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Edge states on a quantum Hall liquid-solid interface
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We study the edge states excitations of a droplet of quantum Hall liquid embedded in an electron solid. The
presence of strong correlations between the liquid and solid sectors in the ground state is shown to be reflected
in the density of state®(E), associated with the excitations of the liquid-solid interface. We find that the
prominent effect of these correlations is a suppressidd(&) with respect to its valugDy(E) ] in the absence
of the electron solid environmenD(E)~e’“‘E|DO(E). The coefficienta (which is shown to vanish for a
perfectly regular distribution of electron sites in the splid evaluated for two different realizations of an
irregular distribution. We conclude that probing this efféetg., in a tunneling experimentcan provide
evidence for correlated liquid-solid mixture states in quantum dots, or disordered samples, in very strong
magnetic fields[S0163-182¢08)01032-1

I. INTRODUCTION AND PRINCIPAL RESULTS tions of liquid-solid mixture states, as reflected by the corre-
sponding low-lying excitations. Similarly to a finite droplet
The two-dimensional electron gd2DEG) in strong per-  of a primary QHL (of »=1/m with m an odd integer the
pendicular magnetic fields can form a variety of exotic quangapless excitations are chiral edge stétes,, deformations
tum phases. In particular, in clean systems at moderately lo®f the boundary of the incompressible droplet, which travel
filling fractions (close tor=1/5), the correlations that favor in a definite direction along the boundary. However, in case
a fractional quantum Hall liquidQHL) state compete with the liquid droplet is embedded in an electron SOIES)
the crystalline order of a Wigner soli@Vs).? This compe- rather than a vacuum, the nature of these excitations of the
tition can induce transitions between the QHL state and théiquid-solid interface is affected by the correlations between
insulator, as has been observed experimen:faﬂythe pres- the two sectors. In particular, hlgh amplitude deformations of
ence of slowly varying disorder or a confining potential, thethe interface are generally suppressed, since the liquid elec-
electronic ground state may develop a fractured order—irons are constrained by their tendency to avoid the proxim-
namely, form a binary liquid-solid mixture. A liquid-solid ity to localized sites of the ES as much as possible. This can
separation possibly occurs also at higher filling fractiins lead to adecayof the density of states with increasing de-
which the electrons in the solid regions form a glassy stat&iation from the Fermi level, as long as higher energy exci-
controlled by Short-range disorderAn experimenta| evi- tations(which involve, e.g. a reorganization of the electrons
dence for this scenario is provided by photoluminescencé the solid are not yet activated.

data? In addition, a set of puzzling transport datacan be To facilitate the derivation of this peculiar effect, we con-
explained most naturally under the assumption of a macrosider a simple geometry of a large, circular quantum dot, in
scopic inhomogeneity. which the electrons are assumed to form a disc of QHL sur-

The interplay of QHL correlations and crystallization in rounded by an ESsee Fig. 1 We evaluate the electron
the low » regime has been clearly demonstrated by Zhengropagator and consequently the density of states for tunnel-
and Fertig? Using a variational calculation, they have showning into the liquid-solid interfaceD(E). In the thermody-
that a Wigner lattice with an interstitial electron introduced hamic limit, we find
via a Laughlin-like Jastrow factor, can be lower in energy
compared to the perfect WS with the same total number of D(E)~e*“|E|D0(E), 1)
electrons. This implies that in a certain range 108, the
crystal is unstable to a specific type of density fluctuations—whereDy(E) corresponds to the ordinary edge staia an
preformed QHL droplets. In the presence of density fluctuainterface between QHL and a vacuyrand the coefficient
tions induced by a slowly varying external potential, it is depends crucially on the distribution of localized sites in the
reasonable to expect a nucleation of such interstitials in th&S sector. In particular, when these sites form a structure
higher-density regions. It is therefore suggestive that thavith a perfect crystalline order around the digind the lat-
ground state slightly below=1/5 separates into QHL and tice constant is commensurate with the circumfergnee
WS sectors, which are correlated by a Jastrow factor to mini=0: in that case, the ES electrons merely deform the effec-
mize the energy of electrons close to the liquid-solid inter-tive boundary of the liquid into a regular shape, as depicted
face[see Eq.2)]. in Fig. 1(a). In contrast, an irregular distribution of sites in-

In the present paper we investigate the physical implicaduces frustration, and thus a suppressio ¢E).
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© . * © « 2o describes ES electrons localized on the positidRsi
N > s =1,... M. (It is a multiple of lowest-Landau-levef func-
: * . . tions)
*. . . Our main assumption in the derivation of the electron
c . Ce propagator is that the edge of the QH droplet, coupled to ES,

essentially behaves as a slightly modified Luttinger liquid.

FIG. 1. A disk of QH liquid surrounded by an Eghe dots  That assumption allows us to use a construction of one elec-
denote the sites at which the ES electrons are localiZedree  {gn state on the edge similar to the one of the Luttinger
different types of site configurations are sketch@:an ordered, |iquid. At the end of the derivation we will be able to specify
commensurate chaithe effective boundary of the liquid in the  ;,ngiraints on the configuration of the ES sites, such that the
presence qf the ES is marked by a d_ash_ed);h(‘m) an inhomoge- assumption is valid.
neous configuratior(c) a random distribution. Because of the above assumption, it would be instructive

first to briefly recapitulate the derivation of tliequal-time

The most direct way to probe this effect is via tunneling propagator when the QH disk is surrounded by vacldie
into the 2DEG, e.g., using the technique developed byerivation begins by considerimg-Laughlin quasihole con-
Ashooril® the tunneling conductance is given (V)  structions, i.e.,
~D(eV) (whereV is the voltage across the tunnel baryier
The suppression o65(V) at low V may lead to a non- N
monotonous behavior—at higher voltage bias, higher-energy Hl (z=§™ =Vy(§), )
excitations take over and induce an increasés6¥). The '~
effect is expected to become more pronounced with increaswhere¢ lies outside of the systenmi¢|>R, andR=2mN is
ing inhomogeneity of the external potential. In particular, inthe radius of the QH droplet, is the Laughlin wave func-
a quantum dot where both the number of electrons and thion [Eq. (3)]. The first step towards the electron correlator is
confining potential can be controlled, the suppression otalculating the following scalar product of the st&fg
G(V) is expected to exhibit oscillations: the tunneling rate
should be maximized when the control parameter enables a (Wo(OIW(E) Loy

(W W) '

nearly regular configuration of sites in the ES sector.
In the following sections, we detail the derivation of the , o :
electron propagator along the liquid-solid interfa&ec. 1), ' he leading contribution in th&/|¢| expansion can be ob-
tained by the plasma analdygr simply by considering the
decomposition of coordinates into the center of mass,

ME*, &)= (6)

and the implied behavior of the density of states, EL.
(Sec. ll)). In the latter, we consider two different realizations

— N : ;
of the irregularity in site configuratior(@) a regular distor- = 1/N2i—;Z;, and relative ones. When the numerator is ap-
tion of the circular symmetry, antb) a symmetric random Proximated by
distribution. The corresponding expressions for the suppres- 7 7%
sion time a are given by Eqs(38) [case(a)] and (43),(47) mz In|z,— &2~Nm2 In| §|—mNﬂ—mNﬂ, )
[case(b)]. K € &

the integration over the center of mass coordinate is decou-

Il. DERIVATION OF THE ELECTRON PROPAGATOR pled from the other integrations, which do not depen(fon

It yields the leading dependence BY|&|:
As we explained in the introduction we expect that the

ground state wave function that describes the QH droplet R?
surrounded by an ES is essentially of the following form: No(€*,6)~| 1+ m@ : (8)
In an average, macroscopic picture, we expect singular be-
U =AW (21, ...,20)Pg(Wyq, ... ,WM)H (zi—w)™, havior as|¢|—R, with singularity at|£|=R (for the equal-
L time, equal-space correlajérThen Eq.(8) can be rewritten
(2 as

whereWV describes the liquid parf¥ ¢ the solid part, and the . 2\

last expression describes the Jastrow correlations of these No(€5,8)=| 1— @ ©
two phases.A denotes antisymmetrization over all electron

coordinatesm corresponds to the filling factor=21/m of the ~ and we will assume that it is valid also fof| ~R (| £|>R).
QH liquid part: By doing this we neglect any finite size correctididsie to
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2

finite R) that might be present i, as|&—R. To get the Mo1o1
electron propagator we analytically continue the function 1+mR? le W]JFE (19
Ny(£*,€) of the variable¢ to NV,(*,£), which depends on
% and £ That allows us to také andZ to the edge of the Now we will assume that the sité¥,j = ..M are such
that the integration ovew,’s is domlnated by contributions
system—¢=Rexpi2n(x/L)} and =R, without encounter- for which ]
ing the singularity ak=0 (which determines the behavior of
the function in its neighborhogdBy taking ¢ and'¢ to the Moy 2
edge, we in fact describe a particle-hole excitation on the R2" E —+—| <1, n=1,... m. (16)
edge that goes into the electron propagator, and find that for =1 W? &
x<L the propagator behaves as , )
Then, the result of the integration can be expressed as an
GO(X) =N, (F*, &) F* (N-Dmg(N-1)m expansion in variables symmetric §nandw;’s, defined as
e [0} 1
M
1 1\ 27 1 1
—~ i == X = —+—, n=1,... 0. 1

< mex;{lm(N 2) X, (10 n 121 v 00 (17)

Z j

L

The first two terms of the expansion are given by the expres-
wherem(N—3)(2#/L) in the exponential is the value of the sion(15). As explained in the Appendix, the final integra-

generalized ifi# 1) “Fermi momentum.” tion amounts to replacing; with R;, defined in the Appen-

Following a similar strategy, we address the case of thejix, and variableg17) in the expans|on yield
droplet surrounded by ES, described by the wave function
(2). We consider the following state: 1
\ Xa{Rji=1,... M}= 21 A (18)
V(o) =1 (z-9™ s (11 o . y

i=1 At this point, we can see that in the case where the positions

and the corresponding scalar product, of ES electrons satisfy

M
(PO (), 1 _
N(f*yg):mf 2mN (12) Zﬁ”_; R*n 0, n=1,...% (19)
I
where the problem reduces to the one of the droplet surrounded by
vacuum, and the expansion should sum up to the Luttinger-
(T (&)|¥(8)) liquid form (9). These conditions can be satisfied, e.g., when
N M
=J IT &%z | 11 dzwjexp[ > 2min|z—z] Rj=Rexp{i(0;+ 6,)}, (20
i=1 j=1 i<j -
N M where 6;=j6, 6=2m/M, andR is a constant radius, i.e.,
1 2 when a commensurate chain of ES electrons surrounds the
2 2 2min|zi—w;| -2, |z

droplet[see Fig. 1a)]. Note that our assumption of a small
" N correction to the Luttinger-liquid behavior is justified, pro-
1 ) vided the configuration of ES sites is a small perturbation of
- 512::1 lw;—Rj|“+ Zmizl Injzi— ¢ . (13 one that satisfies Eq19).

To get the electron propagator, we first exponentiate the
In the above formulas the antisymmetrization was neglectedgxpression of the leading-order behavior @t>R, |R;|
which is possible due to the localized nature of the ES>R, j=1,... M
Again, if for |£/>R and|w;|>R, j=1, ... M, the last sum

in Eq. (13) is approximated as Eq7), and Moo qA T
Mg o= 1-R| 2 =+ (21)
N M =1 R, 3
;1 ,Zl 2min|z; —wj| Here we assume that even f&'s close to the droplet,
" " 2(1/ﬁj) is small with respect to ({¢|)~ (1/R) (which im-
~S 2mNInjw;|~mNZ S i—mNZ D 1 plies that the pole structure of the correlator is similar to the
= ] Zem, m * one of the Luttinger liquid with the pole slightly shifted from

! |¢€|=R). Hence, we can also regard Eg1) valid for general
(14 R, j=1,...M, and & (with |R|,|&[>R). M(&*,¢) is
the integration oveZ,, yields the functional dependence of then analytically continued to M(¢*,¢); taking ¢
the integrals over;'s in Eq. (13) on ¢ to leading order in  =Rexpli2m(x/L)} andé=R gives for the electron equal-time
RIZM (1w)) + (1/€)]. It is of the following form: propagator
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. 1 X X X
Ge(X)~exp im N_E 27-rE ex ”TE —ex —|7TE

where¥™ and ¥ are the electron and hole creation opera-
tors, respectively. If we assume that, in our system,

X X (0]w(01)¥'(0,0/0)=(0|¥'(0)W(0,0[0) (28)
—expl’iw—]E —ex —iw—] ) ) _ o
L holds, as it does in the case of the standard Luttinger liquid,
—m going from formula(27) to formula(26) involves only time

2 translation T—T—t) and time inversionT— —T) (and the
overall change of the signin our case, the particle coordi-
nates¢ = R exp{ix(27/L)} andé= R become under the substi-
tution (x—ut) &(t)=R explivt(27/L)} and Z(0)=R. &(t)

and £(0) denote the hole and electron coordinates, respec-

tively. If we reconsider the correlatdv(&*,£) with the sub-
stitutions, we will get for the hole propagat¢27) in the

x> * —exp{inHE
wherez Eé}l

In the limit x/L<<1 that corresponds to the short-distance
behavior, the electron propagator can be expressed as

| o

(22

o

]

F{ 1) X short-time limit:
G.(X)~expim|N—=|27—|———, (23
e( ) 2 7TL (iX+ClX—C2)m ( ) ( )
Ge(0t<0)x ) 29
where el (fot1 Coot_Cy)"
2Im{Z} On the other hand, to get the electron propagatort fo®
1= 2—[3)? (24) [Eq. (26)] we should perform the time translation and inver-

sion. This amounts to an exchangeggf) and(0), which
and leads to the following short-time behavior:

:E M (25) 1

2 TP Go(04>0) .
T 273 {04>0) (—ivt+Cyot—C,)"

(30)

(Re[%} and IM{X} are the real and imaginary parts Bf
respectively. Note that|>| serves as a small parameter that
determines the deviation from a standard Luttinger-liquid be
havior[Eg. (10)].

If we considert as a complex variable and assufdg<1,
we may approximate the positions of poles in E@®) and
(30) asty~—i(C,/v), andt,~i(C,/v), respectively. Then,
the tunneling density of statd3(E) is given by

Ill. TUNNELING DENSITY OF STATES

0
In the previous section we calculated the equal-time D(E)NRE< fxdtexp{lEt}m
propagator. In order to get the tunneling density of states, we 2

need the time-dependent propagaBy(x=0;). In general, o 1

this requires a knowledge of the energies of excited states of +f dt expliEt}—7— 1, (31)

the system. For ES configurations that satisfy conditid®s 0 (it+Czlv)

[and hence have the Luttinger-liquid correlatidd®)], we  \yhereE is the energy measured from the Fermi energy,
expect that the ground state is one of the edge states of a QHq ag 3 final result we get

droplet surrounded by vacuum; the excited staishich

may also be interpreted as edge states of that diopéete C,|

energies linear in momentum, measured from the new D(E)xexp[—a|E|}D(E), a=—, (32
ground state. The linear dispersion is expected on general v

grounds, as the first-order expansion in small momenta, anghere D,(E) is the Luttinger-liquid tunneling density of
not precluded by angsymmetry, etd.argument.' Then, to  states. Therefore, to lowest order|R), the dominant modi-
getGe(x=0.) we should merely substitute the coordinate fication to the standard Luttinger behavior is the exponential
with vt (wherev is the velocity of the drift motion of elec-  syppression, at a time scateof order~(L/v)|3|. It should
trons on the boundafy. The sign of time should be speci- pe stressed that, and hencd® (E), is a local quantityadia-
fied, as we will explain and elaborate below. Assuming thaipatically varying around the diskhat describes the tunnel-
the linear dispersion is valid also in the case of a small deyng gensity of states of an electron at distareR from the
viation from Eq.(19) (i.e., for[Z[<1), we may apply the qrigin, and at angler(x/L)<1 to the reference point. Below
same substitution in Eq23) to getGe(x=01). we calculatea for the two different types of imperfect site

We recall the definition of thdequal-spacefermionic  configurations depicted in Figs(d and 1c).
Green’s function, in the field-theoretic notation:

Ge(x=0t>0)=—i(0|¥(0,)¥'(0,0|0), (26) A. Inhomogeneous configuration of sites

We model the inhomogeneous configuratidtig. 1(b)]

by consideringl =2n+ 2 ES sites, at a distané&from the
Ge(x=04t<0)=i(0|¥'(0,00¥(0;)|0) (27) origin, where two of them are exactly on the opposite sides

and
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of the droplet, i.e., the sum of their phases is{expt+1=0.
The rest 2 electrons are positioned at the anglsand
—6; (1<j=n), where

0;=0j+ecods(j—1)}, (33

0= (m/n+1) andé=(m/2n). e>0 represents a small devia-
tion from the perfect chain distribution, which is modulated,

as we move from the reference point at angie0. We then
get2 =3, where

R n
So= E_El explifj +iecod 5(j—1)]}
=

R n
+”E-21 exp{—ifj—iecogs(j—1)]}. (34
“

For e small 2, can be approximated as

R n
20~ie~521 expli 0j}cog 8(j — 1)}
=

R n
—ieEE exp{—i6jlcog 8(j—1)} (35
=1
and forn>1 this yields

8ne R
S0=—5— =

3 R (36)

If the reference point is at an arbitrary angje: 0, the
sum becomes

3 =3exp—iy}. (37
Inserting in Eqs(25) and (32), we then get
L [23cogy}+ (30

‘ . (38

a= 2

m 2—[3|
Therefore, aty=w/2, a« becomesacxe’, at y=0 it is «
x(e—conste?), const-0, and, at y=m, it is ax(e
+conste?). This means that aroungl=0 andy= 7 devia-

2

tions from the perfect chain case are stronger, and the sup- a~ —m —Mao?
pression of the density of states is stronger in the denser

region (y=r), but only to second order ia.

B. Random distribution of sites
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M R R M
(2)=2, <~—>=:<exp{—i5}>2 exp{—i(j#)}=0.
=1\ R; R j=1
(40

The lowest-order contribution taC, [Eq. (25)] is then
~(|2|?), where

2M/2

([2%)==252 (2~ 2exiio})). (4D
j=1

For a Gaussian distributioP(8)=(1/\2mo)e®2") we
get

EZ—RZM 1 2/2 REMo” 42
(I3P)=mgM-exp = 0?2~ =~ (42
where the last approximation holds fer< 1. Substituting in
Egs.(25) and(32), this yields

L RZ2Mg?

e R 2

(43

a

We next consider a radius distortion of E@O) of the
form

Ri=(R+ryexpi(jo)},
wherer; is a random variable, subject to a distribution of

width o, <R. Again, the first order ir®, vanishes upon av-
eraging:

(44)

R M
(2)=z5(N 2 exp(=i(j0)}=0. (45

For a symmetric distribution aof;’s, (r)=0 and we get

r2M R2
(2= 252, (r%)==zMo?. (46)

We then get an expression farwhich is quite similar to Eq.
(43):

L R?
(47)

2 AT
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(39 APPENDIX

To evaluatg W (£)| W (£)) [Eq. (13)], one needs to solve
integrals of the form

Ri=Rexpli(jo+ )},

where §=2m/M and §; is a random variable. Averaging
over the distribution of;’s, we obtain
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) . . where
|:f dZWf(W,W*)|W|2mNe—(1/2)\W| e(U2WRS o(L/2w Rj'
e ! 2\
o D= 2 i —Fi)w(l—i)'(lR-lz
wherew is the coordinate of thegth ES electror{the index;j i=o 3P ' AR
being omitted, and f(w,w*) can be expressed as a power\We next assume that the above sum is dominated 4y 1

(AT)

series inR/w,R/w*: <p,l, so that the factorials are well approximated by
o Stirling’s formula:
R\"[ R\K
f(w,w*)= > ank(W) (W—*) : (A2)
n,k=0 S(p,|)~2 s,
Equation(Al) is then recast as '
» _[ple 2 L i L i1/ pl
1= 2 anR™ M N nmn-k ST RAT PN N2mp-na—iy
n,k=0 (A8)

Ip,IEf JPwwPw* e (U2IW2a(12WRY o(12W*R; (A3) The sum is then replaced by an integral

1
Below we show that provided{N—n),(mN—k)>1, S(p,1)~ —f dxe?™,
N2
Imen,mekmlmN,mNRjin(RJ*)ik,
$(x)= [| (Zp'e)(l X)(l %[ +oneo)

o = x)=x{In ——]l1-= n(x)),
Ri_R_airb wn (IR R (A4) RIA™ AT A9
= =—=e“"iV,  where a(|Rj|)~52;

which can be solved in a saddle-point approximation. The

note that exfx(|R||)}—1 for (R/R;)<1. In addition, we note saddle-point equatiog’ (x) =0 implies
that since the integration overis dominated byv~R; , and

R;>R, the series expansion E¢A2) can be cut at some 2ple X X X X
nc,k such that|R/Rj|",|R/R;[*<1, yet (MN—n.),(MN R\~ p l_|_ 1+ p— < T =x
—ko)>1. Consequently, we obtaln . (AlO)
|~f(RJ, ) s (A5) and hence
which implies that the{w;} integrations over the terms, 1 Xs
[Eq. (17)] yield Eqg. (18). S(p, 1)~ - exp{ Xs + ﬁ)]
We now derive the approximation E¢A4)—the central ¢" (%) s
result of this Appendix. The integralg [Eq. (A3)] can be (A11)
expressed as wherex; is the solution of Eq(A10). For (R/R;)<1 (where
; p,I<Nm=R?/2)
|p|:2p+l J J d2we (V2W2g(12WRF (12w R; 2pl 1
’ * p n
IRy R, X~ R <Pl 9= (A12)
I S
=P+l [47.,.32 IR;? ]. (A6)  and we get
JRFP aR'
. . L ) 2pl 2pl
A straightforward application of the derivatives then yields S(p, 1)~ \xe¥s= WGX R (A13)
] ]
12
I, =4meMRITRPRYS(p 1), Noting thatp,| ~R?/2, Eq.(A13) implies Eq.(A4), Q.E.D.
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