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Edge states on a quantum Hall liquid-solid interface
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We study the edge states excitations of a droplet of quantum Hall liquid embedded in an electron solid. The
presence of strong correlations between the liquid and solid sectors in the ground state is shown to be reflected
in the density of statesD(E), associated with the excitations of the liquid-solid interface. We find that the
prominent effect of these correlations is a suppression ofD(E) with respect to its value@D0(E)# in the absence
of the electron solid environment:D(E);e2auEuD0(E). The coefficienta ~which is shown to vanish for a
perfectly regular distribution of electron sites in the solid!, is evaluated for two different realizations of an
irregular distribution. We conclude that probing this effect~e.g., in a tunneling experiment!, can provide
evidence for correlated liquid-solid mixture states in quantum dots, or disordered samples, in very strong
magnetic fields.@S0163-1829~98!01032-7#
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I. INTRODUCTION AND PRINCIPAL RESULTS

The two-dimensional electron gas~2DEG! in strong per-
pendicular magnetic fields can form a variety of exotic qu
tum phases. In particular, in clean systems at moderately
filling fractions ~close ton51/5), the correlations that favo
a fractional quantum Hall liquid~QHL! state compete with
the crystalline order of a Wigner solid~WS!.1,2 This compe-
tition can induce transitions between the QHL state and
insulator, as has been observed experimentally.3 In the pres-
ence of slowly varying disorder or a confining potential, t
electronic ground state may develop a fractured orde
namely, form a binary liquid-solid mixture. A liquid-solid
separation possibly occurs also at higher filling fractions~in
which the electrons in the solid regions form a glassy s
controlled by short-range disorder!. An experimental evi-
dence for this scenario is provided by photoluminesce
data.4 In addition, a set of puzzling transport data5,6 can be
explained most naturally under the assumption of a ma
scopic inhomogeneity.7

The interplay of QHL correlations and crystallization
the low n regime has been clearly demonstrated by Zhe
and Fertig.2 Using a variational calculation, they have show
that a Wigner lattice with an interstitial electron introduc
via a Laughlin-like Jastrow factor, can be lower in ener
compared to the perfect WS with the same total numbe
electrons. This implies that in a certain range ofn ’s, the
crystal is unstable to a specific type of density fluctuation
preformed QHL droplets. In the presence of density fluct
tions induced by a slowly varying external potential, it
reasonable to expect a nucleation of such interstitials in
higher-density regions. It is therefore suggestive that
ground state slightly belown51/5 separates into QHL an
WS sectors, which are correlated by a Jastrow factor to m
mize the energy of electrons close to the liquid-solid int
face @see Eq.~2!#.

In the present paper we investigate the physical impli
PRB 580163-1829/98/58~8!/4694~7!/$15.00
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tions of liquid-solid mixture states, as reflected by the cor
sponding low-lying excitations. Similarly to a finite drople
of a primary QHL ~of n51/m with m an odd integer!, the
gapless excitations are chiral edge states,8 i.e., deformations
of the boundary of the incompressible droplet, which tra
in a definite direction along the boundary. However, in ca
the liquid droplet is embedded in an electron solid9 ~ES!
rather than a vacuum, the nature of these excitations of
liquid-solid interface is affected by the correlations betwe
the two sectors. In particular, high amplitude deformations
the interface are generally suppressed, since the liquid e
trons are constrained by their tendency to avoid the prox
ity to localized sites of the ES as much as possible. This
lead to adecayof the density of states with increasing d
viation from the Fermi level, as long as higher energy ex
tations~which involve, e.g., a reorganization of the electro
in the solid! are not yet activated.

To facilitate the derivation of this peculiar effect, we co
sider a simple geometry of a large, circular quantum dot
which the electrons are assumed to form a disc of QHL s
rounded by an ES~see Fig. 1!. We evaluate the electron
propagator and consequently the density of states for tun
ing into the liquid-solid interface,D(E). In the thermody-
namic limit, we find

D~E!;e2auEuD0~E!, ~1!

whereD0(E) corresponds to the ordinary edge state~on an
interface between QHL and a vacuum!, and the coefficienta
depends crucially on the distribution of localized sites in t
ES sector. In particular, when these sites form a struc
with a perfect crystalline order around the disk~and the lat-
tice constant is commensurate with the circumference!, a
50: in that case, the ES electrons merely deform the eff
tive boundary of the liquid into a regular shape, as depic
in Fig. 1~a!. In contrast, an irregular distribution of sites in
duces frustration, and thus a suppression ofD(E).
4694 © 1998 The American Physical Society
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The most direct way to probe this effect is via tunneli
into the 2DEG, e.g., using the technique developed
Ashoori:10 the tunneling conductance is given byG(V)
;D(eV) ~whereV is the voltage across the tunnel barrie!.
The suppression ofG(V) at low V may lead to a non-
monotonous behavior—at higher voltage bias, higher-ene
excitations take over and induce an increase ofG(V). The
effect is expected to become more pronounced with incre
ing inhomogeneity of the external potential. In particular,
a quantum dot where both the number of electrons and
confining potential can be controlled, the suppression
G(V) is expected to exhibit oscillations: the tunneling ra
should be maximized when the control parameter enabl
nearly regular configuration of sites in the ES sector.

In the following sections, we detail the derivation of th
electron propagator along the liquid-solid interface~Sec. II!,
and the implied behavior of the density of states, Eq.~1!
~Sec. III!. In the latter, we consider two different realizatio
of the irregularity in site configuration:~a! a regular distor-
tion of the circular symmetry, and~b! a symmetric random
distribution. The corresponding expressions for the supp
sion timea are given by Eqs.~38! @case~a!# and ~43!,~47!
@case~b!#.

II. DERIVATION OF THE ELECTRON PROPAGATOR

As we explained in the introduction we expect that t
ground state wave function that describes the QH dro
surrounded by an ES is essentially of the following form:

CLS5AH CL~z1 , . . . ,zN!CS~w1 , . . . ,wM !)
i , j

~zi2wj !
mJ ,

~2!

whereCL describes the liquid part,CS the solid part, and the
last expression describes the Jastrow correlations of t
two phases.A denotes antisymmetrization over all electr
coordinates.m corresponds to the filling factorn51/m of the
QH liquid part:

FIG. 1. A disk of QH liquid surrounded by an ES~the dots
denote the sites at which the ES electrons are localized!. Three
different types of site configurations are sketched:~a! an ordered,
commensurate chain~the effective boundary of the liquid in th
presence of the ES is marked by a dashed line!; ~b! an inhomoge-
neous configuration;~c! a random distribution.
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CL~z1 , . . . ,zN!5)
i , j

~zi2zj !
mexpS 2

1

4( uzi u2D . ~3!

The wave function

CS~w1 , . . . ,wM !5expS 1

2( w̄iRi2
1

4( uwi u2D ~4!

describes ES electrons localized on the positionsRi ,i
51, . . . ,M . ~It is a multiple of lowest-Landau-leveld func-
tions.!

Our main assumption in the derivation of the electr
propagator is that the edge of the QH droplet, coupled to
essentially behaves as a slightly modified Luttinger liqu
That assumption allows us to use a construction of one e
tron state on the edge similar to the one of the Lutting
liquid. At the end of the derivation we will be able to speci
constraints on the configuration of the ES sites, such that
assumption is valid.

Because of the above assumption, it would be instruc
first to briefly recapitulate the derivation of the~equal-time!
propagator when the QH disk is surrounded by vacuum.8 The
derivation begins by consideringm-Laughlin quasihole con-
structions, i.e.,

)
i 51

N

~zi2j!mCL5Co~j!, ~5!

wherej lies outside of the system;uju.R, andR52mN is
the radius of the QH droplet.CL is the Laughlin wave func-
tion @Eq. ~3!#. The first step towards the electron correlator
calculating the following scalar product of the state~5!

N~j* ,j!5
^Co~j!uCo~j!&

^CLuCL&
j22mN. ~6!

The leading contribution in theR/uju expansion can be ob
tained by the plasma analogy8 or simply by considering the
decomposition of coordinates into the center of mass,Zcm

51/N( i 51
N zi , and relative ones. When the numerator is a

proximated by

m(
k

lnuzk2ju2'Nm2 lnuju2mN
Zcm

j
2mN

Zcm*

j
, ~7!

the integration over the center of mass coordinate is dec
pled from the other integrations, which do not depend onj.
It yields the leading dependence onR/uju:

No~j* ,j!'S 11m
R2

uju2D . ~8!

In an average, macroscopic picture, we expect singular
havior asuju→R, with singularity atuju5R ~for the equal-
time, equal-space correlator!.8 Then Eq.~8! can be rewritten
as

No~j* ,j!5S 12
R2

uju2D 2m

~9!

and we will assume that it is valid also foruju;R (uju.R).
By doing this we neglect any finite size corrections~due to
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finite R) that might be present inNo as uju→R. To get the
electron propagator we analytically continue the funct
No(j* ,j) of the variablej to No( j̃* ,j), which depends on
j̃ and j. That allows us to takej and j̃ to the edge of the
system—j5Rexp$i2p(x/L)% and j̃5R, without encounter-
ing the singularity atx50 ~which determines the behavior o
the function in its neighborhood!. By taking j and j̃ to the
edge, we in fact describe a particle-hole excitation on
edge that goes into the electron propagator, and find tha
x!L the propagator behaves as

Ge
o~x!5No~ j̃* ,j!j̃* ~N21!mj~N21!m

;
1

S x

L D m expF imS N2
1

2D2p

L
xG , ~10!

wherem(N2 1
2 )(2p/L) in the exponential is the value of th

generalized (mÞ1) ‘‘Fermi momentum.’’
Following a similar strategy, we address the case of

droplet surrounded by ES, described by the wave func
~2!. We consider the following state:

C~j!5)
i 51

N

~zi2j!mCLS ~11!

and the corresponding scalar product,

N~j* ,j!5
^C~j!uC~j!&

^CLSuCLS&
j22mN ~12!

where

^C~j!uC~j!&

5E )
i 51

N

d2ziE )
j 51

M

d2wjexpH(
i , j

2m lnuzi2zj u

1(
i 51

N

(
j 51

M

2m lnuzi2wj u2
1

2(i 51

N

uzi u2

2
1

2(
j 51

M

uwj2Rj u212m(
i 51

N

lnuzi2juJ . ~13!

In the above formulas the antisymmetrization was neglec
which is possible due to the localized nature of the E
Again, if for uju@R anduwj u@R, j 51, . . . ,M , the last sum
in Eq. ~13! is approximated as Eq.~7!, and

(
i 51

N

(
j 51

M

2m lnuzi2wj u

'(
j 51

M

2mNlnuwj u2mNZcm(
j 51

M
1

wj
2mNZcm* (

j

M
1

wj*
,

~14!

the integration overZcm yields the functional dependence
the integrals overzi ’s in Eq. ~13! on j to leading order in
Ru( j 51

M (1/wj )1(1/j)u. It is of the following form:
e
or

e
n

d,
.

S 11mR2U(
j 51

M
1

wj
1

1

jU
2D . ~15!

Now we will assume that the sitesRj , j 51, . . . ,M are such
that the integration overwj ’s is dominated by contributions
for which

R2nU(
j 51

M
1

wj
n

1
1

jnU2

,1, n51, . . . ,̀ . ~16!

Then, the result of thez integration can be expressed as
expansion in variables symmetric inj andwj ’s, defined as

xn5(
j 51

M
1

wj
n

1
1

jn
, n51, . . . ,̀ . ~17!

The first two terms of the expansion are given by the expr
sion ~15!. As explained in the Appendix, the finalw integra-
tion amounts to replacingwj with R̃j , defined in the Appen-
dix, and variables~17! in the expansion yield

Xn$Rj , j 51, . . . ,M %5(
j 51

M
1

R̃j
n

1
1

jn
. ~18!

At this point, we can see that in the case where the positi
of ES electrons satisfy

(
j 51

M
1

R̃j
n

5(
j 51

M
1

R̃* n
50, n51, . . . ,̀ ~19!

the problem reduces to the one of the droplet surrounded
vacuum, and the expansion should sum up to the Lutting
liquid form ~9!. These conditions can be satisfied, e.g., wh

R̃j5R̃exp$ i ~u j1uo!%, ~20!

whereu j5 j u, u52p/M , and R̃ is a constant radius, i.e.
when a commensurate chain of ES electrons surrounds
droplet @see Fig. 1~a!#. Note that our assumption of a sma
correction to the Luttinger-liquid behavior is justified, pro
vided the configuration of ES sites is a small perturbation
one that satisfies Eq.~19!.

To get the electron propagator, we first exponentiate
expression of the leading-order behavior foruju@R, uRj u
@R, j 51, . . . ,M

N~j* ,j!'S 12R2U(
j 51

M
1

R̃j

1
1

jU
2D 2m

. ~21!

Here we assume that even forRj ’s close to the droplet,
((1/R̃j ) is small with respect to (1/uju);(1/R) ~which im-
plies that the pole structure of the correlator is similar to
one of the Luttinger liquid with the pole slightly shifted from
uju5R). Hence, we can also regard Eq.~21! valid for general
Rj , j 51, . . . ,M , and j ~with uRj u,uju.R). N(j* ,j) is
then analytically continued toN( j̃* ,j); taking j

5Rexp$i2p(x/L)% andj̃5R gives for the electron equal-tim
propagator
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Ge~x!;expH imS N2
1

2D2p
x

LJ FexpH ip
x

LJ 2expH 2 ip
x

LJ
2expH ip

x

LJ ( 2expH 2 ip
x

LJ
3( * 2expH ip

x

LJ U( U2G2m

where ( [(
j 51

M
R

R̃j

. ~22!

In the limit x/L!1 that corresponds to the short-distan
behavior, the electron propagator can be expressed as

Ge~x!;expF imS N2
1

2D2p
x

LG 1

~ ix1C1x2C2!m
, ~23!

where

C15
2 Im$S%

22uSu2
~24!

and

C25
L

p

~2 Re$S%1uSu2!

22uSu2
. ~25!

(Re$S% and Im$S% are the real and imaginary parts ofS,
respectively.! Note thatuSu serves as a small parameter th
determines the deviation from a standard Luttinger-liquid
havior @Eq. ~10!#.

III. TUNNELING DENSITY OF STATES

In the previous section we calculated the equal-ti
propagator. In order to get the tunneling density of states,
need the time-dependent propagatorGe(x50,t). In general,
this requires a knowledge of the energies of excited state
the system. For ES configurations that satisfy conditions~19!
@and hence have the Luttinger-liquid correlations~10!#, we
expect that the ground state is one of the edge states of a
droplet surrounded by vacuum; the excited states~which
may also be interpreted as edge states of that droplet! have
energies linear in momentum, measured from the n
ground state. The linear dispersion is expected on gen
grounds, as the first-order expansion in small momenta,
not precluded by any~symmetry, etc.! argument.11 Then, to
getGe(x50,t) we should merely substitute the coordinatex
with vt ~wherev is the velocity of the drift motion of elec
trons on the boundary8!. The sign of time should be spec
fied, as we will explain and elaborate below. Assuming t
the linear dispersion is valid also in the case of a small
viation from Eq.~19! ~i.e., for uSu!1), we may apply the
same substitution in Eq.~23! to getGe(x50,t).

We recall the definition of the~equal-space! fermionic
Green’s function, in the field-theoretic notation:

Ge~x50,t.0!52 i ^0uC~0,t !C†~0,0!u0&, ~26!

and

Ge~x50,t,0!5 i ^0uC†~0,0!C~0,t !u0& ~27!
t
-

e
e

of

H

w
ral
nd

t
-

whereC† and C are the electron and hole creation ope
tors, respectively. If we assume that, in our system,

^0uC~0,t !C†~0,0!u0&5^0uC†~0,t !C~0,0!u0& ~28!

holds, as it does in the case of the standard Luttinger liq
going from formula~27! to formula ~26! involves only time
translation (T→T2t) and time inversion (T→2T) ~and the
overall change of the sign!. In our case, the particle coord
natesj5Rexp$ix(2p/L)% andj̃5R become under the subst
tution (x→vt) j(t)5R exp$ivt(2p/L)% and j̃(0)5R. j(t)
and j̃(0) denote the hole and electron coordinates, resp
tively. If we reconsider the correlatorN( j̃* ,j) with the sub-
stitutions, we will get for the hole propagator~27! in the
short-time limit:

Ge~0,t,0!}
1

~ ivt1C1vt2C2!m
. ~29!

On the other hand, to get the electron propagator fort.0
@Eq. ~26!# we should perform the time translation and inve
sion. This amounts to an exchange ofj(t) and j̃(0), which
leads to the following short-time behavior:

Ge~0,t.0!}
1

~2 ivt1C1vt2C2!m
. ~30!

If we considert as a complex variable and assumeuSu!1,
we may approximate the positions of poles in Eqs.~29! and
~30! ast1'2 i (C2 /v), andt2' i (C2 /v), respectively. Then,
the tunneling density of statesD(E) is given by

D~E!;ReS E
2`

0

dt exp$ iEt%
1

~ i t 2C2 /v !m

1E
0

`

dt exp$ iEt%
1

~ i t 1C2 /v !mD , ~31!

whereE is the energy measured from the Fermi energy\
51. As a final result we get

D~E!}exp$2auEu%Do~E!, a[
uC2u

v
, ~32!

where Do(E) is the Luttinger-liquid tunneling density o
states. Therefore, to lowest order inuSu, the dominant modi-
fication to the standard Luttinger behavior is the exponen
suppression, at a time scalea of order;(L/v)uSu. It should
be stressed thata, and henceD(E), is a local quantity~adia-
batically varying around the disk! that describes the tunne
ing density of states of an electron at distance;R from the
origin, and at anglep(x/L)!1 to the reference point. Below
we calculatea for the two different types of imperfect sit
configurations depicted in Figs. 1~b! and 1~c!.

A. Inhomogeneous configuration of sites

We model the inhomogeneous configuration@Fig. 1~b!#

by consideringM52n12 ES sites, at a distanceR̃ from the
origin, where two of them are exactly on the opposite sid
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of the droplet, i.e., the sum of their phases is exp$ip%1150.
The rest 2n electrons are positioned at the anglesu j and
2u j (1< j <n), where

u j5u j 1e cos$d~ j 21!%, ~33!

u5(p/n11) andd5(p/2n). e.0 represents a small devia
tion from the perfect chain distribution, which is modulate
as we move from the reference point at angleg50. We then
get S5S0, where

S0[
R

R̃
(
j 51

n

exp$ iu j 1 i e cos@d~ j 21!#%

1
R

R̃
(
j 51

n

exp$2 iu j 2 i e cos@d~ j 21!#%. ~34!

For e small S0 can be approximated as

S0; i e
R

R̃
(
j 51

n

exp$ iu j %cos$d~ j 21!%

2 i e
R

R̃
(
j 51

n

exp$2 iu j %cos$d~ j 21!% ~35!

and forn@1 this yields

S052
8ne

3p

R

R̃
. ~36!

If the reference point is at an arbitrary anglegÞ0, the
sum becomes

S5S0exp$2 ig%. ~37!

Inserting in Eqs.~25! and ~32!, we then get

a5
L

pvU2S0cos$g%1uS0u2

22uS0u2
U . ~38!

Therefore, atg5p/2, a becomesa}e2, at g50 it is a
}(e2conste2), const.0, and, at g5p, it is a}(e
1conste2). This means that aroundg50 andg5p devia-
tions from the perfect chain case are stronger, and the
pression of the density of states is stronger in the den
region (g5p), but only to second order ine.

B. Random distribution of sites

We consider a configuration of sites obtained by a rand
distortion of the perfect chain Eq.~20! @see Fig. 1~c!#. A
general distortion modifies both the radius and phase of
R̃j ’s; here we discuss the effect of each type of randomn
separately.

In a phase-distorted chain at radiusR̃, the siteR̃j is given
by

R̃j5R̃ exp$ i ~ j u1d j !%, ~39!

where u52p/M and d j is a random variable. Averagin
over the distribution ofd j ’s, we obtain
,

p-
er

m

e
ss

^S&5(
j 51

M K R

R̃j
L 5

R

R̃
^exp$2 id%&(

j 51

M

exp$2 i ~ j u!%50.

~40!

The lowest-order contribution toC2 @Eq. ~25!# is then
;^uSu2&, where

^uSu2&5
R2

R̃2(j 51

M /2

~222^exp$ id%&!. ~41!

For a Gaussian distributionP(d)5(1/A2ps)e(d2/2s2), we
get

^uSu2&5
R2

R̃2
M ~12exp$2s2/2%!'

R2

R̃2

Ms2

2
, ~42!

where the last approximation holds fors!1. Substituting in
Eqs.~25! and ~32!, this yields

a'
L

2pv
R2

R̃2

Ms2

2
. ~43!

We next consider a radius distortion of Eq.~20! of the
form

R̃j5~R̃1r j !exp$ i ~ j u!%, ~44!

where r j is a random variable, subject to a distribution
width s r!R̃. Again, the first order inS vanishes upon av-
eraging:

^S&5
R

R̃2
^r &(

j 51

M

exp$2 i ~ j u!%50. ~45!

For a symmetric distribution ofr j ’s, ^r &50 and we get

^uSu2&5
R2

R̃4(j 51

M

^r 2&5
R2

R̃4
Ms r

2 . ~46!

We then get an expression fora which is quite similar to Eq.
~43!:

a'
L

2pv
R2

R̃4
Ms r

2 . ~47!
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APPENDIX

To evaluatê C(j)uC(j)& @Eq. ~13!#, one needs to solve
integrals of the form
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I 5E d2w f~w,w* !uwu2mNe2~1/2!uwu2e~1/2!wRj* e~1/2!w* Rj ,

~A1!

wherew is the coordinate of thej th ES electron~the indexj
being omitted!, and f (w,w* ) can be expressed as a pow
series inR/w,R/w* :

f ~w,w* !5 (
n,k50

`

ankS R

wD nS R

w* D k

. ~A2!

Equation~A1! is then recast as

I 5 (
n,k50

`

ankR
n1kI mN2n,mN2k ,

I p,l[E d2wwpw* le2~1/2!uwu2e~1/2!wRj* e~1/2!w* Rj . ~A3!

Below we show that provided (mN2n),(mN2k)@1,

I mN2n,mN2k'I mN,mNR̃j
2n~R̃j* !2k,

R̃j

Rj
5

R̃j*

Rj*
5ea~ uRj u!, where a~ uRj u!'

R2

uRj u2
; ~A4!

note that exp$a(uRju)%→1 for (R/Rj )!1. In addition, we note
that since the integration overw is dominated byw;Rj , and
Rj.R, the series expansion Eq.~A2! can be cut at some
nc ,kc such thatuR/Rj unc,uR/Rj ukc!1, yet (mN2nc),(mN
2kc)@1. Consequently, we obtain

I' f ~R̃j ,R̃j* !I mN,mN , ~A5!

which implies that the$wj% integrations over the termsxn
@Eq. ~17!# yield Eq. ~18!.

We now derive the approximation Eq.~A4!—the central
result of this Appendix. The integralsI p,l @Eq. ~A3!# can be
expressed as

I p,l52p1 l
]p

]Rj*
p

] l

]Rj
l E d2we2~1/2!uwu2e~1/2!wRj* e~1/2!w* Rj

52p1 l
]p

]Rj*
p

] l

]Rj
l
@4pe

1
2 uRj u

2
#. ~A6!

A straightforward application of the derivatives then yield

I p,l54pe~1/2!uRj u
2
Rj

pRj*
lS~p,l !,
c-

am

.

where

S~p,l !5 (
i 50

min$p,l % p! l !

i ! ~p2 i !! ~ l 2 i !! S 2

uRj u2D i

. ~A7!

We next assume that the above sum is dominated by 1! i
!p,l , so that the factorials are well approximated
Stirling’s formula:

S~p,l !'(
i

si ,

si5Fple

i

2

uRj u2
S 12

i

pD S 12
i

l D G
iA pl

2p i ~p2 i !~ l 2 i !
.

~A8!

The sum is then replaced by an integral

S~p,l !'
1

A2p
E dxef~x!,

f~x!5xH lnF S 2ple

uRj u2xD S 12
x

pD S 12
x

l D G J 1O„ln~x!…,

~A9!

which can be solved in a saddle-point approximation. T
saddle-point equationf8(x)50 implies

2ple

uRj u2xS 12
x

pD S 12
x

l D5expH 11
x

p2x
1

x

l 2xJ ,

~A10!

and hence

S~p,l !'A 1

f9~xs!
expH xsS 11

xs

p2xs
1

xs

l 2xs
D J ,

~A11!

wherexs is the solution of Eq.~A10!. For (R/Rj )!1 ~where
p,l<Nm5R2/2)

xs'
2pl

uRj u2 !p,l , f9~xs!'
1

xs
, ~A12!

and we get

S~p,l !'Axse
xs5A 2pl

uRj u2expH 2pl

uRj u2J . ~A13!

Noting thatp,l;R2/2, Eq. ~A13! implies Eq.~A4!, Q.E.D.
.
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