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Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level
(LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015)], and we study its possible consequences on BCS
(Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states
in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park,
Phys. Rev. B 91, 195119 (2015)]. We argue that in the half-filled LL in the single-layer case the gapped states
may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic
pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric
states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we
argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak
pairing of p-wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant
decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well
with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the
Dirac formalism when applied in this context.
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I. INTRODUCTION

Composite fermions (CFs) [1] describe the physics of
electrons in the fractional quantum Hall regime. At filling
factor ν = 1/2, essentially they absorb the external flux and
make a metallic state [2] with its own Fermi surface—
Fermi surface of CFs. By slightly modifying Read’s dipole
construction of composite (neutral) fermions in the half-filled
lowest Landau level (LL) [3], an argument can be given
for the accumulation of a Berry phase equal to π as a
CF encircles its own Fermi surface [4]. This has motivated
a description of the CFs in this setting in terms of Dirac
fermions, which has been recently introduced in Ref. [5] and
has attracted some interest [4,6–13]. The particle-hole (PH)
symmetric description of the half-filled LL is given in terms
of a Dirac system of composite quasiparticles—Dirac CFs at
a finite chemical potential [4] and in the presence of a gauge
field. However, the implied existence of singularity at zero
momentum in the CF spectrum has been criticized [14,15]. We
may add that, due to the requirement of gauge invariance in two
dimensions, a small mass must be introduced into the Dirac
theory (“parity anomaly”) [16]. This may be a way to heal and
complete in the high-energy domain (“UV completion” [17])
the Dirac description of CFs and avoid singularity.

Thus the description in terms of Dirac fermions may have
the capacity to capture essential, at least qualitative, aspects of
the CFs physics. To further examine this possibility in this work
we consider BCS pairing of Dirac CFs. First, in the framework
of the Dirac description of a single CF, we point out that,
assuming Cooper pairing between spinor components, besides
so-called PH symmetric Pfaffian, also anisotropic states can be
realized. This is analogous to the 3He system in which both B

and A (anisotropic) phases are possible [18]. Next we discuss
unconventional p-wave pairing of two kinds of Dirac CFs,

motivated by the situation in the quantum Hall bilayer (QHB)
at total filling factor 1, i.e., with each layer with a half-filled
lowest LL. In this system p-wave pairing between two kinds of
nonrelativistic Halperin-Lee-Read (HLR) composite fermions
at intermediate interlayer distances was proposed in Ref. [19],
and, recently, this scenario was further substantiated by the
detection of the topological signatures of the p-wave system in
the torus geometry [20]. Therefore, it is natural to ask how this
picture may be modified if we take into account the description
by two Dirac CFs of the two half-filled LL monolayers and
consider their possible pairing.

One of the main conclusions that we can draw by applying
the Dirac CF formalism in the context of BCS pairing
is that due to the Dirac two-component nature, isotropic
(gapped) pairing states may coexist with anisotropic ones,
and this is in accordance with the results on PH symmetric,
single-layer and bilayer fractional quantum Hall systems
obtained by employing exact diagonalization [21,22], as well
as with experimental findings [23,24], in which anisotropy is
probed by an in-plane magnetic field. This may be a direct
consequence of the dipole nature of CFs that is captured by
Dirac formalism. Anisotropic pairing states may serve as seed
states for Pfaffian and anti-Pfaffian state through a process in
which PH asymmetry increases by introducing a mass term,
while rotational symmetry gradually sets in. Furthermore, we
find that the features, in particular, low-energy spectra, of
the QHB at intermediate distances between the layers are
better captured if we assume Dirac rather than HLR p-wave
paired CFs at large distances (decoupled layers). Already at
the effective field theory level, modeling the evolution with the
distance between layers by Dirac CFs, we can detect the main
feature of CF-composite boson (CB) mixed states [19,25]:
the decrease in the number of CFs with decreasing
distance.
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The paper is organized as follows. In Sec. II, based on Dirac
formalism, we discuss the single-layer case and its pairing
instabilities, including the situation when the PH symmetry is
spoiled by a mass term. In Sec. III we discuss the pairing
instabilities in the bilayer system when the PH symmetry
inside each layer is intact. In Sec. IV we examine the evolution
of low-energy properties of the QHB with distance between
layers, by including a mass term with an opposite sign in the
two layers. The last section, Sec. V, is devoted to discussion
and conclusions. Mean-field analysis of the coexistence of
the isotropic and anisotropic pairings is presented in the
Appendices.

II. DIRAC COMPOSITE FERMION AND
COOPER PAIRING

We begin by considering a single Dirac fermion which
was proposed to effectively describe the half-filled lowest
Landau level of electrons [5], with s-wave pairing between
spinor components. The s-wave pairing suggested in Ref. [5]
can be expressed by the following Bogoliubov-de Gennes
Hamiltonian in the Nambu-Gorkov notation:

H = 1

2

∑
k

[�†(k) �̃(−k)]

×
[
D(k) P(k)
P†(k) −D(−k)

][
�(k)

�̃†(−k)

]
, (1)

where �(k) denotes a two-component spinor with
momentum k,

�(k) =
[
�a(k)

�b(k)

]
, �̃(k) =

[
�b(k)

�a(k)

]
, (2)

and

D(k) =
[ −μ kx − iky

kx + iky −μ

]
= −μσ0 + kxσx + kyσy,

(3)
and the 2 × 2 matrix P(k) describes Cooper pairing between
a and b spinor components,

P(k) =
[
�s 0

0 −�s

]
= �sσz, (4)

or more explicitly

δH =
∑

k

{−�s�a(k)�b(−k) + H.c.}. (5)

Here, σ0 is the 2 × 2 identity matrix, while σ are the standard
Pauli matrices. Throughout the paper we set � = 1 and the
Fermi velocity vF = 1. μ denotes a chemical potential equal
to μ = √

B = kF , where B and kF are the external magnetic
field and the Fermi vector, respectively.

Since the pairing matrix anticommutes with the free Dirac
Hamiltonian at the zero chemical potential, the dispersion of
Bogoliubons has the rotationally symmetric form

E2
k = (k ± μ)2 + �2

s , (6)

where k ≡ |k|. This construction is considered in the literature
as a basis for a PH symmetric Pfaffian system.

However, a different type of pairing is also possible with
the pairing matrix

P(k) =
[

0 αkx + βky

αkx − βky 0

]
, (7)

or more explicitly

δH′ =
∑

k

αkx{�†
a(k)�†

a(−k) + �
†
b(k)�†

b(−k)} + H.c.

+
∑

k

βky{�†
a(k)�†

a(−k) − �
†
b(k)�†

b(−k)} + H.c.,

(8)

where α and β are, in general, allowed to be complex coef-
ficients. The overall form of δH′ is fixed by the requirement
of the CP symmetry, which, as emphasized in Ref. [5], is
equivalent to the requirement of the PH symmetry in the real
electron system. Namely, the CP symmetry is a product of the
charge conjugation, C,

C�(k)C−1 = σx�
∗(k), (9)

and a parity transformation, P ,

P�(k)P −1 = �∗(k′), (10)

where k = (kx,ky) → k′ = (kx, − ky) under the parity trans-
formation. Thus,

CP�(k)(CP )−1 = σx�(k′). (11)

The starting Dirac Hamiltonian (1) with P = 0 and δH′
are both invariant under the CP transformation (11).
Notice that Eq. (5) is invariant up to a sign change under the
CP transformation. This is also a property of the small-mass
term that seems necessary to ensure the gauge invariance of
the theory and to avoid the singularity at k = 0 [17]. The BCS
pairing terms like the one in Ref. (5) may accommodate the
sign change by gauge transformations [5]. Thus the theory
is invariant under the CP transformation in a more general
sense, allowing for terms that are invariant up to a change of
the sign. This makes our choice for p wave not unique. Indeed,
other p-wave pairing order parameters are also possible,
including one analogous to the A phase of the 3He system
that features two (gapless) Fermi points. This case can be
analyzed analogously to the one considered here, and the main
conclusions remain. In the following, we restrict our discussion
to the p-wave case (8) invariant under the CP transformation
in the strict sense.

We now consider the pairings given by Eq. (8), recently
also discussed in Ref. [26], in light of the possibility of
introducing an anisotropy. The choice of α = � and β =
−i� yields the pairing matrix P(k), proportional to the
Dirac Hamiltonian D(k), at chemical potential μ = 0, and
thus explicitly rotationally invariant. (See also Sec. III for
further analysis of the rotational symmetry.). In that case, the
dispersion relation of Bogoliubons, E2

k = k2(1 + �2) + μ2 ±
2k

√
μ2 + k2�2, implies that the the pairing just renormalizes

the chemical potential. On the other hand, by choosing α = �

and β = +i�, we obtain

E2
k = k2(1 + �2) + μ2 ± 2

√
μ2k2 + �2

(
k2
x − k2

y

)2
. (12)
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This dispersion describes an anisotropic gapless system with
four nodes at

kx = ± μ√
1 − �2

, and ky = 0, (13)

and

ky = ± μ√
1 − �2

, and kx = 0. (14)

The appearance of the four nodes related by the discrete
C4 symmetry is a consequence of the C4 symmetry of the
pairing (8) with α = � and β = +i�. In fact, Eq. (8) describes
a whole family of gapless anisotropic solutions.

If we consider both the s-wave (5) and the p-wave (8)
with α = � and β = +i� pairings, the dispersion of the
Bogoliubov quasiparticles is

Ẽ2
k = �2

s + k2(1 + �2) + μ2 ± 2
√

μ2k2 + �2
(
k2
x − k2

y

)2
,

(15)

i.e., the dispersion (12) simply acquired a shift of �2
s in

the presence of the s-wave pairing. This is a consequence
of the anticommutation of the matrices corresponding to the
two pairings, similar to the situation in Refs. [27,28], which
makes their coexistence likely at a finite chemical potential.
Assuming a generic form of the two couplings driving the
instabilities in the isotropic and anisotropic channels, in the
presence of a small-mass term, we show in Appendix A that the
low-energy description implies that the isotropic instability (5)
may coexist with the anisotropic one. This is consistent with
experimental [23,24], and theoretical [21,22] findings pointing
out that gapped states at half-filled Landau levels can sustain
and even harbor anisotropy.

In connection with the possible pairings given by Eq. (8)
when α = � and β = +i �, we may notice that if we break
CP (particle-hole symmetry) by a mass term of the form
∼�†(k)σ3�(k), one component, a or b, of the Dirac field
will remain in the low-energy sector. The remaining fermion
should correspond to the HLR (spinless) fermion which in turn
pairs in the manner of the p wave. This should correspond
to Pfaffian and anti-Pfaffian state [which comprise possible
(kx ± iky) states], in the absence of PH symmetry, but with an
emergent rotational symmetry. A closely related proposal for
the existence of the Pfaffian (Moore-Read) state in the presence
of an excitonic instability already appeared in the context of
Dirac CF physics in graphene [29].

To further understand the pairings in Eqs. (5) and (8), we
now consider the chirality operator σ ·k

|k| and its eigenstates

|+〉 = 1√
2

[
1
k+
k

]
, |−〉 = 1√

2

[−1
k+
k

]
. (16)

We can introduce Dirac operators with a definite chirality,

�+(k) = 1√
2

[
�a(k) + k−

k
�b(k)

]
(17)

and

�−(k) = 1√
2

[
−�a(k) + k−

k
�b(k)

]
, (18)

to find that

�a(k)�b(−k) = −1

2

k+
k

[�+(k)�+(−k) + �−(k)�−(−k)],

(19)
with k± ≡ kx ± iky . We can clearly see from Eq. (19) that in
the chirality basis, i.e., the eigenbasis of the noninteracting
system, the pairing (5), in fact, describes a pairing in the odd
(p-wave) channel. This can be understood as a consequence
of the nontrivial Berry phase contributions, as discussed in
Ref. [5]; see also Ref. [30] for the influence of the singularities
(topological charges) on the vorticity of Cooper pairs. On the
other hand, the anisotropic pairing (8) is a combination of
odd-channel components in the chirality basis.

We now analyze an alternative scenario for the coexistence
with the p-wave pairing represented by the pairing matrix
P(k) = (αkx + βky)σx that features two Fermi points and does
not require a mass for the coexistence with the isotropic state.
In particular, as shown in Appendix B, a special anisotropic
pairing with

P ∼ ikyσx (20)

can coexist with the isotropic pairing. Analogously, we can
discuss pairing with P(k) ∼ (γ kx + δky)σy , where γ and δ

are, in general, allowed to be complex coefficients. The ensuing
pairing is then given by

P(k) ∼ kxσy. (21)

Both these pairings are invariant up to a change of sign (up to
a gauge transformation) under the CP transformation. Each
pairing on its own features two Fermi points and is likely
energetically advantageous over the pairing in Eq. (8) that has
four Fermi points. As we explicitly show in Appendix B, these
pairings do not need a mass term to coexist with the isotropic
state. Furthermore, in the presence of a mass term, they develop
new components and may thus evolve into the rotationally
symmetric pairings of HLR fermions. These are the reasons
that make states given by Eqs. (20) or (21) likely present when
considering pairing instabilities in the half-filled LL, consistent
with the exact diagonalization results of Refs. [21,22].

Finally, we point out that the Dirac-based microscopic wave
functions of pairing instabilities have not been proposed and
tested yet. The effective field theory approach seems currently
to be the most efficient tool for treating the Dirac-based
pairing instabilities and their properties. Once the microscopic
description is provided, most importantly for the case of PH
Pfaffian, anisotropic modifications may be induced in the
manner described and discussed in Refs. [31,32].

III. DIRAC FERMIONS AND P-WAVE PAIRING

We consider the following general form of the Bogoliubov-
de Gennes Hamiltonian, motivated by the situation in a QHB
system with each of the two layers at half filling:

H =
∑

k

[�†
↑(k) �↓(−k)]

×
[
D↑(k) P(k)

P†(k) −D↓(−k)

][
�↑(k)

�
†
↓(−k)

]
, (22)
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where �↑(k) and �↓(k) are two component spinors,

�↑(k) =
[
�a↑(k)

�b↑(k)

]
, �↓(k) =

[
�b↓(k)

�a↓(k)

]
. (23)

Matrices D↑(k) and D↓(k) describe two identical Dirac
systems, D↑(k) = D↓(k) = D(k), with D(k) given by Eq. (3),
while the 2 × 2 matrixP(k) describes Cooper pairing between
the two systems ↑ and ↓.

A triplet p-wave pairing between the same spinor com-
ponents can be expressed as the following term in the
Hamiltonian:

δH =
∑

k

{[�∗
k�a↓(−k)�a↑(k)

+�∗
k�b↓(−k)�b↑(k)] + H.c.}, (24)

with the pairing function �k = �(kx ± iky). The correspond-
ing pairing matrix in the Hamiltonian (22) is

P(k) =
[

0 �k
�k 0

]
= �kσx. (25)

A rotation around the z axis by the angle φ in both subsystems
↑ and ↓ is represented by the matrix R = exp(iσzφ/2) so that

RσxR
−1 = σx cos φ − σy sin φ,

RσyR
−1 = σx sin φ + σy cos φ. (26)

It can be readily seen that R̃H (k)R̃−1 �= H (k′), where k
′
x =

kx cos φ − ky sin φ and k
′
y = kx sin φ + ky cos φ, and R̃ =

τ0 ⊗ R, with τ0 as the 2 × 2 unity matrix in the subsystem
space. Therefore, the system with the pairing matrix P(k) =
�kσx is not rotationally invariant and may lead to anisotropic
behavior. In fact, the system is gapless and supports two
anisotropic Dirac cones at k2

x = μ2/(1 − �2) = k2
0 and ky =

0. Expanding around ±k0 we obtain for �  1, E2 ≈ (1 −
2�2)(δkx)2 + �2(δky)2. We find similar results if we choose

P(k) =
[

0 �k
−�k 0

]
. (27)

Therefore the systems that we have considered by now do not
possess the quantum spin Hall effect; due to anisotropy they
are likely to be fragile under disorder and certainly cannot
represent stable phases in realistic circumstances.

On the other hand, the system with the pairing matrix

P(k) =
[
�k 0
0 −�k

]
= �kσz (28)

yields the dispersion relation of the Bogoliubons

E± =
√

(k ± μ)2 + |�k|2 (29)

and therefore resembles very closely the p-wave pairing of
ordinary fermions. We now express the pairing in the chirality
basis to obtain

�∗
k[�b↓(−k)�a↑(k) − �a↓(−k)�b↑(k)]

= −�∗
k

1

2

k+
k

[�+↓(−k)�+↑(k) − �−↓(−k)�−↑(k)].

(30)

Thus depending whether �k = �(kx + iky) or �k = �(kx −
iky), we obtain s-wave or d-wave pairing, respectively, in the
chirality basis. In this sense there is no surprise to find that
the pairing matrix (28) gives rise to a singlet state for ↑ and
↓ electrons. The choice for the pairing without the minus sign
in Eq. (28), i.e., P(k) = �kσ0, is not energetically favorable,
since pairing just renormalizes the chemical potential in that
case.

We now provide a topological characterization of pairing
in Eq. (28) through the (pseudo)spin Chern number, Cs . In
fact we find that in this case Cs = 1, if we use the low-energy
theory with Eq. (28) and �k = �(kx + iky). We calculated
the Chern number by taking the eigenvectors of the two
lower Bogoliubov bands, |v−(k)〉 and |v+(k)〉, corresponding
to the eigenvalues −E−(k) and −E+(k), respectively. We first
computed the Berry curvature of each vector,

Fσ
xy(k) = i[∂x〈vσ (k)|∂y |vσ (k)〉 − ∂y〈vσ (k)|∂x |vσ (k)〉], (31)

and then the Chern number,

Cs = 1

2π

∑
σ

∫
dkFσ

xy(k), (32)

where the sum in Eq. (32) is over the two lowest bands.
Nevertheless, as discussed in the previous paragraph, and also
due to the form of eigenvectors below, we expect that the real
winding number is 0 or 2 if a complete description is taken
into account.

To further characterize the pairing state, let us consider the
four-component vectors of the Bogoliubov bands with positive
energy, E−(k) and E+(k),

u−(k) = 1

2
√

E−

{
−

√
E− − (μ − k)

(
1,

k+
k

)
,

� · k√
E− − (μ − k)

(
−k−

k
,1

)}
, (33)

and

u+(k) = 1

2
√

E+

{√
E+ − (μ + k)

(
1, − k+

k

)
,

� · k√
E+ − (μ + k)

(
k−
k

,1

)}
, (34)

where we regrouped components to appear with common fac-
tors. In each Bogoliubov eigenstate, the first two-component
spinor, (,), is an eigenstate of the chirality operator, given
by Eq. (16), while the second one is the eigenstate that is
complex conjugated and with inverted components due to
the ordering in the Nambu-Gorkov representation, and we
fix �k = �(kx + iky). From the coefficients in front of the
fixed chirality states, we find the long-distance behavior of the
pairing function (gk ∼ vk/uk in the usual BCS problem) in
each band,

g(z) ∼ 1/|z|, (35)

where g(z) is the pairing function in the real space and z =
x + iy. Thus the pairing function has the characteristic s-wave
feature.
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In this case the lowest gap is at the Fermi surface, �E ∼ � ·
kF , in contrast with ordinary p-wave pairing where the lowest
gap is at zero momentum, and it is equal to �E ∼ kF [33].

IV. QUANTUM HALL BILAYER AND P-WAVE PAIRED
COMPOSITE FERMIONS

In light of recent advance in understanding of each (isolated
PH symmetric) half-filled quantum Hall monolayer based on
Dirac CFs it is quite natural to consider the physics of the
bilayer, especially at the intermediate distances, in the same
framework. It is important to take into account the p-wave
pairing [19] which was initially expressed in terms of ordinary
HLR CFs. The picture based on the ordinary CFs does not have
a clear answer for the lowest-lying spectrum which appears
nearly gapless (with small gap) or gapless when the system
is put on a torus, while the topological p-wave pairing of
ordinary fermions [33] would likely produce a clear gap of the
order μ. However, even if we neglect possible insufficiencies
with p-wave pairing of ordinary fermions, it is fundamentally
important to address the problem of the QHB in terms of Dirac
CFs.

First we may notice that the presence of the interlayer
Coulomb interaction, which increases with decreasing distance
between layers, spoils the PH symmetry inside a layer. We
incorporate this breaking of the PH symmetry by introducing
a mass, r , in the Dirac matricesD↑(k) andD↓(k), with opposite
signs in each layer,

D↑(k) = σxkx + σyky − μ + rσz = D↓(k). (36)

Second, the components of the spinors in different layers are
inverted with respect to each other, and thus the mass term of
the opposite sign in the two layers enters with the same sign in
the matrices D↑(k) and D↓(k). The dispersion relation in this
case acquires the form

E± =
√

(
√

k2 + r2 ± μ)2 + |�k|2. (37)

The masses in the two layers are of the opposite sign, due
to the requirement of the PH symmetry of the whole system.
Namely, under the transformation in each layer masses change
sign [5], and if we, in addition, exchange the layer index we
recover the original Hamiltonian.

There are two important things to notice regarding the
evolution of the CF state with the increasing mass r .

(a) The minimum of the lower Bogoliubov band shifts
from a finite value at k2

F = μ2/(1 + �2)2 − r2 to k = 0,
and this transition—without closing of the gap—occurs at
r = μ/(1 + �2).

(b) Because k2
F = μ2/(1 + �2)2 − r2, the Fermi momen-

tum decreases with the mass, and therefore the number of CFs
reduces as the distance between the layers decreases.

Therefore the most important consequence of the assumed
Dirac description of individual layers at large distances is
that the number of CFs decreases as the distance between the
layers decreases. For large distances we may assume that the
pairing is weak, the order parameter is small, and the pairing
cannot be detected then due to finite temperature effects, for
instance. In any case we may choose �k = �(kx + iky), so
that there is no Hall drag (pseudospin Hall effect) at large

distances, but it develops gradually as the interlayer distance
decreases and reaches the quantized value in agreement with
experiments [34]. This choice of the order parameter agrees
with Refs. [19,20]. For smaller distances (r ∼ μ but r < μ)
we may assume that the upper Bogoliubov band is pushed
to high energies and an effective description in terms of
quadratically dispersing CFs paired via weak p-wave pairing
emerges, implying an algebraically decaying Cooper pair
wave function [33]. The description of the system within this
scenario then implies that at intermediate distances a CB-CF
mixture accounts for the total number of electrons [25,19]. As a
consequence, composite bosons cannot have long-range order
and likely have critical, algebraic pairwise correlations [20].

If at intermediate distances solely a collection of p-wave
paired composite fermions, quadratically dispersing as in
Ref. [33], were present, signals of a topological phase with
a large gap, �E ∼ μ, would appear. Instead, as detected on a
torus in Ref. [20], there is an abundance of various low-energy
excitations. This is in accordance with the above physical
picture that implies a small portion of CFs at intermediate
distances in a topological phase with a small gap, �E ∼
μ − r , and μ � r .

As in the single-layer case, an anisotropic gapless solution,
Eq. (25), is possible also for a bilayer. In the presence of
the mass term ∼r and in the case of the pairing (25) we
obtain two anisotropic Dirac cones at k2

x = μ2/(1 − �2) =
k2

0 and ky = 0. Expanding around ±k0 with r  μ we
obtain E2 ≈ (1 − 2�2 − r2

μ2 )(δkx)2 + �2(δky)2. The absence
of a gap suggests a nontopological behavior. On the other
hand, topological signatures were detected at intermediate
distances in Ref. [20], in agreement with the characterization
of isotropic weak p-wave pairing. Thus the presence of the
isotropic pairing, which may be accompanied by anisotropic
ones, seems crucial for the explanation of the properties at
intermediate distances.

V. DISCUSSION AND CONCLUSIONS

The existence of anisotropic candidates for BCS paired
states, in the case of monolayers (Sec. II) and bilayers (Secs. III
and IV), is in agreement with the results in Ref. [21]. In that
paper, the physics of the PH symmetric case of a half-filled
second Landau level is studied by exact diagonalization on
a torus. The main result of this numerical study is that
the paired quantum Hall state in that case, as well as the
closely related (by antisymmetrization) bilayer state, made
of two kinds of electrons that each occupy a quarter of the
available single-particle states in the second Landau level,
are susceptible to anisotropic instabilities. By using the Dirac
description of the dipole nature of CFs, we can identify the
paired quantum Hall state of Ref. [21] with PH Pfaffian
and its closeness to anisotropy as a sign of the relevance of
anisotropic solutions discussed in Sec. II. On the other hand,
the relevance of the anisotropy for the bilayer state at the
effective ν = 1/2 = 1/4 + 1/4 total filling factor [21] may be
again due to the composite, dipole nature of the CFs at filling
factor ν = 1/4. The Dirac description could be the easiest way
to capture the dipole nature of a CF, despite the doubling of
the fermionic degrees of freedom. In other words, we need
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particles and holes to describe dipoles [35], and the Dirac
formalism could be a way to achieve that even in the cases when
CFs have a Berry phase equal to π/2 (at quarter filling), with
appropriate mass and chemical potential. If the Diracness is
the cause of the anisotropic behavior, we can conclude that the
Dirac formalism is equally applicable at ν = 1/2 and ν = 1/4.
In this sense “nothing is special at ν = 1/2” (Ref. [14]) since
only PH symmetry singles out the Dirac description. The PH
symmetry is sufficient but not necessary to cause the Diracness
at the filling equal to one half.

If we restrict our discussion only to the case when CFs
possess a Berry phase equal to π , and thus Dirac formalism
seems appropriate for the bilayer case at total filling factor
1, we demonstrated that the description by Dirac fermions
is justified due to a global appearance and characterization
of low-energy spectrum from the exact diagonalization on a
torus [20]. In fact, the Dirac CF in the bilayer changes its
Berry phase from value π at large distances, to a value of ∼0,
at small distances (HLR fermion), while retaining its fermionic
character. The second important consequence, due to the use of
the Dirac formalism, is that the number of CFs is decreasing
with the decreasing distance between the layers. This is in
agreement with the necessity to use CF-CB mixed states to
describe the bilayer at intermediate distances [19].

Thus we can conclude that the Dirac formalism can capture
the basic phenomenology of the bilayer at ν = 1 and the nature
of the gapped paired states in the single-layer quantum Hall
systems with half-filled LLs. We therefore expect it to become
an indispensable tool for further understanding of the paired
states in this context.

Note added in proof. Recently, Ref. [26] appeared. It is a
study of possible pairings, based on the Dirac formalism, and
their realization in the case of a single layer with a half-filled
LL. Wang and Chakravarty [26] considered pairings in the
low-energy subspace of the Dirac spectrum in the context of
a specific pairing mechanism. In our work the low-energy
projection is in place after the consideration of the pairing
instabilities within the Dirac formalism. In this way we are able
to account for the anisotropic pairings, with the consequences
consistent with theoretical and experimental findings, as we
already emphasized.

ACKNOWLEDGMENTS

We would like to thank S. Simon for a discussion. The
work was supported by the Ministry of Education, Science,
and Technological Development of the Republic of Serbia
under Projects No. ON171017 and No. ON171031.

APPENDIX A: COEXISTENCE OF THE C P INVARIANT
P-WAVE AND S-WAVE PAIRINGS:

MEAN-FIELD ANALYSIS

The lower Bogoliubov band of the quadratic Hamiltonian,
Eqs. (1)–(4) with the additional pairing in Eq. (8) with α = �

and β = +i�, and the mass term r�†(k)σ3�(k) is

E2 = μ2 + �2
s + r2 + k2 + �2k2

− 2
√

μ2(k2 + r2) + [
�

(
k2
x − k2

y

) + �sr
]2

.

We analyze the pairing instabilities in the low-energy theory
by introducing the cutoff �, so that relevant momenta from the
interval around Fermi energy are defined by �, k ∈ (μ − �,

μ + �). Also we assume that μ�  �s  �  μ and, at
zero temperature, estimate the free energy when both isotropic
(�s) and anisotropic (�) pairings are present. From the BCS
mean-field decoupling of effective attractive interactions we
obtain terms proportional to the order parameters �2 and �2

s

(condensate energy) besides the contribution arising from the
quasiparticles in the lower Bogoliubov band. (The upper band
is assumed effectively to be a constant due to the constraint on
the momenta.) The free-energy density F/A then reads

F
A

= g1�
2
s + g2�

2 − μ

4π
�2 − μ

4π

{(
1 + ln

4�2

�2
s

)
M

}
,

(A1)

where

M = �2
s + �2μ2

4
− r

2
�s�, (A2)

with g1 and g2 as positive coupling constants which drive
the instabilities in the respective channels. Here, we assume
r  �s

�
(μ�).

We derive Eq. (A1) with Eq. (A2) by expanding the square
root for large μ and then performing the integral over k

(i.e., radial component of vector k). Before the final angular
integration, we further simplify the result of the k integration
by assuming the stated ordering of scales.

In the BCS weak-coupling limit, by minimizing the free
energy, i.e., the total ground state energy, we obtain

�s ≈ 2� exp

{
−2πg1

μ

}
,

� ≈ rg̃1

g̃1μ2 − 4g2
�s, (A3)

where g̃1 = μ

4π
+ g1. Thus we can conclude that for μ� 

�s  �  μ, and in the presence of the small mass r , the
isotropic instability can be accompanied by the anisotropic
pairing. This is due to the cross term in F with �s and �—see
Eqs. (A2) and (A1). This may also be understood from the fact
that the matrices corresponding to the isotropic and anisotropic
pairings anticommute.

APPENDIX B: COEXISTENCE OF THE C P ASYMMETRIC
P-WAVE AND S-WAVE PAIRINGS:

MEAN-FIELD ANALYSIS

Here we discuss a pairing defined by

P(k) =
[

0 αkx + βky

αkx + βky 0

]
= (αkx + βky)σx,

(B1)
or in terms of the spinors, as a part of the complete
Hamiltonian,∑

k

(αkx + βky){�a(k)�a(−k) + �b(k)�b(−k)} + H.c.,

(B2)
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where α and β are, in general, allowed to be complex
coefficients.

The lower Bogoliubov band of the quadratic Hamiltonian,
Eqs. (1)–(4) with the additional pairing in Eq. (B2), is

E2 = μ2 + �2
s + k2

(
1 + f 2

1 + f 2
2

)
− 2k

√
μ2 + �2

s f
2
2 + k2

x

(
f 2

1 + f 2
2

) − 2�sf2
ky

k
μ.

Here, αkx + βky = k(f1 + if2), where fi = αi cos φ +
βi sin φ [i = 1 and 2; α1, α2, β1, and β2 are real; and φ is
the polar angle of the momentum vector].

As in Appendix A, here we also analyze the pairing
instabilities in the low-energy theory by introducing a cutoff
�, so that relevant momenta from the interval around the Fermi
energy are defined by �, k ∈ (μ − �,μ + �). Also we assume
that μω  �s  �  μ, where ω can be α1, α2, β1, or β2,
and, at zero temperature, estimate the free energy when both
isotropic (�s) and anisotropic (f1,f2) pairings are present.
From the BCS mean-field decoupling of effective attractive
interactions we have terms proportional to f 2

1 and f 2
2 (averaged

over angles) and �2
s next to the contribution from the lower

Bogoliubov band. (The upper band is assumed effectively to
be a constant due to the constraint on the momenta.) The
free-energy density F/A then reads

F
A

= g1�
2
s + g2

(
α2

1 + α2
2 + β2

1 + β2
2

)
− 1

2

1

(2π )2

{
μ �2 2π +

(
1 + ln

4�2

�2
s

)
× πμM

}
,

(B3)

where

M = �2
s + 1

2�sβ2μ + 1
4

(
α2

1 + α2
2 + 3β2

1 + 3β2
2

)
μ2, (B4)

with g1 and g2 as positive coupling constants which drive the
instabilities in the respective channels. The last contribution of
the quadratic order in the anisotropic parameters, proportional
to

∑
i(α

2
i + 3β2

i ), was derived assuming �  β2μ

�s
μ.

To find this result for the free-energy density we applied
the same set of approximations as in Appendix A. We derived
Eq. (B3) with Eq. (B4) by expanding the value of the square

root for large μ and then performing the integral over k. Before
the final angular integration, we further simplified the result
of the integration over k by assuming the stated ordering of
scales.

In the BCS weak-coupling limit, by minimizing the free
energy, i.e., the total ground state energy, assuming �s � ωμ,
where ω can be α1, α2, β1, or β2, we obtain

�s ≈ 2� exp

{
−4πg1

μ

}
,

β2 ≈ μ2

32π

1

g2
�s

(
1 + 8πg1

μ

)
,

α1 = α2 = β1 = 0. (B5)

Thus we can conclude that for cutoff �, μβ2  �s  �  μ,
and in the presence of the isotropic instability �s we can expect
the presence of the anisotropic pairing with the order parameter
∼iβ2ky . This is due to the cross term inF with �s and β2—see
Eqs. (B4) and (B3).

In the presence of the mass r the dispersion of the
Bogoliubons is modified as

E2 = μ2 + r2 + �2
s + k2

(
1 + f 2

1 + f 2
2

)
− 2

√
μ2k2 + �2

s f
2
2 k2 + k2

x

(
f 2

1 + f 2
2

)
k2 + R,

where

R = r2
(
�2

s + μ2
) + 2�sk(−kyf2μ + kxf1r). (B6)

We can notice that, besides the cross term ∼�sf2ky under the
square root in the above equation, we have, in the presence of
the mass r , the term ∼�sf1kx . By performing a mean-field
analysis similar to that performed previously, we find that
this term will lead to the development of the real component
proportional to kx in the anisotropic pairing, αkx + βky =
α1kx + iβ2ky , with α1/β2 ∼ r/μ for r  μ. Eventually, for
r � μ, we expect that �s = 0, and we expect the presence of
the rotationally symmetric p wave, αkx + βky ∼ (kx ± iky),
of one-component quadratically dispersing HLR composite
fermions. Indeed the assumption that �s = 0 and the presence
of the p wave are compatible with r < μ, and there is no
closing of the gap.

[1] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[2] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312

(1993).
[3] N. Read, Semicond. Sci. Technol. 9, 1859 (1994); Phys. Rev. B

58, 16262 (1998).
[4] C. Wang and T. Senthil, Phys. Rev. B 93, 085110 (2016).
[5] D. T. Son, Phys. Rev. X 5, 031027 (2015).
[6] S. D. Geraedts, Michael P. Zaletel, R. S. K. Mong, M. A.

Metlitski, A. Vishwanath, and O. I. Motrunich, Science 352,
197 (2016).

[7] A. C. Potter, M. Serbyn, and A. Vishwanath, Phys. Rev. X 6,
031026 (2016).

[8] G. Murthy and R. Shankar, Phys. Rev. B 93, 085405 (2016).
[9] S. Kachru, M. Mulligan, G. Torroba, and H. Wang, Phys. Rev.

B 92, 235105 (2015).

[10] M. Mulligan, S. Raghu, and M. P. A. Fisher, Phys. Rev. B 94,
075101 (2016).
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