.16 pli (Wi —wye )t}
Ps Ps X (—=i)(k+kHa(k)*a(k"). (3.22

i.e., in the small-momentum approximati@~ VA/2ps. But  Clearly, the total change in the charge of the boundary,
the waves do not satisfy E@3.2), which, in the spin-wave

approximation, is equivalent to the conditid®.29. This ZJ“‘ zﬁ *
means that the spin currents normal to the boundary of the Qsurtace —o Purtack X, 1) dX wmzk ka(k)*a(k),
system are, in general, nonzero and exchange of the spin of (3.23

the system with outside is allowed. NeverthelesS§=0 s of the same amount, but of opposite sign than the one in
[see Eq.(2.35] everywhere on the boundary and, also, theyne bulk[ Qpui= S~ ZdxS .. dyppu(X.Y,1)].
total spin of the system is conserved, i.e., At the end of this section we would like to comment on
o o the nature of the_se _neutra_l edge spi_n waves. As _they are
J jidx=0 andJ’ j)l,dx=0. (3.17  completely skyrmionic, their charge is fully specified by
- —o their spin configuration. Their spread increases with the de-
creasing of the Zeeman energy, which is a well-known skyr-
Although the bulk excitation energy= v k) is gapless, mjon property. As they carry fixedinit) amount of spin they
these excitations have a gap. To see this we have to calculaj@nish when the Zeeman coupling is zero. Due to the close
their total energy and include the surface contribut®i1,  relationship between their charge and spin and the linearity
with B given by Eq.(3.16. As a final result we have of the chiral boson dispersion relation, the dispersion relation

of these spin waves is also linear.
Ep= 20+ 0 K(1—2pg) + 4p K2, (3.18 P

The requiremenk,,>0 for eachk fixes the allowed range IV. CONCLUSIONS AND DISCUSSION

of the parameters in E¢3.18 and in the theory. The exci- |y conclusion, we proposed an effective edge theory for
tations are allowed to propagate in both directions, thOUQWerromagnetic quantum Hall states. It describes tti 1)

the spectrum is asymmetric arouke 0 because of the pres- gimensional charge degrees of freedom by a chiral boson
ence of the linear term ift,;. The gap(the smallest excita-  theory and thei2 + 1) dimensional spin degrees of free-
tion energy for certairk) of these excitations is always dom by the effective theory of a quantum ferromagnet in the

smaller than the Zeeman gap. spin-wave approximation. We found two classes of the edge
To prove the neutrality of th_ese excitations we start with aspin-wave solutions. The class with the charged edge spin
general edge spin-wave solution: waves is obtained by removing or adding electrons to the
3 edge of the system. The second class of the neutral edge spin
_ Il ey waves does not require any change in the total charge of the
Py 2k: \/;exp[,By+|kx wtja(k), system. All these edge spin excitations are characterized by
(3.19 linear dispersion relations and gaps in the excitation energy.

. -~ . . We did not consider most-general surface terms for the
wherg a(k_l)_har((ej arb.|ttrar3f/(cr? mplex C(ta;]afﬂglentz n th:csﬂ:ax- spin degrees of freedom, which would be present in a most-
ltoeargstlzc;% be (pr?rgzlsgdoag arge on fhe boundaty ot the Sys_g]eneral theory, because we wanted to emphasize and exam-
ine the influence of the terms that describe the charge de-
ooal 1 i\ o grees of freedom. The latter terms, collected in the chiral
== —( - —)(\Ifaxxlf—axqfxlf) boson theory, give a complete effective description of the
2mm  2mm| 2 charge degrees of freedom on the edge.

Reference 9 pointed out that for small Zeeman energies

PsurfackX;t) =

_ B (_ '_)2 expl i (K—k')x} and soft confining potentials a reconstructidrom narrow
2m2m\ 250 and spin-polarized edgeto the edge with spin textures
’ should occur. Because of our assumption of the edge with
X exp{i (w,—w)th (k' +k)a(k)*a(k’). the same polarization as that of the bulk, our theory is valid

(3.20 only for steep enougfsee for estimates in Ref) @onfining
' potentials.
The same quantity in the bulk is proportional to the topologi- In conclusion, we would like to comment on the relation-
cal density and equal to ship between our work and the recent work concerning edge
excitations and edge reconstruction at1.1° There, the
Hartree-Fock procedure was used to determine the energy
spectrum of some proposed edge spin-flip excitatiGins

(=) — _
Pou(X,Y, )= 27T—m((9x2r9y2— dyZ3,2). (3.2)
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fact, a special form of these excitations was first suggested iscope of our theory. The theory gives only an inkling of the
Ref. 11). These excitations reconstruct the edge when th@ossible instability of the ground state with respect to their
Zeeman energy is small and the confining potential softenedreation.
They are followed by an outward movement of charge and

exist even at zero Zeeman energy. The latter property is not
shared by our neutral edge excitations and charged edge ex-
citations forj,>0 and, therefore, they should not be con-

fused with those of Ref. 10the neutral edge waves even  The author thanks F.D.M. Haldane and N. Read for ben-
require, as we described, special boundary conditions to exeficial discussions. She is especially thankful to E. Shims-
ist). On the other hand, the detailed description of thehoni who also gave very useful comments on the manuscript.
charged edge excitations fpg<<0 (which can be associated This work was supported by the Israel Council for Higher
with the outward movement of charnges impossible in the Education.
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