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Bulk and edge correlations in the compressible half-filled quantum Hall state
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Department of Physics, The Technion, Haifa 32000, Israel

and Department of Mathematics-Physics, Oranim–Haifa University, Tivon 36006, Israel

Efrat Shimshoni
Department of Mathematics-Physics, Oranim–Haifa University, Tivon 36006, Israel

~Received 15 December 1998!

We study bulk and edge correlations in the compressible half-filled state@B. I. Halperinet al., Phys. Rev. B
47, 7312 ~1993! and, E. Rezayi and N. Read, Phys. Rev. Lett.72, 900 ~1994!; 73, 1052 ~1994!# using a
modified version of the plasma analogy. The corresponding plasma has anomalously weak screening proper-
ties, and as a consequence, we find that the correlations along the edge do not decay algebraically as in the
Laughlin~incompressible! case, while the bulk correlations decay in the same way. The results suggest that due
to the strong coupling between charged modes on the edge and the neutral fermions in the bulk, reflected by the
weak screening in the plasma analog, the~attractive! correlation hole is not well defined on the edge. Hence,
the system there can be modeled as a free Fermi gas ofelectrons~with an appropriate boundary condition!. We
finally comment on a possible scenario in which the Laughlin-like dynamical edge correlations may neverthe-
less be realized.@S0163-1829~99!00616-5#
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I. INTRODUCTION AND PRINCIPAL RESULTS

Laughlin’s theory of the fractional quantum Hall effec1

~QHE! was given in terms of wave functions of the grou
state and quasihole excitation. Using a plasma analog
calculate the static many-body correlators, which charac
ize these wave functions, he was able to advance a
successful physical picture of the electron system. The w
functions, describing the incompressible states, contain
Laughlin-Jastrow factor, which leads to special, later int
duced, Girvin-MacDonald~GM! correlations in the bulk,2

and Wen’s correlations on the edge.3,4 The Laughlin-Jastrow
factor is ever present in QHE states—it exists even in
compressible half-filled state,5 for which an explicit wave
function has been proposed by Rezayi and Read~RR!.6 The
question arises whether its manifestations, in terms of
above-mentioned correlations, survive in more general qu
tum Hall states and, in particular, in the compressible sta
Why is this question important? The correlations that
embodied in the Laughlin-Jastrow factor lie at the heart
various quasiparticle pictures7–9 ~composite fermions, com
posite bosons! of the QHE in the bulk. From the theoretica
viewpoint, it is interesting to understand the status of Bo
condensation, implicit in the Laughlin-Jastrow factor,2,8 in
the compressible state. Related to this is the question to w
extent Laughlin’s quasihole construction in the compress
state~a zero of the wave function! can be considered as a
elementary excitation of the system.

Experimentally, these correlations are in principle acc
sible by tunneling measurements. Indeed, recent ed
tunneling experiments by Graysonet al.10 prompted the
question of whether the Luttinger liquid picture,3,4 which is
characterized by Wen’s correlations, is valid for gene
quantum Hall systems, including the compressible states
PRB 590163-1829/99/59~16!/10757~12!/$15.00
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number of theoretical works11,12 have attempted to explain
the puzzling results of Ref. 10, in terms of charged exc
tions on the edge that are effectively decoupled from
bulk.13

In this paper we concentrate on the compressible Q
system at filling factor one-half. We assume that the R
wave function well describes the ground state of the syst
even when we consider a system with an edge. Namely,
assume the composite fermion~or, more precisely, dipole!
picture7,9 to apply everywhere. We rederive the GM an
Wen’s correlations in the Laughlin state considering t
leading-order contributions of a weak-coupling plasma
proximation~see also Ref. 14!. Then we consider the sam
correlations~appropriately redefined! in the RR state. In cal-
culating these we use the same approach—a systematic
pansion of a plasma free energy—with necessary modifi
tions to include the Fermi sea correlations.15 This introduces
a statistical mechanics viewpoint of the problem, in terms
an anomalous,weakly screeningplasma.

Applying the aforementioned procedure~and viewpoint!
on the RR state, we find that Wen’s correlations of the ed
do not decay algebraically~at large distances! as in the
Laughlin state. This excludes the possibility of existence o
subspace of charge-density waves on the edge~of the type
found in the Laughlin state! that is decoupled from the rest o
the excitations—i.e., the neutral bulk excitations.16 The form
of the obtained equal-time electron Green’s function on
edge suggests that, in the first approximation, the phys
picture of the RR edge is that of a Fermi gas of electro
The bulk GM correlations, on the other hand, decay algeb
ically, in an almost identical way as in the Laughlin state

Below, we detail the derivation of the correlators, in t
bulk ~Sec. II! and on the edge~Sec. III!. A discussion of
theoretical and experimental implications of the results
given in Sec. IV.
10 757 ©1999 The American Physical Society
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II. CORRELATIONS OF THE BULK

In this section, we employ the plasma analogy to derive the appropriately generalized GM correlator in the compres
state. To introduce the method, we first use it to derive the known result for the Laughlin state@Eq. ~3! below#.

A. Correlations of the bulk in the Laughlin state

In the Laughlin state, corresponding to filling factors 1/m with m odd, the GM correlator2 is defined as the density matri

r~z,z8!5

NE d2z2•••E d2zNCb~z,z2 , . . . ,zN!3Cb~z8,z2 , . . . ,zN!

E d2z1•••E d2zNuCbu2
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for the bosonic many-body function

Cb5)
i , j

uzi2zj um expS 2
1

4 ( uzi u2D ~2!

obtained from the Laughlin wave function by omitting th
phases of the relative distances between any two electr
(zi2zj ). As shown in Ref. 2, the asymptotic form ofr(z,z8)
is

r~z,z8!;uz2z8u2m/2. ~3!

This correlator expresses a Bose condensation, with a
braic off-diagonal long-range order, of composite boson
defined as electrons withm flux quanta attached. We now
derive the above form using the weak-coupling plasma a
ogy.

We first rewrite the integrand as2

Cb~z, . . . ,zN!3Cb~z8, . . . ,zN!

5expS 2m(
i , j

8 lnuzi2zj u D expS 1m(
i

8 lnuz2zi u

1m(
i

8 lnuz82zi u D expS 2
1

2 (
i

8 uzi u22 1
4 uz8u22 1

4 uzu2D
~4!

and similarly the numerator.~The prime means thati 51 is
excluded from the summations.! Using the Laughlin plasma
analogy we can writer(z,z8) as

r~z,z8!5uz2z8u2m/2
Z~z,z8!

Z~z,z!
n, ~5!
ns,

e-

l-

where Z(z,z8) is a partition function of a classical two
dimensional~2D! plasma with inverse temperatureb52/m,
each particle with chargem, and two impurities with charge
m/2 each, at the locationsz and z8. @Z(z,z) is a partition
function with one impurity of chargem at an arbitrary loca-
tion, because the value of the partition function does
depend onz.# n is the average density of particles~equal to
1/2pm in the usual units!. To calculate the ratio of the two
partition functions, we may expand the exponentials in
parameterm, which we will assume to be small. The expa
sion will generate terms that can be described by diagra
and corresponding rules.

As usual in this kind of expansion in the statistical m
chanics analogue, the expansion of the denominator invo
only connected diagrams. Each diagram consists of pa
herein called disconnected parts, which connect two imp
ties atz andz8 but are otherwise disconnected among the
selves. Then, the rules that correspond to each diagram in
expansion are as follows.

~1! Associate with each interaction line a two momentu
satisfying momentum conservation at each internal verte

~2! Associate with each interaction line between partic
2(2pbm2)/uku2, with each interaction line between a pa
ticle and an impurity2@2pbm(m/2)#/uku2, with each inter-
action line between impurites2@2pb(m/2)2#/uku2, and with
each internal vertexn.

~3! For each incoming~from z) ~which is also outgoing to
z8) momentum for each disconnected part, integrate
*d2k/(2p)2 exp„ik(r2r 8)…, but for each internal momen
tum as*d2k/(2p)2.

~4! Multiply with a symmetry factor~if any!. The symme-
try factor is an inverse of the number of ways that we c
interchange a given number of identical parts of a given d
gram and recover the same graph.

The diagrams that represent the interaction with the ba
ground are mutually canceled~as we checked for the firs
diagrams in the expansion!, and we will not consider them
In our problem the densityn is fixed and depends on th
small parameterm. In order to get the correct order of th
diagram~i.e., the power ofm) in the expansion, we mus

FIG. 1. The diagrams leading to screening of the interaction
the bulk.
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take this into account. The lowest-order diagram has va
one. The next in order are diagrams of the form shown
Fig. 1 and are of orderm. We can easily sum them, and th
result is

Veff~ ur2r 8u!5S m

2 D 2E d2k

~2p!2
exp@ ik~r2r 8!#

2
2pb

uku2

11
2pbm2

uku2
n

.

~6!

The sum represents an effective screened interaction betw
two impurities. The infinite summation of certain types
diagrams that diverge even more singularly as we incre
the number of interaction lines is a well-known ansatz in
many-body theory of the Coulomb-interacting electron gas
three dimensions. This captures well the phenomenon
screening that is characteristic of long-range forces. In
case the infinite summation is even further enforced, gi
the fact that the diverging diagrams are of the same orde
m.

We now rewrite the ratio of partition functions in Eq.~5!
as

Z~z,z8!

Z~z,z!
5exp@2bD f ~z,z8!#, ~7!

whereD f (z,z8) represents the difference in the free ener
between the two configurations of the impurities. The abo
exponential form can be obtained by summing the set
diagrams, whose disconnected parts are of the form show
Fig. 1. Thus we find

Z~z,z8!

Z~z,z!
5exp@Veff~r2r 8!#. ~8!

As ur2r 8u→` the ratio approaches unity, becauseVeff is an
effective screened interaction.17 Hence, Eq.~5! reduces to
the well-known expression for the GM correlator, Eq.~3!.

This result is derived and found to have the same form
larger, physicalm’s.2 Therefore, it is possible to analyticall
continue the correlator obtained in the weak-coupling
proach to largerm’s. Applying the same weak-coupling in
finite summation, it can be shown that the continuation
valid also in the calculation of the static structure factor
the small-momentum limit~when corrections to the infinite
summation are added, this includes also the term pro
tional to the fourth power of the momentum.14!

It is interesting to check what the weak-coupling approa
yields for the distribution of the charge in the tail of th
Laughlin quasihole excitation.1 The quantity that describe
this is1

g12~ uz12wu!5
N

ZE d2z2•••E d2zNU)
i 51

N

~zi2w!CU2

,

~9!

whereC andZ are the Laughlin wave function and its norm
respectively. In order to capture the physics of screening,
sum the same most important diagrams as before and
proximate Eq.~9! by14
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g12~ uz12wu!5n1E d2k

~2p!2
exp@ ik~r12w!#

3

2
2pb~m31!

uku2
n

11n
2pbm2

uku2

. ~10!

As uz12wu→`, the functiong12(uz12wu) should tend to the
unperturbed densityn, and it behaves as

g12~ uz12wu!5n2m const
1

Auz12wu
expS 2

uz12wu
r D

D ,

~11!

where (1/r D
2 )52pbm2n52, r D being the Debye length.

B. Correlations of the bulk in the compressible half-filled state

The theory and physical picture of the filling fraction
1/m wherem is even, evolved from some Fermi condens
tion of charged~Chern-Simons! composite fermions~elec-
trons with even number of flux quanta attached! to a well-
defined Fermi condensation of dipole quasiparticles.9 This
emphasized the advantage of Read’s picture,18 which, from
the begining, takes into account the binding of electrons
~so-called! correlation holes.~Equivalently, the statement i
that the zeros of the many-body functions are found at
near the electrons.! At even denominators the overall neutr
composite object is a dipole~with Fermi statistics!.

The ground-state wave function that corresponds to
picture is the RR wave function6

CRR5PLLL $deti , j@exp~ ik iRj !#CL% ~12!

with a Slater determinant of free waves that fill a Fermi s
which when projected to the lowest Landau level~LLL !
(PLLL stands for the projector! acts onCL—the Laughlin
wave function. In Eq.~12! we wrote the determinant in term
of plane waves, which constitute a convenient basis fo
system of free particles~in a rectangular geometry!. The
Laughlin wave function, on the other hand, is very oft
expressed in the rotationally symmetric gauge~correspond-
ing to a rotationally symmetric geometry! amenable to the
Laughlin plasma analogy. In order to facilitate our compu
tions we will keep these two distinct geometry choices in
RR wave function. We justify this by the fact that, first, w
will be interested in the~long-wavelength! properties of the
system in the thermodynamic limit~when the boundary con
ditions should not matter!, and second, each component
CRR will enter our calculations in the form of translational
invariant, geometry independent elements.

To illustrate6,9 the dipole physics contained in Eq.~12!,
we note that the LLL projection translates factors of the fo
exp@i(kz̄)/2#, wherek5kx1 iky and z5x1 iy , into the shift
operator exp@ik(]/]z)#, which acts on the original~before pro-
jection! holomorphic (z dependent! part of the wave func-
tion. This effectively means that each electron becomes
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10 760 PRB 59MILICA V. MILOVANOVIC´ AND EFRAT SHIMSHONI
placed from the position of its correlation hole by (2 ik)
~where k takes values from the Fermi sea!, and therefore
dipole moments are induced.

In the calculation of correlation functions the effects
the LLL projection can be taken into account by using t
following identity

E d2 zexp„2 1
2 uzu2

…exp„iqr …

3FexpS 2 ik1*
]

]z*
D expS 2 ik1

z*

2 DF1~z* !G
3FexpS ik2

]

]zDexpS ik2*
z

2DF2~z!G
r
re
er
th
ct
n

ul
h
e

th
ct
y
m

r
f

ta
e

5expS 2
k1* q

2 DexpS 1
k2q*

2 DexpS 2
k2k1*

2 D
3E d2z exp~2 1

2 uzu2!exp~ iqr !exp~2 ik1r !

3exp~ ik2r !F1~z* !F2~z!. ~13!

If we search for the long-distance behavior of the correlat
functions, usually the calculations give the same result
obtained from the unprojected version of the RR function

This is the case with the appropriately generalized G
correlations to the compressible case. The many-body w
function employed in the calculation of the density mat
@Eq. ~1!# is
C~z,z2 , . . . ,zN!5 (
sPSN21

sgn s)
i 52

N

exp@ i ~ks~ i !zi !/2#)
i , j

8 uzi2zj1 iks~ i !2 iks~ j !u2

3)
i 52

N

uz2zi2 iks~ i !u2 expS 2
1

4 (
i

uzi u2D . ~14!
an
cle

rmi
the

r
d

We now introduced a particle, with coordinatez, without the
~projected! plane wave that enters the Fermi sea part, the
fore without the fermionic statistics that characterizes the
of the N21 particles. The rest of its correlations with oth
particles is the same as any other particle. Similarly to
Laughlin case, the phase part of the Jastrow-Laughlin fa
with coordinate shifts is omitted. This, in the Chern-Simo
picture, corresponds to attaching of two flux quanta@at dis-
tance (ik)# to each electron.

Nevertheless, as can be shown, for the type of calc
tions that we do, the projection to the LLL does not affect t
final result and, for the sake of simplicity, we will explain th
method on the unprojected version for which

C~z,z2 , . . . ,zN!5)
i 52

N

uz2zi u2 det@exp~ ik ir j !#

3)
i , j

uzi2zj u2 expS 2
1

4 (
i

uzi u2D .

~15!

We next assume that the dominant correlations lie in
~Jastrow-Laughlin! differences and for the moment negle
the Slater determinant. The complete plasma analog
again possible and, as explained above, the infinite sum
tion of the diagrams of the type shown in Fig. 1~for small
m) is relevant. In the presence of the determinant the fi
necessary correction to this picture is the introduction o
new vertex that captures also possible Fermi~exchange! cor-
relations between two points in the coordinate space.14 In the
momentum space, this vertex then corresponds to the s
structure factor of the free Fermi gas
e-
st

e
or
s

a-
e

e

is
a-

st
a

tic

s0~q!5n1n2E d2r exp~ iq•r !@g~ ur u!21#, ~16!

whereqÞ0, and the radial distribution function is

g~r !5
1

n2Ek1PF.S.

d2k1

~2p!2Ek2PF.S.

d2k2

~2p!2

3$12exp@ i ~k12k2!•r #% ~17!

(F.S. stands for the Fermi sphere!. Symbolically, the new
vertex is depicted in Fig. 2, as a sum of a direct and
exchange part, in which full lines represent Fermi parti
lines. From Eq.~17!, and the definition@Eq. ~16!#,

s0~q!2n52E
R

d2k

~2p!2
. ~18!

Here R represents the area of overlap between two Fe
spheres as shown in Fig. 3, where the center of one of
two spheres is displaced byq from the center of the othe
one. The value ofs0(q) is then given exactly by the shade
area in Fig. 3. The area is easily calculated foruqu small and
the result is

s0~q!5
3

4

kf uqu

p2
. ~19!

FIG. 2. The vertexs0(q) in the bulk of a RR state.
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With the necessary introduction of the new vertexs0(q), the
interaction becomes less effectively screened than in
usual~Laughlin! case. It becomes

Veff~ uqu!5

2
2pbm2

uqu2

11
2pbm2

uqu2
s0~q!

, ~20!

where the denominator can be interpreted as an anoma
dielectric constant of the corresponding modified plasma
the coordinate space, at large distances,Veff;1/r , i.e., it is
still long ranged and only partially screened.

Nevertheless, if~keeping this change in mind! we apply
the same summations and arguments as in the Laughlin c
we come up with the same algebraic decay of the GM c
relations as in that case.14 This decay is slightly modified by
the exponential@Eq. ~8!# of the partially screened interactio
~effectively a constant as in the Laughlin case at large
tances!.

The question that arises immediately is whether the a
lytical continuation to larger~physical! m’s is possible, and,
moreover, whether the screening plasma approach is reli
in giving the leading behavior of the correlator. Because
the absence of a complete analogy with some physical, w
studied plasma, there are no available results for largerm to
compare with. It was found14 that the weakly screening
plasma approach gives the right@valid also for largem ~Ref.
19!# leading~small-momentum! behavior for the static struc
ture factor of the compressible state and generates expe
~odd! powers of momentum in the expansion. If we try to
beyond this approach, and look for small-m ~expected! cor-
rections, it seems that they cannot be generated.14 This is
probably due to the nonanalyticities present in the compr
ible case~which were absent in the Laughlin case! that do
not allow a perturbative treatment. Therefore we believe t
the approach~essentially nonperturbative! can generate the
correct ~large-m) leading behavior for the correlations th
we study. They are between points that are directly c
nected only to the charge~Jastrow-Laughlin! part of the
wave function, and that immediately suggests an appro
that captures screening for their calculation.

The weak-screening property of this modified plasma
be very well seen by considering a zero of the electron
ordinates at a pointw,14 which corresponds to the Laughli
quasihole in the incompressible case,

FIG. 3. The overlap of two shifted Fermi spheres.
e
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)
i 51

N

~zi2w!CRR. ~21!

To simplify the calculation of the distribution of charge
the tail of this excited state, we will assume the unprojec
version of the RR state in Eq.~9! ~The use of the projected
state involves some complications that are not essential
do not influence the final result.! Now the appropriate infinite
sum of the modified plasma can be expressed, in term
diagrams depicted in Fig. 4, with the shaded circle repres
ing the new vertex, i.e., in this case

g12~ uz12wu!5n1E d2k

~2p!2
exp@ ik~r12w!#

3

2
2pb~m31!

uku2
s0~k!

11s0~k!
2pbm2

uku2

. ~22!

The most important contributions tog12 in the limit uz1
2wu→` come from nonanalyticities present in the int
grand. They stem from the nonanalytic behavior ofs0 at k
50 andk52kf . Assuming that the small-momentum resu
@Eq. ~19!# for s0 is valid for any k ~analogously to the
Thomas-Fermi approximation for the electron gas in th
dimensions!, we get the contribution from thek50 region

@g12~ uz12wu!2n#uT.F.}2
kf

m

1

uz12wu3
. ~23!

The contribution from thek52kf region can be calculated t
be

@g12~ uz12wu!2n#uF.O.}2
1

kf

1

uz12wu3
sin~2kfr !. ~24!

We may conclude from expressions~23! and ~24!, which
summed up give the change in the distribution of the cha
from the uniform ground-state contributionn ~in the uz1
2wu→` limit !, that the density far from the pointw tends to
n very slowly in comparison with the Laughlin case. Th
charge of this excited state~which may be argued to be 1/m
as for the Laughlin quasihole18! is spread over a much large
region than the one in the Laughlin case, due to the po
screening properties of the modified plasma.

III. CORRELATIONS OF THE EDGE

A. Edge correlations in the Laughlin case

In Ref. 4, Wen showed how calculation of the equal-tim
correlator along the edge in the Laughlin case can be redu
to the problem of finding the electrostatic energy of placi
an impurity outside the Laughlin plasma. For the sake
completeness and easy reference for our calculation, we

FIG. 4. The diagrams contributing to the calculation ofg12(uz1

2wu) in the RR state.
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in brief, repeat his arguments. We then demonstrate, tha
result is recovered in a weak-coupling expansion.

Review of Wen’s procedure.We consider a disk of the
Laughlin plasma, with a fixed radiusR, at fixed filling factor
1/m. As we increase the number of particlesN, the density
will increase~with appropriate change in the magnetic fie
B to keep 1/m constant! and the description that neglec
details of the order of a magnetic length would be more a
more accurate, and the Laughlin plasma will behave a
metal ~with its screening properties!.

To calculate the edge correlator, we envision placing
impurity of chargem outside the disk of such a plasma, a
distancez whereuzu@R ~so that the details of the edge do n
matter!, and consider the ratioZI /Z, in which

ZI~z,z̄!5E ) d2zi expS (
i , j

2m lnuzi2zj u D
3expF1 (

k51

N

~2 1
2 uzku212m lnuz2zku!G ~25!

and

Z5E ) d2zi expF(
i , j

2m lnuzi2zj u1 (
k51

N

~2 1
2 uzku2!G .

~26!

From the first quantization~quantum-mechanical! point of
view the ratio is the one-particle~electron! density at pointz.
On the other hand, from the point of view of the plasm
analog, lnZI /Z is the electrostatic energy required to trans
the impurity from infinity to the pointz. This energy can be
expressed as

ln
ZI

Z
5mN2 lnuzu2m lnS 12

R2

uzu2D 1O~1/N!. ~27!

The first contribution is the electrostatic energy between
total chargeN and the impurity, where in the first approx
mation the plasma droplet is assumed undeformed by
presence of the impurity. The second contribution descri
the most important part of the deformation that occurs:
image charges of the impurity.20 The rest of the contributions
are expected to be of order 1/N or less~due to the form of the
first contributions, analyticity inN is expected!.

To find out the electron correlator between pointsz1 and
z2 ~on the edge!, Wen first noticed that the expression on t
right-hand side of Eq.~27! is holomorphic inz and anti-
holomorphic inz̄ ~outside the system!, and therefore can be
analytically continued, i.e.,

ln
ZI~z1 ,z2!

Z
'mN ln~z1z̄2!2m lnS 12

R2

z1z̄2
D . ~28!

z1 and z2 can be considered to be even on the edge if
final result of the analytical continuation exists, i.e., if it
finite. This excludes the pointsz15z2 on the edge (uz1
u5uz2u5R), where the above expression is logarithmica
singular. Then, ifz15R exp@i(y/R)# andz25R, the electron
correlator is~in the disk geometry!
he

d
a

n

r

e

e
s

e

e

^LuC†~z1!C~z2!uL&[
ZI~z1 ,z̄2!

Z

3exp~2 1
4 uz1u2!exp~2 1

4 uz2u2!.

~29!

In the limit y/R!1, where circular and rectangular geom
etries are indistinguishable, this becomes

^LuC†~z1!C~z2!uL&;
1

ym
, ~30!

which coincides with the correlations on the edge obtained
the ~more familiar! bosonization approach.

Derivation of the electrostatic energy of the edge impur
in the Laughlin case using the weak-coupling plasma exp
sion. According to Wen’s idea, in order to find the equa
time electron correlator, it is sufficient to compute the ele
trostatic energy of an impurity of chargem at a point z
outside the Laughlin plasma. We now describe the diagra
matic solution of this statistical mechanics problem. To si
plify the calculation, we consider a plasma that extends o
the half-planex<0 instead of a disk~in the thermodynamic
limit, the choice of geometry is immaterial!; the impurity
coordinate isz5j ~along the positivex axis!. The derivation
of this electrostatic energy, using the weak-coupling plas
expansion, parallels that of the density in the bulk; i.e., c
culating the electrostatic energy of a particle interacting w
a negative background—the rest of the particles.21 In the
present case the system is not infinite in thex direction, and
that introduces a new type of vertex in the diagramma
expansion. The vertex connecting two interaction lines
momentaqi , qf in thex direction, which in the infinite case
is

nd~qi2qf ! ~31!

~wheren is the density!, is replaced in the half-plane case b

n

2p F 1

2 i ~qi2qf !
1pd~qi2qf !G , ~32!

i.e., proportional to the Fourier transform of theta functio

E
2`

0

exp@ i ~qi2qf !x#dx5E
2`

1`

u~2x!exp@ i ~qi2qf !x#dx

5
1

2 i ~qi2qf !
1pd~qi2qf !. ~33!

The diagrams that are leading in the small-m expansion,
and are of orderm, are given in Figs. 5~a! and 6. The dia-

FIG. 5. ~a! The leading contribution to the electrostatic intera
tion of a charged impurity with the plasma.~b! Diagrams that are
not included in Eq.~27!.
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gram in Fig. 5~a!, in which the pointsw in the half-plane are
integrated over, corresponds to the first~direct term! in
Wen’s expansion, Eq.~27!. It is also proportional to the size
of the system and strictly speaking diverges in the case
half-plane system.@This divergence does not matter and c
be handled by considering a rectangular system with sizeLx
and Ly much longer than the distance (j) of the impurity
from they axis.#

The diagrams of the type depicted in Fig. 5~b! are not
included@by using a screened instead of the bare interac
in Fig. 5~a!#, although they are of orderm as well. As we
remarked earlier in this section, the diagrams that should
taken into account are of the same form as the ones tha
select to play the role of positive background~i.e., those that
cure divergences in the expansion with the two-particle
teraction! in the infinite system case. In that case, the d
gram of the form in Fig. 5~a! cancels all divergences whe
the interaction line does not connect to any other interac
line. When the proper selection is done, and all diagrams
cure divergences are present, the complete partition func
is well defined and a constant. Similarly with impurities a
in the semi-infinite case, if all due interactions~additional
diagrams! are included in the partition function~including
the interaction of impurities with positive background!, it
becomes a constant~due to the screening property o
plasma!. The partition functionZI in Wen’s derivation is not
complete, and therefore the part on the right-hand side of
~27! is not a constant and can be associated with the inte
tion of the impurity with ‘‘negative background.’’

The diagrams in Fig. 6 are all relevant and deserve spe
attention. Their value~at least in the long-distance limit! can
be calculated by solving an integral equation for an effect
vertexV(qi ,qf),

V~qi ,qf !5
n

2p H F 1

2 i ~qi2qf !
1pd~qi2qf !G

1E dkF 1

2 i ~qi2k!
1pd~qi2k!G

3
24pm

~q21k2!
V~k,qf !J . ~34!

This equation can be schematically introduced as in Fig
where we denoted only momenta along thex direction. The
momentumq along they direction is the same on every lin
as in the infinite-plane case. Then the contribution of
diagrams in Fig. 6, summarized by the diagram on the l
hand side of Fig. 7, can be expressed as

FIG. 6. Diagrammatic representation of the image charge en
term. The vertex in the half-plane case@corresponding to Eq.~32!#
is denoted by a dotted circle.
of

n

e
e

-
-

n
at
on

q.
c-

ial

e

7,

ll
t-

1

2E dq

~2p!
E dqi

~2p!
E dqf exp@2 i ~qi2qf !j#

3
24pm

~q21qi
2!

V~qi ,qf !
24pm

~q21qf
2!

. ~35!

The solution to the equation, given in the long-distance
proximation, can be found in Appendix A. It reproduces t
electrostatic energy of the impurity and its image charge
the half-plane case, corresponding to the leading contribu
to the second term in Eq.~27! when the disk is considered t
be large@R@(uzu2R)#.

B. Edge correlations in the compressible half-filled state

Now we switch to the calculation of the edge correlatio
in the RR case using the diagrammatic method. We fi
consider the unprojected RR state, and as a basis of
waves that enter the Slater determinant, we choose

exp~ ikyy!

A2p
3

cos~kxx!

Ap

or

exp~ ikyy!

A2p
3

sin~kxx!

Ap
, ~36!

wherekx andky take values from a Fermi box~not sphere! in
the k space. As in the Laughlin case, we assume that
radius of the Laughlin disk is very large in comparison w
the distance~along the edge! over which we measure corre
lations. So, effectively, we again consider the half-pla
problem for which, on the other hand, the basis choices@Eq.
~36!# are also appropriate; there is no discrepancy betw
geometries of the Laughlin-Jastrow and free-wave part in
ground state, as in the full-plane case. In Eq.~36! the coor-
dinatex is measured from the edge of the half-plane, i.e.
tangent to the large disk. If, somehow, the charge and neu
~fermionic! part decouple on the edge, the choices@Eq. ~36!#
are quite natural, because they satisfy the requirement
the ~neutral! current normal to the boundary is zero, i.e., th
the fermionic number is conserved.

First, we consider the correlations of the object introduc
in Eq. ~21! to which, due to the correspondence of its co
struction to the one of the Laughlin quasihole, we will ref
to as a quasihole. This, of course, does not entail that
quasihole is a well-defined object—eigenstate of the Ham
tonian, as in the case of the Laughlin quasihole. It might
such~on the edge! if we find that its correlations are of th
same type as in the Laughlin case@Eq. ~30!#, and therefore

gy FIG. 7. The infinite sum of diagrams included in Fig. 6, repr
sented as an integral equation for the effective vertexV(qi ,qf)
~dotted double circle!.
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the charge degrees of freedom~on the edge! in the RR state
can be described in the Luttinger liquid framework~or, mi-
croscopically, by the possible states of quasiholes!. Again, as
in Sec. III A, to mimic the charge part of the electron, in th
case, we consider the correlations of the object constru
by puttingm (m52) quasiholes at the same place. Then,
find out if there is a departure from the Laughlin case,
consider the density of this object outside the half-plane s
tem described by the RR state.

In the language of the modified plasma, we are placin
charged impurity~not directly connected to the plane-wav
part! outside the system and checking whether the im
charge physics still holds. Due to the poor screening in
modified plasma, the charge induced by the external impu
does not accumulate near the edge~within a microscopic
screening length! as in the ideal plasma. Rather, the induc
charge is expected to slowly decay towards the interior of
system. To get a handle on the form of the electrostatic
ergy associated with this effect, we can employ the Thom
Fermi approximation to compute the induced charge, gi
the dielectric properties of the modified plasma derived
the Sec. II @Eq. ~20! and the subsequent discussion#. The
calculation is summarized in Appendix B. We find that u
like the Laughlin~ideal! plasma case, the leading behavior
the ‘‘image charge’’ electrostatic energy is a constant, rat
than a logarithmically singular term. We now derive th
result systematically in the diagrammatic expansion fram
work.

We first must find an effective vertex that corresponds
Eq. ~32! in the Laughlin case and is represented by the d
grams in Fig. 6. That will be done at the same level of a
proximations as in the case of the bulk correlations. Exp
itly, to find the value of the effective vertex, we consider t
two contributions, direct and exchange, depicted symb
cally in Fig. 8, in the simplest diagram with only two inte
action lines.~The use of the dotted lines is to emphasize t
we are now in the half-plane case.!

The direct contribution~unapproximated! for the first
choice of basis for the Fermi sea in Eq.~36! is equal to

1

2E d2z1 ln2uz2z1u~2m!2n
1

N (
kPF.S.

cos2~kxx1!

5
n

2
~4pm!2E d2p

~2p!2E d2q

~2p!2

1

px
21py

2

1

qx
21qy

2

3exp@2 i ~qx2px!z#~2p!d~qy2py!

3E dx1 exp@ i ~qx2px!x1#
1

N (
kPF.S.

cos2~kxx1!,

~37!

FIG. 8. The modified half-plane vertex in the RR state; t
second diagram represents the exchange contribution.
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where the summation ink runs over the Fermi box. This
summation can be rewritten as

1

N (
kPF.S.

cos2~kxx1!5
1

2
1

1

N (
kPF.S.

cos~2kxx1!

2
. ~38!

The second part can be neglected, because it leads t
effective smearing of both thed function d(px1qx) and the
pole ;1/(px1qx) that we would get if it were a constan
The first part is the most important and singular in the inf
red limit, which dominates the infinite summation abov
Therefore the direct contribution to the effective vertex is

1

2

n

2p F 1

2 i ~qx2px!
1pd~qx2px!G , ~39!

i.e., half of the vertex in the Laughlin case.
Applying similar arguments, that is keeping the most im

portant terms that contribute to the value of the diagram
the long-distance limit, we find that the exchange contrib
tion to the effective vertex is

~2 1
4 !

n

2p
@pd~px2qx!#. ~40!

We get the same contributions, Eqs.~39! and ~40!, for the
second choice of basis in Eq.~36!. Therefore, the effective
vertex in the RR case that parallels Eq.~32! in the Laughlin
case is

1

2

n

2p F 1

2 i ~qx2px!
1

p

2
d~px2qx!G . ~41!

It is not a simple multiple of the Laughlin vertex; because
the exchange contribution, the solution of a new integ
equation, corresponding to Eq.~34! with the new ‘‘bare’’
vertex, will not yield the leading logarithmic behavior cha
acteristic of the Laughlin case, which can be translated i
the algebraic decay of the quasihole correlator. Namely
aÞ1 ~for the definition ofa see Appendix A!, the solution of
the integral equation in the long-distance limit is

V~qi ,qf !'2
~q21qi

2!

b
d~qi2qf !

1
1

2 i ~qi2qf !

c

~pacb!2
~q21qi

2!~q21qf
2!.

~42!

In our caseb524pm, a5 1
2 , andc5 1

2 (n/2p). The contri-
bution from thed function to the electrostatic energy is

2m ln
L

qc
, ~43!

whereqc is the infrared cutoff. There is no obvious way
cancel theqc dependence; i.e., in the case of the modifi
plasma, we must keep the size of the system finite, and
distance of the impurity should be considered smaller th
the size of the system, in the calculations.~Note that this
appears to indicate that the expansion inN is not analytic as
in the Laughlin case.! The contribution of the second term
can be written as
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m const3~L2qc!qc3~qcj!1 f ~L,qc!1O@~qcj!2#,
~44!

where const.0 andf is an algebraic function ofL andqc .
In principle, other contributions, of order higher inm, from a
more detailed solution of the integral equation can be ca
lated. We expect that their dependence onj will be of the
form (jqc)

n or (1/j)n, where n takes on positive integra
values, (j,1/qc), and will not change the leading behavi
@Eq. ~43!# ~in which we are interested the most!. In the scope
of our approach, which takesm small ~and assumes the pos
sibility of an analytical continuation to higherm), it is hard
to estimate the true coefficients in front of the powers ofj,
due to the requirement to know them to all orders inm. Also,
there might be relevant contributions from other diagrams~in
the small-m expansion!, which we did not consider. But a
we assume that the plasma correlations~although modified!
are dominant for the calculation of the quasihole correla
we do not expect that there will be any change in the lead
behavior described by Eq.~43!.

The above calculations imply that the overlap betwe
two quasihole excitations on the edge does not depend on
distance between them; it is a constant, but decreases
the size of the system. This might be understood, taking
account that the quasiholes in the RR state are not w
defined, well-localized objects in the bulk~see the end of
Sec. II B! and certainly not on the edge where the screen
seems to be even weaker than in the bulk.

Once we take this point of view that, in fact, the sta
described by the Laughlin quasihole construction on the e
are extended, a special care must be taken concerning
normalization. In general, the normalization is expected
depend on the size of the system@as in the case of the fre
waves ~in the noninteracting system!#. Therefore, the first
contribution to the plasma electrostatic energy@Eq. ~43!#
~that through the infrared cutoff depends on the size of
system! might be a consequence of an incomplete normal
tion of the quantum-mechanical correlator at the beginn
of our calculation. If this term is included~in the normaliza-
tion! from the beginning, the value of the correlator at lar
distances~in our approximation! approaches unity.22

To find out the electron correlator, we must take into a
count the correlations that come from the neutral~plane-
wave! part of the RR function, alone. These are not includ
in the preceding~modified plasma! calculations, which gave
the correlator of the quasihole, the object that~in our ap-
proximation! carries the charge part of the electron. The n
tral contribution is expected to be of the form

;g
sin~ky

Fy!

y
, ~45!

whereg is a coefficient that depends on the boundary con
tions. When combined with the charge correlator, it produ
the usual~physical! decay of the electron correlator with th
distance. Except for the dependence on the size of the
tem, the electron correlations on the edge are as if the sys
was a free~two-dimensional! Fermi gas ofelectrons. It can
be shown that the same long-distance behavior of the co
lations follows from the LLL projected wave function@Eq.
~12!#.
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IV. DISCUSSION AND CONCLUSIONS

If we assume that, indeed, the whole description of
edge of the compressible state is equivalent to that of a
Fermi gas, we can try to predict the occupation numb
~probability density! of electrons near the edge. Then th
second choice for the boundary condition in Eq.~36! is more
appropriate because the probability density@r(x)# should
vanish at some point near the edge (x;0). The resulting
probability-density distribution

r~x!;FkF2
sin~2kFx!

2x G ~x,0! ~46!

is very similar to the smooth function that one can get e
trapolating the data that describe the occupation numbers
electron near the edge in ~finite-system! exact-
diagonalization studies,23 and the observed oscillations migh
be identified as the Friedel oscillations. Also, with the abo
assumption, the density of states for electron tunneling i
the compressible edge would be similar to the one for t
neling into a Fermi liquid~metal!. This is consistent with our
intuitive expectations given the compressible nature of
system, if, loosely speaking, the characteristic energies
the motion of the charge and neutral~Fermi! part are com-
parable.

We believe that it would be possible to construct an
fective (111)-dimensional theory along the edge, which h
the same correlations that we expect, taking the coordin
normal to the edge where it corresponds to time, i.e.,x[vt,
and translating our diagrammatic calculations into an eff
tive interaction between a neutral and charged part. T
would yield a model for the suppression of the correlation
the chiral boson theory3,4 ~charge part!, which assumes tha
its neutral and charge components move with the same
locity (vc5vn5v) along the edge. If the model is genera
ized to the one for whichvc@vn , at sufficiently large mo-
menta high energies where the exchange part of
interaction is suppressed~due to a reduced overlap of the tw
one-dimensional spheres!, we expect that the chiral boso
correlations will be released. Therefore, the difference in
dynamics of the charge and neutral part appear to be a
essary condition for the decoupling of the edge and bulk~the
charge and neutral part! at high-enough energies, as seen
experiments.10 ~For a similar explanation of the simultaneou
suppression of the neutral part see Ref. 12.! The ‘‘true’’
~low-energy! correlations should reflect the compressible n
ture of the system.

In contrast with the edge problem, the bulk correlations
the compressible case that we considered seem to be si
to the ones in the incompressible case. The GM correlati
are almost identical, and, due to the finite screening,
quasiholes~correlation holes! have a chance to be considere
as well-defined~albeit very extended! objects~like Skyrmi-
ons when the compressible degree of freedom—spin—is
cluded in the incompressible problem24!. This, intuitively,
gives additional support to the quasiparticle pictures of
bulk that we have by now. On the other hand, the edge c
relations differ completely from the ones in the incompre
ible case. In incompressible states the edge physics is a
flection of the bulk physics, and the same quasiparti
picture of the bulk is possible on the edge. In the compre
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10 766 PRB 59MILICA V. MILOVANOVIC´ AND EFRAT SHIMSHONI
ible case, and, in the plasma analogy, due to the very w
screening on the edge, we probably cannot talk about e
tence of the correlation hole that, in Read’s picture of
bulk, attracts an electron and creates a weakly-interac
composite object—a Fermi quasiparticle. In the scope of
approach, and in the first approximation, electrons are
bounded, and the edge of the compressible state appea
be similar to the edge of free-electron gas~with an appropri-
ate boundary condition!.
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APPENDIX A

We consider the integral equation~34! for the case of a
general vertex

cF 1

2 i ~qi2qf !
1apd~qi2qf !G . ~A1!

Then, the integral equation can be rewritten as

V~qi ,qf !F12
pacb

q21qi
2G5cF 1

2 i ~qi2qf !
1pad~qi2qf !

1bE dk
V~k,qf !

i ~k2qi !~k21q2!
G ,

~A2!

whereb524pm. If we try simply to iterate the equation in
the limit whenqi→qf , we find that each iteration produces
solution of the form

V~qi ,qf !5
a~qi ,qf ;q!

2 i ~qi2qf !
1b~qi ;q!d~qi2qf !1 f ~qi ,qf ;q!,

~A3!

where a and b are fixed, i.e., do not change after som
iterations, andf (qi ,qf ;q) keeps changing but does not ha
any~new! singularity asqi→qf . It can be assumed, from th
iteration analysis, thatf (qi ,qf ;q) is analytic in all of its
variables in the long-distance limit.

If we assume that the solution is of the form~A3!, and
that a is an analytic function of its variables, the integratio
on the right-hand side can be done and yields the expres
ak
is-
e
g
r

n-
to

.
-

ly
t
i-

-
r
y

,

on

cH 1

2 i ~qi2qf !
F11

bb

q21qi
2G1pad~qi2qf !

1bpF f ~qi ,qf !

qi
21q2

1
f ~ iq,qf !

iq~ iq2qi !
G

1bp
1

2 i ~qi2qf !
F a~qi !

qi
21q2

2
a~qf !

qf
21q2G

1bp
a~ iq !

q~ iq2qi !~ iq2qf !
J , ~A4!

wherea(k)[a(k,qf ;q). In order to equate thed functions
on both sides~at qi5qf), b must be

b5
pac

F12
pacb

q21qi
2G . ~A5!

Then we equate the coefficients with 1/2 i (qi2qf) at the
point qi5qf to get

a~qi ,qf ;q!uqi5qf
5

c~q21qi
2!2

~q21qi
22pabc!2

. ~A6!

To be consistent with the iteration result~and also with sym-
metry arguments!,

a~qi ,qf ;q!5c
q21qi

2

~q21qi
22pabc!

q21qf
2

~q21qf
22pabc!

,

~A7!

although it is not consistent with our assumption thata is an
analytic function at the beginning of the substitution of E
~A3!. Still, it does satisfy the assumption in its long-distan
version,

a~qi ,qf ;q!'
c

~pabc!2
~q21qf

2!~q21qi
2!, ~A8!

and the same approximation must be employed in the pr
ous equations.

To complete the solution we must findf (qi ,qf ;q) from
the remaining equation

F12p~a11!bc
1

q21qi
2G f ~qi ,qf !5pcbF f ~ iq,qf !

iq~ iq2qi !
G .
~A9!

@We useda( iq)50, which is consistent with the fact that th
poles atk56 iq in a(k)/(k21q2) at the beginning of the
calculation were spurious.# In the long-distance~or small-
momentum! approximation, i.e., when

~a11!
f ~qi ,qf ;q!

~ iq1qi !
'

f ~ iq,qf ;q!

iq
, ~A10!

a nontrivial ~nonzero! solution exists only whena51
~Laughlin case!. It is

f ~qi ,qf ;q!5qi1 iq ~A11!

in the limit whenqi→qf ~irrespective from the value ofc).
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By power counting or by explicit calculation, we can fin
out that the leading contribution in the Laughlin case com
from the latter part of the solution. An introduction of a
infrared cutoff is necessary, but the dependence on it dis
pears when thed-function part of the solution is included
When substituted in Eq.~35!, this yields

2m ln~jL! ~A12!

as the electrostatic energy of the impurity and its ima
counterpart in the long-distance approximation, whereL is
an ultraviolet cutoff ~corresponding, e.g., to the invers
screening length of the plasma!. There is no dependence o
the infrared cutoff, because we are considering a half-pl
~semi-infinite! system and are recovering the well-known r
sult for that case.

APPENDIX B: ‘‘IMAGE CHARGE’’ INTERACTION
ENERGY IN A MODIFIED PLASMA

We consider a pointlike impurity of chargem, placed at a
distancej from the edge of a two-dimensional modifie
plasma that occupies the half-planex<0. The plasma is
characterized by a wave-vector dependent dielectric cons
of the form

e~q!511
q0

q
, where q05

3

4

kf

p2
~B1!

andq5uqu @see Eqs.~19! and~20!#. The electrostatic poten
tial generated by the charge distribution, that the exter
impurity induces in the plasma, is given by

Vind~r !5Vsc~r !2Vex~r !. ~B2!

HereVsc(r ) is the screened potential of the impurity

Vsc~r !5mE d2r 8D~r ,r 8!lnur2j x̂u,
d

B

s

p-

e

e
-

nt

al

where

D~r ,r 8!5u~2x!u~2x8!E d2q

~2p!2e2 iq•~r2r8!e21~q!,

~B3!

ande(q) is given by Eq.~B1! ~the theta functions restrict th
screening to the half-plane occupied by the plasma!. This
yields ~in q space!

Vind~q!52
mpq0e2uqyuj

~q1q0!uqyu~ uqyu2 iqx!
. ~B4!

The ~two-dimensional! Poisson equation then relates th
component of the potential to the induced charge

r ind~q!5
q2

2p
Vind~q!52

mq0

2

~ uqyu1 iqx!e
2uqyuj

~q1q0!uqyu
.

~B5!

The Fourier transform of Eq.~B5! yields

r ind~r !52u~2x!
m

4pq0
R~r 22j212i jy!23/2, ~B6!

whereR denotes the real part andr 25x21y2. Note that this
charge distribution decays algebraically towards the inte
of the plasma, indicating its anomalously poor screen
properties. The electrostatic energy associated with the in
action of the impurity and the induced charge is then fou
to be ~to leading order in smallj)

Eel'2
m2L

4q0
ln

L

qc
. ~B7!

The higher-order corrections decrease as a function oj.
Multiplying by the inverse temperatureb52/m, and with the
appropriate definition of the ultraviolet cutoffL, this result
coincides with Eq.~43!, and hence is consistent with ou
diagrammatic approach.
s.

.

9

ys.

-

1R. B. Laughlin, Phys. Rev. Lett.50, 1395~1983!; R. B. Laughlin,
in The Quantum Hall Effect, 2nd ed., edited by R. E. Prange an
S. M. Girvin ~Springer-Verlag, New York, 1990!.

2S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett.58, 1252
~1987!.

3X.-G. Wen, Phys. Rev. B41, 12 838~1990!; 43, 11 025~1991!.
4X.-G. Wen, Int. J. Mod. Phys. B6, 1711~1992!.
5B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B47, 7312

~1993!.
6E. Rezayi and N. Read, Phys. Rev. Lett.72, 900~1994!; 73, 1052

~1994!.
7J. K. Jain, Phys. Rev. Lett.63, 199~1989!; Phys. Rev. B40, 8079

~1989!; 41, 7653 ~1990!; A. Lopez and E. Fradkin,ibid. 44,
5246 ~1991!; B. I. Halperin, P. A. Lee, and N. Read,ibid. 47,
7312~1993!; J. K. Jain and R. K. Kamilla, Int. J. Mod. Phys.
11, 2621~1997!.

8S.-C. Zhang, H. Hansson, and S. Kivelson, Phys. Rev. Lett.62,
82 ~1989!; N. Read,ibid. 62, 86 ~1989!; S.-C. Zhang, Int. J.
Mod. Phys. B6, 25 ~1992!.

9B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B47, 7312
~1993!; N. Read, Semicond. Sci. Technol.9, 1859~1994!; Surf.
Sci. 361/362, 7 ~1996!; R. Shankar and Ganpathy Murthy, Phy
Rev. Lett.79, 4437~1997!; cond-mat/9802244~unpublished!; B.
I. Halperin and Ady Stern, Phys. Rev. Lett.80, 5457~1998!; V.
Pasquier and F. D. M. Haldane, Nucl. Phys. B516, 719 ~1998!;
D. H. Lee, Phys. Rev. Lett.80, 4745 ~1998!; N. Read,
cond-mat/9804294~unpublished!; A. Stern, B. I. Halperin, F.
von Oppen, and S. H. Simon, cond-mat/9812135~unpublished!.

10M. Grayson, D. C. Tsui, L. N. Pfeiffer, K. W. West, and A. M
Chang, Phys. Rev. Lett.80, 1062~1998!.

11S. Conti and G. Vignale, J. Phys. Condens. Matter10, L779
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