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Bulk and edge correlations in the compressible half-filled quantum Hall state
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We study bulk and edge correlations in the compressible half-filled [@ate Halperinet al,, Phys. Rev. B
47, 7312 (1993 and, E. Rezayi and N. Read, Phys. Rev. L&, 900 (1994); 73, 1052 (1994] using a
modified version of the plasma analogy. The corresponding plasma has anomalously weak screening proper-
ties, and as a consequence, we find that the correlations along the edge do not decay algebraically as in the
Laughlin(incompressiblecase, while the bulk correlations decay in the same way. The results suggest that due
to the strong coupling between charged modes on the edge and the neutral fermions in the bulk, reflected by the
weak screening in the plasma analog, thttractive correlation hole is not well defined on the edge. Hence,
the system there can be modeled as a free Fermi gelectfons(with an appropriate boundary conditioiVe
finally comment on a possible scenario in which the Laughlin-like dynamical edge correlations may neverthe-
less be realized.S0163-18209)00616-5

I. INTRODUCTION AND PRINCIPAL RESULTS number of theoretical work&'? have attempted to explain
the puzzling results of Ref. 10, in terms of charged excita-
Laughlin’s theory of the fractional quantum Hall effect tions on the edge that are effectively decoupled from the
(QHE) was given in terms of wave functions of the ground bulk.*® . )
state and quasihole excitation. Using a plasma analogy to In this paper we concentrate on the compressible QHE
calculate the static many-body correlators, which characteYStem at filing factor one-half. We assume that the RR

. . wave function well describes the ground state of the system,
ize these wave functions, he was able to advance a ver

tul physical pict f the elect ; Th dven when we consider a system with an edge. Namely, we
successiul physical picture of the electron system. 1h€ Wavhqq e the composite fermidar, more precisely, dipoje

functio_ns, describing the in(;ompressible stat_es, contgin thﬁicturem to apply everywhere. We rederive the GM and
Laughlin-Jastrow factor, which leads to special, later introyyen's correlations in the Laughlin state considering the
duced, Girvin-MacDonaldGM) correlations in the bulg, leading-order contributions of a weak-coupling plasma ap-
and Wen's correlations on the ed§eThe Laughlin-Jastrow proximation (see also Ref. 34 Then we consider the same
factor is ever present in QHE states—it exists even in theorrelations(appropriately redefinedn the RR state. In cal-
compressible half-filled stafé)‘or which an explicit wave Cu|ating these we use the same approach_a systematic ex-
function has been proposed by Rezayi and R&R).® The  pansion of a plasma free energy—uwith necessary modifica-
guestion arises whether its manifestations, in terms of théons to include the Fermi sea correlatidighis introduces
above-mentioned correlations, survive in more general quare statistical mechanics viewpoint of the problem, in terms of
tum Hall states and, in particular, in the compressible states@an anomalousyeakly screeninglasma.
Why is this question important? The correlations that are Applying the aforementioned procedufand viewpoint
embodied in the Laughlin-Jastrow factor lie at the heart ofon the RR state, we find that Wen'’s correlations of the edge
various quasiparticle picturés (composite fermions, com- do not decay algebraicallyat large distancésas in the
posite bosonsof the QHE in the bulk. From the theoretical Laughlin state. This excludes the possibility of existence of a
viewpoint, it is interesting to understand the status of Bosesubspace of charge-density waves on the ddfi¢he type
condensation, implicit in the Laughlin-Jastrow fact8rin ~ found in the Laughlin stajehat is decoupled from the rest of
the compressible state. Related to this is the question to whéte excitations—i.e., the neutral bulk excitatidfighe form
extent Laughlin’s quasihole construction in the compressiblef the obtained equal-time electron Green’s function on the
state(a zero of the wave functigrcan be considered as an edge suggests that, in the first approximation, the physical
elementary excitation of the system. picture of the RR edge is that of a Fermi gas of electrons.
Experimentally, these correlations are in principle accesThe bulk GM correlations, on the other hand, decay algebra-
sible by tunneling measurements. Indeed, recent edgéeally, in an almost identical way as in the Laughlin state.
tunneling experiments by Graysoet al!® prompted the Below, we detail the derivation of the correlators, in the
question of whether the Luttinger liquid pictutéwhich is  bulk (Sec. I) and on the edgéSec. Ill). A discussion of
characterized by Wen’s correlations, is valid for generaltheoretical and experimental implications of the results is
guantum Hall systems, including the compressible states. given in Sec. IV.
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Il. CORRELATIONS OF THE BULK

In this section, we employ the plasma analogy to derive the appropriately generalized GM correlator in the compressible RR
state. To introduce the method, we first use it to derive the known result for the LaughlinEsgat8) below.

A. Correlations of the bulk in the Laughlin state

In the Laughlin state, corresponding to filling factorsriwith m odd, the GM correlatdris defined as the density matrix

NJ d’z,- - - f d2z\V (2,25, ... ZN) X V(21 2, . . . ZN)

| @ [ v

p(z,2')= @

for the bosonic many-body function where Z(z,2') is a partition function of a classical two-
dimensional(2D) plasma with inverse temperatufe=2/m,
each particle with charge, and two impurities with charge
1 m/2 each, at the locations and z’. [Z(z,z) is a partition
‘Pb:iE[j |2i—2zj|"exp| — 2 > |Zi|2) () function with one impurity of chargen at an arbitrary loca-
tion, because the value of the partition function does not
depend ore] n is the average density of particlésqual to
1/27m in the usual units To calculate the ratio of the two
obtained from the Laughlin wave function by omitting the partition functions, we may expand the exponentials in the
phases of the relative distances between any two electrongarametem, which we will assume to be small. The expan-
(z,—1z;). As shown in Ref. 2, the asymptotic form pfz,z’)  sion will generate terms that can be described by diagrams
is and corresponding rules.
As usual in this kind of expansion in the statistical me-
chanics analogue, the expansion of the denominator involves
p(z,2')~|z—2'|~™2, 3 only connected diagrams. Each diagram consists of parts,
herein called disconnected parts, which connect two impuri-
ties atzandz’ but are otherwise disconnected among them-
selves. Then, the rules that correspond to each diagram in the
This correlator expresses a Bose condensation, with algexpansion are as follows.
braic off-diagonal long-range order, of composite bosons— (1) Associate with each interaction line a two momentum
defined as electrons withn flux quanta attached. We now satisfying momentum conservation at each internal vertex.
derive the above form using the weak-coupling plasma anal- (2) Associate with each interaction line between particles
ogy. —(27Bm?)/|k|?, with each interaction line between a par-
We first rewrite the integrand &s ticle and an impurity—[278m(m/2)1/|k|?, with each inter-
action line between impurites [ 278(m/2)%]/|k|?, and with
each internal vertex.
(3) For each incomingfrom z) (which is also outgoing to
Wo(z, ..z XWR(Z', .. 2ZN) z’) momentum for each disconnected part, integrate as
Jd?k/(2)? exp(ik(r —r")), but for each internal momen-
) ) tum asfd?k/(2m)2.
:eXF{ ZmZ In|z—z;| ) exp( + mZ In[z—z] (4) Multiply with a symmetry facto«if any). The symme-
=) ' try factor is an inverse of the number of ways that we can
L interchange a given number of identical parts of a given dia-
/ , P12 11or12 1112 gram and recover the same graph.
+ mEi In|z _Z‘|)eXF< - EEi |z~ 4l2'|*~ 2l The diagrams that represent the interaction with the back-
ground are mutually cancele@ds we checked for the first
(4) diagrams in the expansignand we will not consider them.
In our problem the density is fixed and depends on the
small parametem. In order to get the correct order of the
and similarly the numeratofThe prime means that=1 is  diagram(i.e., the power ofm) in the expansion, we must
excluded from the summationdJsing the Laughlin plasma

analogy we can write(z,2') as (@ 2VaVaV2 @ 2VAVESENAVIV. @ aVaVaVa @

Z(z,2")

FIG. 1. The diagrams leading to screening of the interaction in
Z(2,2) " ®

Z,Z’ =|z—7' —-m/2
p(z2.2)=|z=7 the bulk.
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take this into account. The lowest-order diagram has value d2k
one. The next in order are diagrams of the form shown irglz(|zl—w|)=n+f Sexpik(ry—w)]
Fig. 1 and are of ordem. We can easily sum them, and the )
result is
2 mx1
2mp _ 2mp(mx1)
2 2 ) |k|?
Verllr—r']) (m) [ extiktr-r) K T ompme (10
r-r'h=\= exgik(r—r")]—————. m
eff 2] ) (2m)? 27 Bm? 1+n2TE
I K

6)  As|z,—w|—, the functiong;,(|z; —w|) should tend to the

The sum represents an effective screened interaction betwedfPerturbed density, and it behaves as
two impurities. The infinite summation of certain types of
diagrams that diverge even more singularly as we increase 1 |z, —w]|
the number of interaction lines is a well-known ansatz in the  91|za—w|)=n— mcons\/t:ex% - —)
many-body theory of the Coulomb-interacting electron gas in 2= w] (11)
three dimensions. This captures well the phenomenon of
screening that is characteristic of long-range forces. In oufnare (1,%):2#3”12”:2' rp being the Debye length.
case the infinite summation is even further enforced, given
the fact that the diverging diagrams are of the same order in
m. B. Correlations of the bulk in the compressible half-filled state
We now rewrite the ratio of partition functions in E() The theory and physical picture of the filling fractions
as 1/m wherem is even evolved from some Fermi condensa-
, tion of charged(Chern-Simons composite fermiongelec-
Z(z,2) —exf - BAF(2,2)] (7)  trons with even number of flux quanta attachéol a well-
Z(2,2) ’ ' defined Fermi condensation of dipole quasiparti¢l@his
emphasized the advantage of Read’s pictfinehich, from

whereAf(z,2') represents the difference in the free ENergYine begining, takes into account the binding of electrons to

bitwc;:;er;lt?hle ftv‘r’% conrzlggjratlg?sinof(;[hs |mpumr:;|?ns. Ir?e ab,?VTso—called correlation holes(Equivalently, the statement is
S. ponentia ho dqa € Ot 3 et y Sufth fg ehse Olhat the zeros of the many-body functions are found at or
lagrams, Whose disconnected parts are of the form Shown il - e electronsAt even denominators the overall neutral

Fig. 1. Thus we find composite object is a dipol@vith Fermi statistics

b

2(2,2') The ground-state wave function that corresponds to this
—':equ r—r’)]. 8 picture is the RR wave functién
Z(2,2) €
As |r—r'| - the ratio approaches unity, beca4g is an Vrr=PLidet j[expikiR) ]V} (12)
effective screened interactidh.Hence, Eq.(5) reduces to ) ) . )
the well-known expression for the GM correlator, Eg). with a Slater determinant of free waves that fill a Fermi sea,

This result is derived and found to have the same form fotVhich when projected to the lowest Landau leveLL )
larger, physicah's.2 Therefore, it is possible to analytically (P stands for the projectpracts on'¥', —the Laughlin
continue the correlator obtained in the weak-coupling apWave function. In Eq(12) we wrote the determinant in terms
proach to largem’s. Applying the same weak-coupling in- of plane waves, which constitute a convenient basis for a
finite summation, it can be shown that the continuation isSystem of free particlesin a rectangular geometry The
valid also in the calculation of the static structure factor inb@ughlin- wave function, on the other hand, is very often
the small-momentum limitwhen corrections to the infinite €xPressed in the rotationally symmetric gaugerrespond-
summation are added, this includes also the term propoiDd t0 & rotationally symmetric geomejramenable to the
tional to the fourth power of the momentul. Laughlin plasma analogy. In order to facilitate our computa-

It is interesting to check what the weak-coupling approacHions we will keep these two distinct geometry choices in the
yields for the distribution of the charge in the tail of the RR wave function. We justify this by the fact that, first, we

Laughlin quasihole excitatiochThe quantity that describes Will be interested in thélong-wavelength properties of the
this it system in the thermodynamic limiivhen the boundary con-

ditions should not matterand second, each component of
2 g Will enter our calculations in the form of translationally
, invariant, geometry independent elements.
To illustraté® the dipole physics contained in E(L2),
) we note that the LLL projection translates factors of the form

where¥ andZ are the Laughlin wave function and its norm, exgi(k2)/2], wherek=k,+ik, andz=x+iy, into the shift
respectively. In order to capture the physics of screening, weperator expk(d/dz)], which acts on the origindbefore pro-
sum the same most important diagrams as before and apection) holomorphic ¢ dependentpart of the wave func-
proximate Eq.(9) by tion. This effectively means that each electron becomes dis-

N

I1 z-ww

=1

N 2 2
912(|21_W|):Zf d Zz"'fd N
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placed from the position of its correlation hole by-ik) *q K,q* kok*
(where k takes values from the Fermi geand therefore =ex -~ r<+ 5 ) xp — 5

dipole moments are induced.
In the calculation of correlation functions the effects of
the LLL projection can be taken into account by using the X f d?zexp(— 3/z|?) exp(igr)exp( —ikyr)
following identity
Xexp(ikor)F1(Z*)F(2). (13
| e zexpi-t1aenstian | | .
If we search for the long-distance behavior of the correlation
. functions, usually the calculations give the same result as
ex;{ —ik® )ex —|klz ) 1(2*)1 obtained from the unprojected version of the RR function.
2 This is the case with the appropriately generalized GM
X;{I )exp<|k2 2) F,(2)

X

correlations to the compressible case. The many-body wave
function employed in the calculation of the density matrix

[Eq. (D] is

N
‘“P(Z,Zz, T !ZN): 2 sgn 0-|:]‘_[2 ex;{i(k(,(i)zi)/Z]il;[j’ |Zi_Zj+ika'(l |k0.(] |

oeSN-_1

XH |Z Zi— |)| €x __2 |Z|2> (14)

We now introduced a particle, with coordinatewithout the

(projected plane wave that enters the Fermi sea part, there- so(q)=n+n2f d’rexp(ig-n)[g(Ir)—1], (16
fore without the fermionic statistics that characterizes the rest

of the N—1 particles. The rest of its correlations with other whereg=+ 0, and the radial distribution function is
particles is the same as any other particle. Similarly to the

Laughlin case, the phase part of the Jastrow-Laughlin factor 1 d?k, d?k,

with coordinate shifts is omitted. This, in the Chern-Simons g(n=— o rs(2 sz fsi2m)?

picture, corresponds to attaching of two flux quajghdis- n"Jkief.s.(2m)" ioer.s(2)

tance (k)] to each electron. x{1—exdi(k,—ky)-rl} 17

Nevertheless, as can be shown, for the type of calcula-
tions that we do, the projection to the LLL does not affect the(F.S. stands for the Fermi sphereSymbolically, the new
final result and, for the sake of simplicity, we will explain the vertex is depicted in Fig. 2, as a sum of a direct and an
method on the unprojected version for which exchange part, in which full lines represent Fermi particle
lines. From Eq(17), and the definitiofEq. (16)],

N
. dk
V(2,25, ... 2n)=]1 |z—2|?defexgikir))] so(q)—n:—f . (19
i=2 R(27T)2
1 .
XH |zi—zj|2ex _- E 122 Here R represents Fhe area of overlap between two Fermi
4 spheres as shown in Fig. 3, where the center of one of the

two spheres is displaced ly from the center of the other
one. The value 0§y(q) is then given exactly by the shaded

area in Fig. 3. The area is easily calculated|fgfrsmall and
We next assume that the dominant correlations lie in thehe result is

(Jastrow-Laughlip differences and for the moment neglect

the Slater determinant. The complete plasma analogy is 3 k |q|
again possible and, as explained above, the infinite summa- so(Q)= 5
tion of the diagrams of the type shown in Fig.(fbr small 4 ™
m) is relevant. In the presence of the determinant the first

necessary correction to this picture is the introduction of a

new vertex that captures also possible Fef@changgcor- § = O +
relations between two points in the coordinate spgdde the

momentum space, this vertex then corresponds to the static

structure factor of the free Fermi gas FIG. 2. The vertexsy(q) in the bulk of a RR state.

(19

(19
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FIG. 4. The diagrams contributing to the calculationge$(|z,
—wl) in the RR state.

po

N
i[ll (zi— W)W g (22)

To simplify the calculation of the distribution of charge in
the tail of this excited state, we will assume the unprojected
version of the RR state in Eq9) (The use of the projected

FIG. 3. The overlap of two shifted Fermi spheres. state involves some complications that are not essential and
do not influence the final resultNow the appropriate infinite

With the necessary introduction of the new versgkg), the ~ sum of the modified plasma can be expressed, in terms of
interaction becomes less effectively screened than in theiagrams depicted in Fig. 4, with the shaded circle represent-

usual(Laughlin case. It becomes ing the new vertex, i.e., in this case
dk
27 Bm? 912(|21_W|):n+J Sexdik(ry—w)]
TR =
Vei(lal) = Py ; (20 2mB(mx1)
1+ ————50(q) ——|k|2 So(k)
|al X . (22)
2 Bm?
where the denominator can be interpreted as an anomalous 1+s0(k) PE

dielectric constant of the corresponding modified plasma. In
the coordinate space, at large distandés~ 1/r, i.e., itis  The most important contributions tg;, in the limit |z;
still long ranged and only partially screened. —w|—oc come from nonanalyticities present in the inte-
Nevertheless, ifkeeping this change in mindve apply  grand. They stem from the nonanalytic behaviorsgfat k
the same summations and arguments as in the Laughlin case0 andk=2k;. Assuming that the small-momentum result
we come up with the same algebraic decay of the GM corfEq. (19)] for s, is valid for any k (analogously to the
relations as in that casé.This decay is slightly modified by Thomas-Fermi approximation for the electron gas in three
the exponentialEq. (8)] of the partially screened interaction dimension§ we get the contribution from thie=0 region
(effectively a constant as in the Laughlin case at large dis-
tances. k¢
The question that arises immediately is whether the ana- [91A]z1 = W) =n]|7 e o~
lytical continuation to largefphysica) m’s is possible, and,
moreover, whether the screening plasma approach is reliablehe contribution from thé&= 2k; region can be calculated to
in giving the leading behavior of the correlator. Because obe
the absence of a complete analogy with some physical, well-
studied plasma, there are no available results for |amgy&r 1 .
compare with. It was fourld that the weakly screening [912(|21_W|)_”]|F-0-°‘_k_fms'”@kfr)' (24
plasma approach gives the rightalid also for largem (Ref. .
19)] leading(small-momentumbehavior for the static struc- We may conclude from expressiorig3) and (24), which
ture factor of the compressible state and generates expectedmmed up give the change in the distribution of the charge
(odd) powers of momentum in the expansion. If we try to gofrom the uniform ground-state contributiom (in the |z;
beyond this approach, and look for small{expected cor-  —w|—o° limit), that the density far from the poimt tends to
rections, it seems that they cannot be genertéthis is  n very slowly in comparison with the Laughlin case. The
probably due to the nonanalyticities present in the compresssharge of this excited statevhich may be argued to bert/
ible case(which were absent in the Laughlin caghat do  as for the Laughlin quasihdfd is spread over a much larger
not allow a perturbative treatment. Therefore we believe thategion than the one in the Laughlin case, due to the poor-
the approachessentially nonperturbativean generate the screening properties of the modified plasma.
correct (largem) leading behavior for the correlations that
we study. They are between points that are directly con- Ill. CORRELATIONS OF THE EDGE
nected only to the chargé&lastrow-Laughlin part of the
wave function, and that immediately suggests an approach
that captures screening for their calculation. In Ref. 4, Wen showed how calculation of the equal-time
The weak-screening property of this modified plasma carcorrelator along the edge in the Laughlin case can be reduced
be very well seen by considering a zero of the electron coto the problem of finding the electrostatic energy of placing
ordinates at a poini,** which corresponds to the Laughlin an impurity outside the Laughlin plasma. For the sake of
quasihole in the incompressible case, completeness and easy reference for our calculation, we will,

(23

miz—w*

A. Edge correlations in the Laughlin case
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in brief, repeat his arguments. We then demonstrate, that the® ONNN»

result is recovered in a weak-coupling expansion. g W)
Review of Wen's procedur&Ve consider a disk of the @

Laughlin plasma, with a fixed radilg at fixed filling factor

1/m. As we increase the number of particldsthe density "\/\/@’\/\ﬁ + o’\f\/@\/\/@\/‘- + o

will increase(with appropriate change in the magnetic field & 2B W

B to keep Iih constank and the description that neglects FIG. 5. (a) The leading contribution to the electrostatic interac-

details of the order of a magnetip length Wou!d be more an(i'ion of a charged impurity with the plasmé) Diagrams that are
more accurate, and the Laughlin plasma will behave as gq; included in Eq(27).

metal (with its screening propertigs
To calculate the edge correlator, we envision placing an
impurity of chargem outside the disk of such a plasma, at a (L|WT(2) ¥ (2,)|L)=
distancez where|z|> R (so that the details of the edge do not
matte), and consider the ratid@, /Z, in which

Z/(z1,2,)
Z

xexp — ilzi|*) exp — 5[zl ?).

Z|(Z,?)=f I1 d% exp(E 2m|n|zi—zj|) (29

i< In the limit y/R<1, where circular and rectangular geom-
N etries are indistinguishable, this becomes
X exp +k2 —%|2k|2+2mln|z—zk|)} (25 1
- (LW (z) W (z)|L)~ (30
and y
) N which coincides with the correlations on the edge obtained in
the (more familia) bosonization approach.
Z:f I1 d?z exp 2’, 2m |n|Zi—Zj|+k21 (—3lzd®]. Derivation of the electrostatic energy of the edge impurity
) (26)  inthe Laughlin case using the weak-coupling plasma expan-
sion. According to Wen'’s idea, in order to find the equal-
From the first quantizatiodquantum-mechanicplpoint of  time electron correlator, it is sufficient to compute the elec-
view the ratio is the one-particl@lectron density at poinz.  trostatic energy of an impurity of charga at a pointz
On the other hand, from the point of view of the plasmaoutside the Laughlin plasma. We now describe the diagram-
analog, InZ,/Z is the electrostatic energy required to transfermatic solution of this statistical mechanics problem. To sim-
the impurity from infinity to the poink. This energy can be plify the calculation, we consider a plasma that extends over
expressed as the half-planex<0 instead of a diskin the thermodynamic
limit, the choice of geometry is immaterjalthe impurity
coordinate iz= ¢ (along the positivex axis). The derivation
+O(IN). (27 of this electrostatic energy, using the weak-coupling plasma
expansion, parallels that of the density in the bulk; i.e., cal-

The first contribution is the electrostatic energy between th&ulating the electrostatic energy of a particle interacting with
total chargeN and the impurity, where in the first approxi- @ Negative background—the rest of the partiéfet the
mation the plasma droplet is assumed undeformed by thBrésent case the system is not infinite in thairection, and
presence of the impurity. The second contribution describefat introduces a new type of vertex in the diagrammatic
the most important part of the deformation that occurs: thé&xpansion. The vertex connecting two interaction lines of
image charges of the impurif).The rest of the contributions Mmomentaq;, g in thex direction, which in the infinite case
are expected to be of ordemMLbr less(due to the form of the 1S
first contributions, analyticity ifN is expecteg

To find out the electron correlator between pointsand na(gi—ar) (3D
z, (on the edgk Wen first noticed that the expression on the (wheren is the density, is replaced in the half-plane case by
right-hand side of Eq(27) is holomorphic inz and anti-

R2
1__

Z
IN==mN2 In|z| —mn
> |Z] 2

holomprphlc |nz_(out5|d_e the systejpand therefore can be —|— +wo(q—ap) |, (32)
analytically continued, i.e., 27| —i(g;—qy)
5 i.e., proportional to the Fourier transform of theta function,
Z/(21,23) — R
————~mNIn(z;z,)-mIn| 1- —|. (28 0 o
Z VA4

wexp[i(qi—qf)x]dX=J

) O(—x)exdi(q;—qg¢)x]dx

z, and z, can be considered to be even on the edge if the

final result of the analytical continuation exists, i.e., if it is
+7o(g—dp). (33

finite. This excludes the pointg;=z, on the edge |g; :—i(Qi—Qf)
|=|z,]=R), where the above expression is logarithmically
singular. Then, ifz;=Rexdi(y/R)] andz,=R, the electron The diagrams that are leading in the smmallexpansion,

correlator is(in the disk geometry and are of ordem, are given in Figs. & and 6. The dia-
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FIG. 6. Diagrammatic representation of the image charge energy FIG. 7. The_infinite sum O_f diagrams includgd in Fig. 6, repre-
term. The vertex in the half-plane camrresponding to Eq32)]  >cnted as an integral equation for the effective veNgs; .qr)
is denoted by a dotted circle. (dotted double circle

gram in Fig. %a), in which the pointswv in the half-plane are E ﬂ ﬂ d —i(g —

: o . ar exd —i(qi—ap)é]
integrated over, corresponds to the fifglirect term in 2) (2m)) (2m)

Wen'’s expansion, Eq27). It is also proportional to the size

of the system and strictly speaking diverges in the case of « —4mm V(d;,q;) —4mm (35)
half-plane systen].This divergence does not matter and can (9°+9?) A (9°+q?) '

be handled by considering a rectangular system with sizes . ) . ) ]

and L, much longer than the distancg)(of the impurity The _solu_tlon to the equation, given in the long-distance ap-

from they axis] proximation, can be found in Appendix A. It reproduces the
The diagrams of the type depicted in FighBare not electrostatic energy of the impqrity and its image cha_rge_in

included[by using a screened instead of the bare interactiof® half-plane case, corresponding to the leading contribution

in Fig. 5a)], although they are of orden as well. As we 0 the second term in E@27) when the disk is considered to

remarked earlier in this section, the diagrams that should bBe large[ R>(|z| = R) 1.

taken into account are of the same form as the ones that we

select to play the role of positive backgrougie., those that B. Edge correlations in the compressible half-filled state

cure divergences in the expansion with the two-particle in-  Now we switch to the calculation of the edge correlations
teraction in the infinite system case. In that case, the dia-, the RR case using the diagrammatic method. We first

gram of the form in Fig. @) cancels all divergences when cqnsider the unprojected RR state, and as a basis of free
the interaction line does not connect to any other interactioy,aves that enter the Slater determinant. we choose

line. When the proper selection is done, and all diagrams that

cure divergences are present, the complete partition function exp(ikyy) cogk,x)

is well defined and a constant. Similarly with impurities and Y

in the semi-infinite case, if all due interactiofadditional Ve Vm

diagrams are included in the partition functiofincluding

the interaction of impurities with positive backgroyndk

becomes a constantdue to the screening property of explikyy)  sin(kx)

plasma. The partition functiorz, in Wen’s derivation is not Y —, (36)
complete, and therefore the part on the right-hand side of Eq. V2w V

(_27) is not a cons.tant'and can t_)e associated with the imera%herekx andk, take values from a Fermi baxot sphergin
tion of the impurity with “negative background. _the k space. As in the Laughlin case, we assume that the
The diagrams in Fig. 6 are all relevant and deserve specigl,qjiys of the Laughlin disk is very large in comparison with

attention. Their valu¢at least in the long-distance limitan ¢ distancealong the edgeover which we measure corre-
be calculated by solving an integral equation for an effectivg,yions 5o, effectively, we again consider the half-plane

vertexV(q; ,qs), problem for which, on the other hand, the basis chojézp
(36)] are also appropriate; there is no discrepancy between

n 1 geometries of the Laughlin-Jastrow and free-wave part in the
V(q; ,qf)=ﬁ ﬁerﬁ(qi—Qf)} ground state, as in the full-plane case. In E2f) the coor-
i~ A dinatex is measured from the edge of the half-plane, i.e., a

1 tangent to the large disk. If, somehow, the charge and neutral
+ f dk[.— +78(q;— k)} (fermionig part decouple on the edge, the choifg. (36)]
—i(ai—k) are quite natural, because they satisfy the requirement that
the (neutra) current normal to the boundary is zero, i.e., that
V(k,qf)] . (34) the fermionic number is conserved.
First, we consider the correlations of the object introduced
in Eqg. (21) to which, due to the correspondence of its con-
This equation can be schematically introduced as in Fig. 7struction to the one of the Laughlin quasihole, we will refer
where we denoted only momenta along thdirection. The to as a quasihole. This, of course, does not entail that the
momentumq along they direction is the same on every line quasihole is a well-defined object—eigenstate of the Hamil-
as in the infinite-plane case. Then the contribution of alltonian, as in the case of the Laughlin quasihole. It might be
diagrams in Fig. 6, summarized by the diagram on the leftsuch(on the edggif we find that its correlations are of the
hand side of Fig. 7, can be expressed as same type as in the Laughlin caldeg. (30)], and therefore

« —4am
(g?+k?)
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where the summation ik runs over the Fermi box. This
summation can be rewritten as

1 11 cog 2Kk,Xx4)
N > _ oS (KeXy) = §+ N kZ s

. (38
EF EEs. 2 (38)

The second part can be neglected, because it leads to an
FIG. 8. The modified half-plane vertex in the RR state; theeffective smearing of both thé function 8(p,+q,) and the
second diagram represents the exchange contribution. pole ~1/(p,+q,) that we would get if it were a constant.
The first part is the most important and singular in the infra-
the charge degrees of freeddon the edggin the RR state  red limit, which dominates the infinite summation above.

can be described in the Luttinger liquid framewddt, mi-  Therefore the direct contribution to the effective vertex is
croscopically, by the possible states of quasiholagain, as

in Sec. lll A, to mimic the charge part of the electron, in this 1n

case, we consider the correlations of the object constructed 2 27| —i(gy— Py +m3(Ax =P | (39)

by puttingm (m=2) quasiholes at the same place. Then, to, . .
find out if there is a departure from the Laughlin case, we-&- half of the vertex in the Laughlin case.

consider the density of this object outside the half-plane sys- APPIying similar arguments, that is keeping the most im-
tem described by the RR state. portant terms that contribute to the value of the diagram in

In the language of the modified plasma, we are placing the long-distance limit, we find that the exchange contribu-

charged impurity(not directly connected to the plane-waves tion 0 the effective vertex is

par) outside the system and checking whether the image n

charge physics still holds. Due to the poor screening in this (=5 =—[mé(py— ] (40)
modified plasma, the charge induced by the external impurity 2

does not accumulate near the edgéthin a microscopic  we get the same contributions, Eq89) and (40), for the
screening lengthas in the ideal plasma. Rather, the inducedsecond choice of basis in E(36). Therefore, the effective

charge is expected to slowly decay towards the interior of thgertex in the RR case that parallels E§2) in the Laughlin

system. To get a handle on the form of the electrostatic encase is

ergy associated with this effect, we can employ the Thomas-

Fermi approximation to compute the induced charge, given 1n 1 iy

the dielectric properties of the modified plasma derived in 297 W“Lgfs(px_qx) : (41

the Sec. II[Eqg. (20) and the subsequent discusgiofihe ) _ _ )

calculation is summarized in Appendix B. We find that un-1t is not a simple multiple of the Laughlin vertex; because of

like the Laughlin(idea) plasma case, the leading behavior of the exchange contribution, the solution of a new integral

the “image charge” electrostatic energy is a constant, rathepguation, corresponding to E(34) with the new “bare”

than a logarithmically singular term. We now derive this vertex, will not yield the leading logarithmic behavior char-

result Systematica”y in the diagrammatic expansion frameacteristic Of the Laugh”n case, Wthh can be translated intO

work. the algebraic decay of the quasihole correlator. Namely, if
We first must find an effective vertex that corresponds toa# 1 (for the definition ofa see Appendix 4 the solution of

Eq. (32) in the Laughlin case and is represented by the diathe integral equation in the long-distance limit is

grams in Fig. 6. That will be done at the same level of ap- 5 2

proximations as in the case of the bulk correlations. Explic- (9°+a7)

itly, to find the value of the effective vertex, we consider the V(@i.a0= b o(4i~ar)
two contributions, direct and exchange, depicted symboli-
cally in Fig. 8, in the simplest diagram with only two inter- " 1 c (2+ 02 (P+ )
action lines(The use of the dotted lines is to emphasize that —i(gi—df) (wach)? 4T ataTan)-
we are now in the half-plane cage.

The direct contribution(unapproximated for the first (42)
choice of basis for the Fermi sea in E§6) is equal to In our caseb=—4mm, a=3%, andc=%(n/2x). The contri-

1 1 bution from theé function to the electrostatic energy is
EJ d?z;In?|z—z,|(2m)?n— EFS cog(kyxy)

N k -m Inﬁ, (43
n d?p d’g 1 1 e
= —(47-rm)2f 5 > 3 3 3 whereq_ is the infrared cutoff. There is no obvious way to
2 (2m)°) (2m)° px+py ax+ay cancel theg, dependence; i.e., in the case of the modified

plasma, we must keep the size of the system finite, and the
distance of the impurity should be considered smaller than
1 the size of the system, in the calculatiorislote that this
Xf dxq expli (A= Po)Xaly > cof(kexy), appears to indicate that the expansiomiis not analytic as
keF.S in the Laughlin cas¢.The contribution of the second term
(37 can be written as

xexd —i(ax—px)z](2m) 5(ay—py)
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mconst< (A — o) g X (4eé) + F (A, do) + O[(aeé)?], IV. DISCUSSION AND CONCLUSIONS

If we assume that, indeed, the whole description of the
edge of the compressible state is equivalent to that of a free
Fermi gas, we can try to predict the occupation numbers
(probability density of electrons near the edge. Then the
second choice for the boundary condition in E2f) is more
appropriate because the probability dengip(x)] should
vanish at some point near the edge~(0). The resulting
probability-density distribution

where const0 andf is an algebraic function ok andq;.

In principle, other contributions, of order highernm from a
more detailed solution of the integral equation can be calcu
lated. We expect that their dependenceéowill be of the
form (&qc)" or (1/€)", wheren takes on positive integral
values, €<1/q.), and will not change the leading behavior
[Eq. (43)] (in which we are interested the mpdin the scope

of our approach, which takea small (and assumes the pos-
sibility of an analytical continuation to highen), it is hard p(X)~
to estimate the true coefficients in front of the powerst of

due to the requirement to know them to all ordersinAISo, g yery similar to the smooth function that one can get ex-

there might be relevant contributions from other diagréims 1 5|ating the data that describe the occupation numbers for
the smallm expansiof, which we did not consider. But as gjactron near the edge in(finite-system exact-

we assume that the plasma correlati¢ashough modifiedl  giagonalization studie and the observed oscillations might
are dominant for the calculation of the quasihole correlatoryq jgentified as the Friedel oscillations. Also, with the above
we do not expect that there will be any change in the leadingssymption, the density of states for electron tunneling into
behavior described by E¢43). the compressible edge would be similar to the one for tun-

The above calculations imply that the overlap between,gjing into a Fermi liquidmeta). This is consistent with our
two quasihole excitations on the edge does not depend on the jitive expectations given the compressible nature of the
distance between them; it is a constant, but decreases wi stem, if, loosely speaking, the characteristic energies for

the size of the system. This might be understood, taking intena motion of the charge and neutt&lerm) part are com-
account that the quasiholes in the RR state are not We”parable.

defined, well-localized objects in the bulkee the end of "~ \ye pelieve that it would be possible to construct an ef-
Sec. IIB) and certainly not on the edge where the screeningeive (1+ 1)-dimensional theory along the edge, which has

seems to be even weaker than in the bulk. the same correlations that we expect, taking the coordinate
Once we take this point of view that, in fact, the states,,mal to the edge where it corresponds to time, kept,

described by the Laughlin quasihole construction on the edgg,q transiating our diagrammatic calculations into an effec-

are extended, a special care must be taken concerning thelfe jnteraction between a neutral and charged part. This
normalization. In general, the normalization is expected 1Qy g yield a model for the suppression of the correlation of

depend on the size of the syst¢as in the case of the free o chiral hoson theoRy (charge pait which assumes that
waves (in the noninteracting systeijn Therefore, the first s neytral and charge components move with the same ve-

contribution to the plasma electrostatic enef@®d. (43)]  |ocitv (v.=v.=0v) along the edae. If the model is general-
(that through the infrared cutoff depends on the size of _th%edytc() tche c?ne f)or Whi%lwc>vn? at sufficiently Iargge mo-
system might be a consequence of an incomplete normallzafnenta high energies where the exchange part of the

tion of the q“‘?”t”m'm.“ha”'c.a'. correlayor at the beg'nnmgnteraction is suppressédue to a reduced overlap of the two
of our calculation. If this term is includedn the normaliza- . 4_dimensional sphereswe expect that the chiral boson
tion) from the beginning, the value of the correlator at large . reations will be released. Therefore, the difference in the

dls_tran;:_ez(m ourhappirommatlohaﬁ)proaches unitf ke | dynamics of the charge and neutral part appear to be a nec-
o find out the electron correlator, we must take Into ac-ggq4ry condition for the decoupling of the edge and kit
count the correlations that come from the neufelane-

charge and neutral parat high-enough energies, as seen in

yvave) part of Fhe RR .fl.mCt'on' alone. The§e are npt II’]CIUdeexperimenté.o (For a similar explanation of the simultaneous
in the precedindmodified plasmacalculations, which gave suppression of the neutral part see Ref.) Tthe “true”

the correlator of the quasihole, the object tii@t our ap- 14y energy correlations should reflect the compressible na-
prOX|mat|_or) carries the charge part of the electron. The NeUi re of the system.
tral contribution is expected to be of the form In contrast with the edge problem, the bulk correlations in
the compressible case that we considered seem to be similar
sin(kyy) to the ones in the incompressible case. The GM correlations
~9 y ' (45 are almost identical, and, due to the finite screening, the
quasiholegcorrelation holeshave a chance to be considered
whereg is a coefficient that depends on the boundary condias well-definedalbeit very extendedobjects(like Skyrmi-
tions. When combined with the charge correlator, it produce®ns when the compressible degree of freedom—spin—is in-
the usualphysica) decay of the electron correlator with the cluded in the incompressible problét This, intuitively,
distance. Except for the dependence on the size of the sygives additional support to the quasiparticle pictures of the
tem, the electron correlations on the edge are as if the systelulk that we have by now. On the other hand, the edge cor-
was a fregtwo-dimensiongl Fermi gas ofelectrons It can  relations differ completely from the ones in the incompress-
be shown that the same long-distance behavior of the corréble case. In incompressible states the edge physics is a re-
lations follows from the LLL projected wave functiditq.  flection of the bulk physics, and the same quasiparticle
(12)]. picture of the bulk is possible on the edge. In the compress-

 sin(2kex)

K 2X

(x<0) (46)
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ible case, and, in the plasma analogy, due to the very weak 1
screening on the edge, we probably cannot talk about exi$| . > | T mas(di—dr)
tence of the correlation hole that, in Read’s picture of the —1(di—ar) -+

bulk, attracts an electron and creates a weakly-interacting
composite object—a Fermi quasiparticle. In the scope of our )
approach, and in the first approximation, electrons are un-
bounded, and the edge of the compressible state appears to

f(qi.qf)+ f(iq,qy)
g’+g® 1a(ia—a)

be similar to the edge of free-electron dasth an appropri- +b 1 a(q;) a(q;)
2 — _
ate boundary condition —i(gi—a) qi2+q2 q?+q2
[
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APPENDIX A To be consistent with the iteration res(dnd also with sym-
We consider the integral equatid@4) for the case of a Metry arguments

(A6)

general vertex ) —c 92+ g2 92+
1 A (q2+q2—mabc) (q?+q?— rabe)’
C[mﬁLams(Qi—Qf)} (A1) (A7)
although it is not consistent with our assumption thads an
Then, the integral equation can be rewritten as analytic function at the beginning of the substitution of Eq.
(A3). sitill, it does satisfy the assumption in its long-distance
version,
mach 1
V(q; ,qf){l— >3 =C[ Siq—an) +mad(qi—ay)
as+ai o a(q;,ds;a)~ (@®+ap)(a’+af),  (A8)

(mabc)?

and the same approximation must be employed in the previ-
ous equations.

(A2) To complete the solution we must firfdq; ,q¢;q) from
the remaining equation

V(kiqf)
+bf dki(k—Qi)(k2+q2)

whereb= —47m. If we try simply to iterate the equation in

the limit wheng;— gy, we find that each iteration producesa | 1— z(a+ 1)bc;l f(q;,q¢)=mch M}
solution of the form a?+g? iq(ig—a;)
(A9)
a(q;,9¢:9) [We usedx(iq) =0, which is consistent with the fact that the

V(q;,a1)= +8(0i:9)6(ai—a) +1(qi,9¢:9),  poles atk==iq in a(k)/(k?+qg?) at the beginning of the
(A3) calculation were spurioulsin the long-distancegor small-

momentun approximation, i.e., when

f(g;,q¢:q) %f(iq,qf 'q)

—i(gi—ar)

where o and B are fixed, i.e., do not change after some

iterations, and (q;,qs;q) keeps changing but does not have (a+1)— . , (A10)
any (new) singularity asy;—q; . It can be assumed, from the (ig+a;) '
iteration analysis, thaf(q;,q¢;q) is analytic in all of its a nontrivial (nonzerg solution exists only whena=1
variables in the long-distance limit. (Laughlin casg It is

If we assume that the solution is of the forA3), and ] .
that « is an analytic function of its variables, the integration f(ai.ar:q)=ai+iq (A11)

on the right-hand side can be done and yields the expressian the limit wheng;— q; (irrespective from the value af).
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By power counting or by explicit calculation, we can find where
out that the leading contribution in the Laughlin case comes
from the latter part of the solution. An introduction of an

d’q . )
N — _ ! —ig-(r—=r") —1
infrared cutoff is necessary, but the dependence on it disap- D(r,r’)=6(=3)6(~x )f (277)2e € (),

pears when thes-function part of the solution is included. (B3)
When substituted in E¢35), this yields ande(q) is given by Eq(B1) (the theta functions restrict the
—mIn(¢A) (A12) screening to the half-plane occupied by the plasnidis
yields (in g space
as the electrostatic energy of the impurity and its image
counterpart in the long-distance approximation, whérés Vv _ quoe*|qy‘f B4
an ultraviolet cutoff (corresponding, e.g., to the inverse ind( @) = (a+ao)layl(layl—igy) (B4)

screening length of the plasmahere is no dependence on
the infrared cutoff, because we are considering a half-plan
(semi-infinite system and are recovering the well-known re-

sult for that case. 92 may (|qy|+iqx)e—\qy\§

Pind(d) = 2_Vind(q): 2 .

APPENDIX B: “IMAGE CHARGE” INTERACTION m (q+q0)|qy|
' (B5)
ENERGY IN A MODIFIED PLASMA

ghe (two-dimensiongl Poisson equation then relates this
component of the potential to the induced charge

. o . The Fourier transform of EqB5) yields
We consider a pointlike impurity of chargs, placed at a

distance¢ from the edge of a two-dimensional modified _ m 9 1D ;e =302
plasma that occupies the half-plane<0. The plasma is pmd(r)——ﬁ(—x)4ﬂqu(r —§°+2igy) 74 (B6)

characterized by a wave-vector dependent dielectric constant 5 .
of the form whereR denotes the real part amd=x2+y?2. Note that this

charge distribution decays algebraically towards the interior

o 3 ks of the plasma, indicating its anomalously poor screening
e(qQ)=1+—, where qO=Z - (B1) properties. The electrostatic energy associated with the inter-
q ™ action of the impurity and the induced charge is then found

andg=|q| [see Eqgs(19) and(20)]. The electrostatic poten- t0 be(to leading order in smalf)

tial generated by the charge distribution, that the external m2A A
impurity induces in the plasma, is given by Ee~ — 2 In—. (B7)
Qo dc
Vind(1)=Vsdr) = Ve(r). (B2) The higher-order corrections decrease as a functios. of
HereV.(r) is the screened potential of the impurity Multiplying by the inverse temperatugg@= 2/m, and with the

appropriate definition of the ultraviolet cutoff, this result
coincides with Eq.(43), and hence is consistent with our

ngr)=mf dzr’D(r,r’)In|r—§§<|, diagrammatic approach.
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