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We discuss monolayer and bilayer quantum Hall systems in which each layer is a half-filled Landau level
(LL) system. In the mean field approximation of the Son’s formalism, there is a common pairing structure that
underlines the possibilities for paired ground states in both systems. We argue that the particle-hole (PH) Pfaffian
state in the (particle-hole symmetric) half-filled LL of a monolayer, and analogous state in the PH symmetric
bilayer (in which each layer is half-filled LL) can be considered as critical states, i.e., states that cannot describe
a phase under PH symmetry. We point out that the inclusion of a PH symmetry breaking (like LL mixing) may
stabilize the PH Pfaffian in a monolayer. In the bilayer case, in numerical experiments on a sphere, by choosing
the PH symmetric shift, we can stabilize the interlayer correlated (111) excitonic state or critical state, for any
distance between the layers, but in general, with no bias, the evolution of the bilayer includes other phases.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is a strongly
correlated phenomenon in two dimensions (2D), in which a
system of electrons has Hall conductance that takes fractional
values for intervals of magnetic field strength or system
density. The effect can be explained by studying the system
at a particular filling factor, i.e., fraction associated with the
effect. The filling factor is the ratio between the number
of electrons and the number of available flux quanta in a
Landau level (LL) system. This commensuration, associated
with an effective projection to a fixed LL, leads to exotic
phenomena, which include pairing of electrons in the presence
of repulsive interactions. Thus (classically speaking) phase
space constraints may lead to a BCS pairing physics (without
superconductivity). The prime example, introduced in Ref. [1],
of this phenomenon is in the FQHE system of spinless
electrons at filling fraction 1/2, with a special (BCS) pairing
function that is called Pfaffian. The Pfaffian construction
supports quasiparticles with non-Abelian statistics and may
find application in future quantum computers [2].

At least theoretically, we may envision a situation when the
description of a FQHE system is confined to a fixed LL (i.e.,
all available states are in a fixed LL). At the exact filling of a
fixed LL equal to 1/2, we have a symmetry between particles
and holes, i.e., the PH symmetry. The Pfaffian construction
as well its PH conjugate counterpart, anti-Pfaffian [3,4], do
not possess this symmetry. The question that may be asked
is whether a Pfaffian-like construction that respects the PH
symmetry, so-called PH Pfaffian, exists in a fixed LL. Recently,
a theoretical proposal [5] was put forward concerning a
nonquantized (nonpaired) FQHE state, the Fermi-liquid-like
state of dressed electrons, i.e., composite fermions (CFs) at
filling factor 1/2 [6]. According to the proposal, the system
at filling factor 1/2, that is also PH symmetric, behaves as
a system of (relativistic two-component) Dirac CFs at finite
chemical potential (fixed by the strength of external magnetic
field). With this new insight into the nature of the (nonpaired)
metallic state of CFs at filling 1/2 (PH-symmetric half-filled
LL) came a proposal for a PH Pfaffian state (a paired state of
Dirac CFs) [5].

Interestingly enough, numerical experiments [7–11], at a
half-filled LL, testify in favor of superpositions of Pfafian and
anti-Pfaffian (if no spontaneous breaking of the PH symmetry
occurs), in the PH symmetric case. By taking into account
previous model wave function ansatzes for PH Pfaffian [12,13],
and using the mean field treatment of the Son’s formalism [5],
we argue that in the strict PH symmetric circumstances, PH
Pfaffian is a critical state and cannot describe a stable FQHE
phase. But if we consider, for example, LL mixing and break
PH symmetry by a mass term in the Son’s formalism, we can
stabilize PH Pfaffian as a topological phase.

The second system that we will consider is the bilayer
at the total filling one; i.e., each layer is represented by
a half-filled (lowest) LL in a PH symmetric setup. When
the distance between the layers, d, is small, d � lB ; lB is
the magnetic length and the inter- and intracorrelations are
about the same. At this special filling factor, they lead to an
exceptional intercorrelated state [14,15]: This state supports a
counterflow superfluidity and a Goldstone mode [16]. On the
other hand, at d → ∞, we have two decoupled layers, where
each one represents the Fermi-liquid-like state of (Dirac) CFs
in the lowest LL.

The evolution of the bilayer with changing distance
is the subject of many analytical and numerical [17–39]
investigations. The pairing physics, described in Ref. [37],
that characterizes the pairing of slowly nucleated CFs in
the intercorrelated superfluid state with increasing distance
is an exceptionally good description of the superfluid phase at
arbitrary d � lB . On the other hand, the fate of the superfluid
phase at larger d is not certain.

We point out that the monolayer and bilayer system
possesses a common pairing structure in the Son’s formalism
and that the pairing of Ref. [37] of two Fermi seas of CFs,
as the natural outcome of the evolution of the superfluid
state, is analogous to the PH Pfaffian pairing in the case of
monolayer. Again we can argue that the opposite layer CF
pairing wave function represents a critical state, which, in the
scope of a generalized Son’s description, smoothly connects to
an intermediate state that does not possess a Goldstone mode
but has an algebraic off-diagonal long-range order (ODLRO).
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We discuss in the following section, Sec. II, the case of
monolayer and then in Sec. III the case of bilayer quantum
Hall system. Conclusions are in Sec. IV.

II. MONOLAYER

We begin by considering a single Dirac fermion which was
proposed to effectively describe half-filled LL of electrons
[5], with s-wave pairing between spinor components. We will
neglect the presence of gauge fields in the following mean
field treatment. The s-wave pairing suggested in Ref. [5] can
be expressed by the Bogoliubov–de Gennes Hamiltonian in
the Nambu-Gorkov notation,

H = 1

2

∑
k

[�†(k)�̃(−k)]

×
[
D(k) P(k)
P†(k) −D(−k)

][
�(k)

�̃†(−k)

]
, (1)

where �(k) denotes a two-component spinor with
momentum k,

�(k) =
[
�a(k)
�b(k)

]
, �̃(k) =

[
�b(k)
�a(k)

]
, (2)

and

D(k) =
[ −μ kx − iky

kx + iky −μ

]
= −μσ0 + kxσx + kyσy,

(3)
and 2 × 2 matrix P(k) describes Cooper pairing between a

and b spinor components

P(k) =
[
�s 0
0 −�s

]
= �sσz, (4)

or more explicitly

δH =
∑

k

{−�s�a(k)�b(−k) + H.c.}. (5)

Here, σ0 is the 2 × 2 identity matrix, while σx and σy are
the standard Pauli matrices. Throughout the paper, we set
h̄ = 1, and the Fermi velocity, vF = 1. μ denotes a chemical
potential equal to μ = √

B = kF , where B and kF are the
external magnetic field and Fermi vector, respectively. The
dispersion of Bogoliubons has the rotationally symmetric
form, E2

k = (k ± μ)2 + �2
s , where k ≡ |k|. This construction

is considered in the literature as a basis for a PH symmetric
Pfaffian system.

However, a different type of pairing is also possible with
the pairing matrix

P(k) =
[

0 αkx

−αkx 0

]
, (6)

or more explicitly

δH′ =
∑

k

αkx{�†
a(k)�†

a(−k) − �
†
b(k)�†

b(−k)} + H.c.,

(7)

where α is a constant, or

P(k) =
[

0 βky

βky 0

]
, (8)

or more explicitly

δH′ =
∑

k

βky{�†
a(k)�†

a(−k) + �
†
b(k)�†

b(−k)} + H.c., (9)

where β is a constant. These two pairing possibilities, which
we may associate with p-wave or triplet pairing among spinor
components, by themselves make anisotropic gapless systems
with two Dirac cones at two Fermi points at (kx = 0,ky = ±μ)
and (kx = ±μ,ky = 0), respectively. (Other p-wave states that
respect PH symmetry are possible, as explained in Ref. [40],
but they would have more Fermi points and thus are not likely
candidates with respect to the gain in ground-state energy due
to pairing.)

Note that the pairings in (5), (7), and (9) are invariant under
the effective particle-hole transformations (of the underlying
electron system), as explained in Ref. [5], up to a gauge
transformation.

To further understand the pairings, we now consider the
chirality operator �σ ·�k

k
and its eigenstates

|+〉 = 1√
2

[
1
k+
k

]
, |−〉 = 1√

2

[−1
k+
k

]
. (10)

We can introduce Dirac operators with a definite chirality

�+(k) = 1√
2

[
�a(k) + k−

k
�b(k)

]
(11)

and

�−(k) = 1√
2

[
− �a(k) + k−

k
�b(k)

]
(12)

to find that

�a(k)�b(−k) = −1

2

k+
k

[�+(k)�+(−k) + �−(k)�−(−k)],

(13)

with k± ≡ kx ± iky . We can clearly see from Eq. (13) that in
the chirality basis, i.e., the eigenbasis of the noninteracting
system, the pairing (5), in fact describes a pairing in the odd
(p-wave) channel, with p+, as a characteristic chirality of the
PH Pfaffian.

On the other hand, model wave function constructions for
the PH Pfaffian in the lowest LL (LLL) subspace may be
expressed in different ways, but they always include Pfaffian
pairing function,

Pf

{
1

(z∗
i − z∗

j )

}
∼

∑
P

sgn P

N/2∏
i=1

1

(z∗
P (2i−1) − z∗

P (2i))
, (14)

where the sum is over all permutations (P ) of N objects, and we
made an assumption that the uniform external magnetic field
is defined as �B = −B êz,B > 0. Here zi denotes the complex
(2D) coordinate of the ith electron, i = 1, . . . ,N . Thus Cooper
pair wave function, i.e., pairing function, g(rij ) ∼ 1

(z∗
i −z∗

j ) ,

decays with distance rij = |zi − zj |, as one would expect in
a BCS theory. (The complex conjugation of z’s is due to the
opposite chirality, built in PH Pfaffian state, with respect to
the direction defined by the external magnetic field.) The form
of the pairing function, g(rij ) ∼ 1

(z∗
i −z∗

j ) , is expected not just

because of the usual pairing behavior but, if we use it as a part
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of a negative flux insertion [12], as shown in Ref. [13], we
can easily analytically generate and reproduce the edge states
expected of the PH Pfaffian QH phase: charge edge mode
plus Majorana neutral edge mode in the opposite direction.
This assertion is true even when we consider the necessary
projection to the LLL of the model wave function with the
antiholomorphic part described by the function in (14). In the
long-distance limit, i.e., when k � 1/lB , where lB = 1/

√
B

is the magnetic length, we may neglect the projection due to
effectively commuting variables, z and z∗, in LLL.

Based on the proceeding arguments for the form of the
pairing wave function, we expect that in the Son’s formalism
we should consider extended s-wave pairing, i.e., limk→0 �s ∼
|k| ≡ k. Namely, the effective description of the Hamiltonian,
Eqs. (1)–(5), in the chirality basis, (11) and (12), is

H =
∑

k

(k − μ)�†
+(k)�+(k)

+
∑

k

(−k − μ)�†
−(k)�−(k)

+
∑

k

1

2

k+
k

{�s�+(k)�+(−k) + H.c.}

+
∑

k

1

2

k+
k

{�s�−(k)�−(−k) + H.c.}. (15)

Taking limk→0 �s ∼ |k| ≡ k, the positive chirality (�+(k))
part (as well the negative chirality part) constitutes the usual
p-wave description as given in Ref. [42], and this ensures the
weak pairing with g(z) ∼ 1

z
at long distances (|z| → ∞), in

the physically relevant positive chirality sector. Namely, in
our case, compared with the notation of Ref. [42], the Fourier
transform of the pairing function, g(r), can be expressed as

gk = vk

uk
= −(Ek − ξk)

�k
, (16)

where ξk = k − μ, �k = k+
k

�s , and E2
k = ξ 2

k + �2
k. The min-

imum of Ek is at the Fermi momentum, k = μ, but we are inter-
ested in the long-distance behavior with momenta, k ∼ 0. Thus
limk→0 gk ∼ 1/k+ and limr→∞ gr ∼ 1/z, if limk→0 �s ∼ k.
Here we should note that in Son’s theory the natural choice
for the direction of the magnetic field is �B = B êz,B > 0 (or
the choice of the coordinate system). This is natural because
the density of the positive-chirality particles is proportional to
the flux density, �̄γ0� = �∂ × �A = B/(2π ) > 0 (see Eq. (24)
in Ref. [41]). Thus, we would have in the Son’s formalism
g(z) ∼ 1

z
instead of the usual g(z) ∼ 1

z∗ due to the different
convention for the direction of the external field.

On the other hand, taking limk→0 �s to be a constant would
lead again to the pairing at the Fermi surface (circle) and the
Cooper pair wave function would behave as g(z) ∼ 1

z|z| at long
distances. This certainly would not lead to a nice expression
for a quantum Hall wave function, but more importantly,
we do not have analytical means to derive the edge states
(i.e., physically motivated low-energy states that constitute
subspace with charge, chiral boson and Majorana mode) that
we can associate with the PH Paffian QH state, in this case. The
quantum Hall state consists of (entangled) neutral (pairing) and
charge parts, and the underlying topological order has to be

claimed for that construct. We note that this long-distance,
universal pairing behavior coincides with the behavior of the
critical state between strong and weak p-wave pairing, as
demonstrated in Ref. [42].

But the analysis of edge states in Ref. [13] based on
the construction in (14) still does not guarantee that in the
LLL there exists a model interaction for which these edge
states would make a zero-energy subspace (or an interaction
that would delineate this subspace with respect to higher
energy bulk excitations) and stabilize a PH Pfaffian phase.
In connection with this, we showed that, under very natural
assumptions for the constructions of model wave functions,
we can conclude that the order parameter for PH Pfaffian
is nonanalytic in the neighborhood of the �k = 0 expansion
point (if we are in the two-component Dirac formalism).
Thus a gradient (Landau-Ginzburg) expansion around �k = 0
point is not well defined. This implies that because the Dirac
spinor description is at the foundation of the PH symmetric
description, PH Pfaffian, in the PH symmetric half-filled LL,
is a critical gapless state and does not represent a stable
phase of topological matter. This is consistent with numerical
[8–11] and analytical work [43]. The numerical experiments
of these references are consistent with a Schroedinger’s cat
superposition of Pfaffian and anti-Pfaffian, in the presence of
PH symmetry, but we find that a careful assessment of the
role of PH Pfaffian in the critical region between Pfaffian and
anti-Pfaffian phases [9] is still missing.

We may still pose the question regarding the role of triplet
pairings in (7) and (9). Expressed in the chirality basis,
the superpositions in (7) and (9) both contain a p-wave
which chirality corresponds to the PH Pfaffian, and symmetric
superposition of Pfaffian and anti-Pfaffian. Namely,

kx[�a(k)�a(−k) − �b(k)�b(−k)]

= 1

4

[
2k+ + k− + (k+)3

|k|2
]
�+(k)�+(−k) + · · · (17)

and

ky(�a(k)�a(−k) + �b(k)�b(−k))

= 1

4i

[
2k+ − k− − (k+)3

|k|2
]
�+(k)�+(−k) + · · · , (18)

where, as before, �+(k) denote positive-energy (particle)
solutions, and missing terms have negative-energy (hole, i.e.,
higher in energy) contributions. The symmetric superposition
is present in this basis as k− + (k+)3

|k|2 , i.e., as a superposition

of Pfaffian (k−) and anti-Pfaffian ( (k+)3

|k|2 ), while k+ represents a
PH Pfaffian component.

If we consider a BdG Hamiltonian with both s-wave and
p-wave pairing present, in the explicitly symmetric PH case,
we have the following expression for the low-energy projected
part of the pairing Hamiltonian,{
−�s

2

k+
k

+ α

8

[
(2k+ + k− + (k+)3

|k|2
]}

�+(k)�+(−k) + · · · ,

(19)

if the p-wave is described by (7), and a similar expres-
sion we would have if the p-wave is given by (9). The
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analytical random phase approximation (RPA) considerations
in Ref. [43] preclude any pairing in the k+ channel, and thus,
with the assumed limk→0 �s ∼ k behavior, we may envision
a cancellation of the singlet and triplet spinor component
pairing, which would leave the anisotropic combinations in
Cooper pairing, k− ± (k+)3

|k|2 , as viable pairing instabilities.
The numerical work is not equivocal at this point: While
the Refs. [8–11] suggest that superpositions of Pfaffian and
anti-Pfaffian states are relevant in the half-filled LL, Ref. [44]
suggests that maybe the doubling of the expected ground-state
degeneracy, equal to 12 = 2 × 6, is not due to the symmetric
and antisymmetric superpositions of Pfaffian and anti-Pfaffian
states, but due to the two possibilities for anisotropic Cooper
pairs. Also Ref. [45] argues for an anisotropic superposition
of Pfaffian and anti-Pfaffian. A small, parallel-to-the-plane
magnetic field may induce this scenario as demonstrated
experimentally in Refs. [46,47].

Without an anisotropic agent, it seems that the higher
angular momentum expansion of the possible pairings insta-
bilities in the scope of the Son’s formalism with Cooper pair
anisotropy scenario is not the likely outcome (because of the
inclusion of higher momenta in the underlying Lagrangian
density expansion), consistent with Refs. [9–11]. Nevertheless,
the triplet pairings assume a major role when we spoil PH
symmetry by adding a mass term to the Dirac CF description of
a half-filled LL. The mass term acts as some kind of a Zeeman
energy term that will favor one or the other spinor component.
We expect, based on (7) and (9), depending on the sign of
the mass term, either PH Pfaffian or Pfaffian to constitute the
ground state. In Appendix B of Ref. [40], such a scenario is
described assuming, in addition to (7) [or (9], the presence
of the usual s-wave pairing, i.e., for which limk→0 �s is a
constant, and the PH symmetry-breaking mass term. Thus, the
presence of PH Pfaffian (paradoxically) for sufficiently strong
PH breaking, which is consistent with experiments [48] (see
also Ref. [49]), can be explained on the basis of the Dirac CF
formalism.

III. BILAYER

The bilayer system that we will discuss consists of two
half-filled LL layers at distance d between layers. The
most important feature of this system, a correlated interlayer
excitonic phase at small distances between layers, d � lB ,
was predicted and discovered experimentally [16]. Due to
interlayer correlations and underlying bosonic ODLRO, the
system at small distances (d � lB) possesses a Goldstone mode
[14,15].

Our understanding of the system at small d is very much
based on a model wave function, so-called (111) state,∏

(zi↑ − zj↑)
∏

(zk↓ − zl↓)
∏

(zm↑ − zn↓), (20)

for the intercorrelated state. We omitted Gaussian factors, and
z↑’s and z↓’s represent complex coordinates of two kinds
of electrons in 2D plane. For decoupled layers, at d → ∞,
in the LLL, we have two decoupled CF Fermi-liquid-like
condensates, which may be described by the Son’s formalism.
The model wave function is

�FL(r↑)
∏

(zi↑ − zj↑)2�FL(r↓)
∏

(zk↓ − zl↓)2, (21)

i.e., a product of two (unprojected to the LLL) Rezayi-Read
wave functions [50]. We again omitted Gaussian factors, and
�FL(rσ ), σ =↑ , ↓ denote two Fermi seas: Slater determinants
of plane (free) waves. Each Rezayi-Read wave function, when
projected to the LLL, describes the half-filled systems [7].

These two extremes, described by Eqs. (20) and (21), were
used in Ref. [29] to suggest a mixed-state representation, with
both inter- (20) and intra- (21) correlations as good interpolat-
ing ansatz for the system at finite distances. Building on this
proposal, an understanding of the evolution of the excitonic
state with distance was achieved in Ref. [37]. Namely, the
part in the mixed-state proposal with intracorrelations and
natural CF representations has to be modified by a p-wave
pairing among different layer CFs, in order to extremely
well describe the QH superfluid, i.e., excitonic state, at finite
distance, d � lB . The necessity for the special chirality p-wave
pairing was also recognized in Ref. [51] as a way to describe
superfluid evolution (disordering) in order to capture the most
basic disordering due to the zero-point motion of the system.

Following the proposal of Ref. [37], in Ref. [38], a
model wave function as a natural outcome of the superfluid
disordering was proposed:

�c =
∏

(zi↑ − zj↑)2 ×
∏

(zk↓ − zl↓)2

× Det

{
1

(z∗
m↑ − z∗

n↓)

}
, (22)

for long-distance behavior. Here

Det

{
1

(z∗
m↑ − z∗

n↓)

}
∼

∑
σ

sgn σ

N/2∏
i=1

1

(z∗
i↑ − z∗

σ (i)↓)
, (23)

where the sum is over all permutations (σ ) of N/2 objects.
Thus, at the end of the disordering, all (different-layer) CFs
are paired in the way of p wave that is of the opposite chirality
with respect to the one induced by the external magnetic field
[37,51]. Analogously to the previously discussed PH Pfaffian
model wave function, the right chirality, |z|

z∗ , was combined
with a natural decay ( 1

|z| ) function.
We may use the Cauchy identity,

Det

{
1

(zm↑ − zn↓)

}
∼

∏
(zi↑ − zj↑) × ∏

(zp↓ − zq↓)∏
(zk↑ − zl↓)

,

(24)

to rewrite the wave function in the following form:

�c =
∏
i<j

(zm − zn)

×
∏ |zi↑ − zj↑|2 × ∏ |zp↓ − zq↓|2∏ |zk↑ − zl↓|2 . (25)

By looking at this model wave function and assuming that
the system is in ν = 1 integer quantum Hall effect (IQHE)
phase (for charge degrees of freedom), the most natural
quasiparticle representation seems to be composite boson
(CB) representation, where CBs, due to the presence of the
additional factor next to the (111) state are disordered bosons:
bosons interacting with long-distance interactions or gauge
fields [38].
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CB description is not as well founded as the CF description,
and at this point the intricate picture of bosonic disordering is
not complete, but it may be used to motivate the appearance
of various low-lying states in the intermediate region [38]. It
is not clear whether the wave function in Eq. (25) is a relevant
critical state (model wave function for an intermediate phase
or a transition point), or a function in the universality class of
the (111) state [31]. (The latter would imply the same (111)
phase for any finite distance between the layers, if the p-wave
pairing between different layer CFs is present.) We expect,
based also on the preceding discussion concerning monolayer
PH Pfaffian, that due to the nonanalytic behavior around �k = 0
in the Son’s formulation the state in Eq. (25) is a critical state
if the underlying Hamiltonian is strictly PH symmetric. To
further explain the analogy, we recapitulate the CF pairing
bilayer physics using the Son’s formalism.

To understand the relevant pairings in the quantum Hall
bilayer at the mean field level, we can go back to the
Bogoliubov–de Genes Hamiltonian in the monolayer case,
Eqs. (1) and (3), and assign layer indexes, ↑ and ↓, by the
following substitutions:

�(k) =
[
�a(k)
�b(k)

]
→

[
�a↑(k)
�b↑(k)

]
,

(26)

�̃(k) =
[
�b(k)
�a(k)

]
→

[
�b↓(k)
�a↓(k)

]
.

The ensuing pairing contributions, with respect to pairing
matrices in (4), (6), and (8), in the monolayer case, are

δHb =
∑

k

{�b
s�

†
a↑(k)�†

b↓(−k) + H.c.} (27)

and

δH′
b ∼

∑
k

kx(y){�†
a↑(k)�†

a↓(−k) ∓ �
†
b↑(k)�†

b↓(−k)} + H.c.

(28)

These are triplet pairings with respect to the layer index. The
s-wave pairing in (27) describes the antichiral channel (p)
wave in the opposite sense with respect to the induced chirality
of the external magnetic field (perpendicular to the plane). An
analysis similar to the one in the case of monolayer leads to
the conclusion that the description of the CF state in Eq. (22)
in the Son’s formalism has to assume limk→0 �b

s ∼ |�k| ≡ k,
and this describes a critical state.

The most recent numerical results in Ref. [39] for the
intermediate region motivate the following mixed-state con-
struction as described in Ref. [30] (�2 in the notation of the
same reference):

A
{∏

(zi↑ − zj↑)
∏

(zk↓ − zl↓)
∏

(zm↑ − zn↓)

×
∏

(zr↑ − ws↑)2
∏

(zp↓ − wq↓)2

×�FL(r↑)
∏

(wt↑−wu↑)2�FL(r↓)
∏

(wf ↓−wh↓)2
}
,

(29)

where A is an overall antisymmetrization. The part with
(111) correlations may be followed with the Jastrow-Laughlin

factors as in Eq. (25), but that will not change main conclusions
reached in Ref. [30] [in the scope of a Chern-Simons (CS)
description] for an intermediate phase: The pseudospin mode,
which was a Goldstone mode in the (111) phase, is gapped and
the phase possesses algebraic ODLRO with the exponent that
depends on the ratio between densities of CBs and CFs. The
disappearance of the Goldstone mode directly correlates with
the results of Ref. [39] (see also Ref. [38]).

Thus the description given in Ref. [30] captures the main
characterization of the intermediate phase. Still there is an
interesting even-odd effect, as detected in Ref. [39], that for
an odd number of electrons in each layer the pseudospin
excitation is without a gap. It was noted in Ref. [39] that
this may be a consequence of intralayer pairing. The most
probable pairing would be of Pfaffian kind, and this may
be occur in the CF part (in the two CF Fermi seas) of the
model wave function in Eq. (29). The arguments of Ref. [30]
can be easily extended to this case by applying the parton
modeling of the CF part—an electron consisting of slaved
charged boson and neutral (composite) fermion that will pair.
Assuming the low-momentum decoupling of slave boson and
neutral fermion, we can (following Ref. [30]) recalculate the
exponent of algebraic ODLRO and find that it is equal to√

nf /(
√

nf + √
nb), where nf and nb are CF and CB densities,

respectively. An assumption is made that nb < nf .
This mixed-state phenomenological approach has a support

in the recent description of an excitonic metal in Ref. [52]
and its experimental detection in Ref. [53]. Though in our
case there is no seemingly natural distinction of CFs and
CBs (for fixed layer index) as in the physics of the excitonic
metal underlined by distinguishable degrees of freedom—
compare the model wave function in Ref. [52] and the one
in Eq. (29)—the experimental detection in a real system in
Ref. [53] implies that in the model wave function in Ref. [52]
an overall antisymmetrization is assumed and present (due
to the indistinguishability of real electrons), but this can be
neglected in a theoretical model. Similarly, in our case, two
kinds of coexisting condensates can be treated as if two kinds
of electrons are present in each layer.

There is a growing body of theoretical evidence that the
Halperin-Lee-Read (HLR) theory [6] and Son’s formalism
for CFs at filling one-half do not differ in important physical
characterization, but still it is interesting and instructive to
apply the Son’s formalism to CFs in the mixed state in
Eq. (29). We propose the following Lagrangian density for
the description at intermediate distances between the layers of
the bilayer (neglecting the possibility for intrapairing):

L = −
∑
σ,i

∣∣(∂i − ac
i − σas

i + σab
i

)
bσ

∣∣2

2mb

+
∑

σ

b†σ
(
∂0 − ac

0 − σas
0 + σab

0

)
bσ + εμνλ

4π
ab

μ∂νa
b
λ

+
∑

σ

Vb ρb
σ ρb

σ +
∑

σ

�̄σ γ ν
(
∂ν − ac

ν − σas
ν

)
�σ

+ εμνλ

2π

(
ac

μ∂νAλ + 1

2
Aμ∂νAλ

)

+ (∇ × �ac)2Vc(r) + (∇ × �as)
2Vs(r). (30)
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Next to two copies of Son’s Lagrangian for two layers,
σ =↑ , ↓; by introducing two gauge fields, aμ

σ ,σ =↑ , ↓, in
the combinations

aμ
c = a

μ

↑ + a
μ

↓
2

and aμ
s = a

μ

↑ − a
μ

↓
2

, (31)

we have also introduced two bσ ,σ =↑ , ↓, bosonic fields, with
densities, ρb

σ = b∗
σ bσ ,σ =↑ , ↓, and Vb is a repulsive short-

range interaction among same-layer composite bosons [54],
which are necessary to ensure short-distance exclusion among
composite bosons, which represent (dressed) electrons. Thus,
next to fermionic vortices, described by �σ (see Ref. [41]), we
introduced bosonic vortices (neutral composite bosons). Thus
we generalized the constraint in Eq. (24) in Ref. [41] to

∑
σ

b†σ bσ +
∑

σ

�̄σ γ0�σ = B

2π
. (32)

By coupling to a
μ
s the bosonic fields, we keep fixed the

difference (equal to zero) between the total number of vortices
in each layer, thus conserving the number of vortices in each
layer. By introducing gauge field a

μ

b , we also keep fixed the
difference between the number of bosons in each layer. (The
presence of a

μ

b is needed to ensure bosonic statistics for bσ

fields.)
The most interesting conclusion that we can draw from

this application of the Dirac CF formalism is that the bosonic
part necessarily acquires the additional correlations next to
the basic (111), as described by Eq. (25). The ensuing
presence of three gauge fields that couple to the bosonic fields
may lead to fractional excitations in the low-energy sector
but not of quantized pseudospin. Thus, we cannot expect
deconfined meron eigenstates in the intermediate region and
exact topological degeneracy.

The preceding description of the mixed state in the Son’s
formalism implies that the wave function in Eq. (25) describes
a critical state which may smoothly connect the (111) phase to
the intermediate phase. The state may be smoothly continued
in the intermediate region by the gradual inclusion of Dirac
CFs. From the usual RPA treatment of the mixed state CS
description in Ref. [30] (which we summarized here), we
can conclude that the intermediate phase is incompressible
in charge channel (IQHE) and does not possess a Goldstone
mode in accordance with the results in Ref. [39].

The presence of interlayer (Coulomb) interaction in the
system will necessarily break PH symmetry inside each
layer. Also the density of (intracorrelated) CFs will gradually
increase (with d, in the intermediate phase) in this effective
description, but it will be always less than the nominal,
corresponding to half-filled LLs density of electrons in each
layer. These conditions will be favorable for an establishment
of intrapaired (of Pfaffian kind) state inside each layer; the
reduced density will disfavor the slip into Fermi-liquid-like
state of the weak-pairing state, inside each layer.

The task of the description of the intermediate phase,
without the phenomenological division of electrons inside
each layer, is desirable and may start by considering the
effective Lagrangian for s-wave interlayer pairing in the Dirac
CF formalism, as in Ref. [31], to which an intralayer pairing
is added. Formally, through the Anderson-Higgs mechanism,

the Goldstone mode (in the pseudospin channel) will become
gapped. If we put aside the question of whether we should
consider triplet channels in the Son’s formalism, due to PH
symmetry breaking inside layers and the preceding discussion
concerning the p-wave pairing, a more difficult question is
whether inter- and intrapairing may coexist or whether, given
that we have the relevant wave functions [Eq. (29)], an effective
field theoretical description [other than in Eq. (30)] may exist.

We may begin the search for the effective theory by
considering the effective description in the neutral channel
(by neglecting or decoupling charge fluctuations inside each
layer) and considering classical (not Dirac) CFs in the scope of
a mean field treatment. We consider classical (HLR) fermions
as we expect that at intermediate distances the PH symmetry
inside each layer will be broken (we assume something that
would require much more work to be captured in the Son’s
formalism). Any mean-field treatment will not be able to
capture complex correlations of mixed states, but it is still
interesting to see what a mean-field treatment of inter- and
intrapairings can give or imply. The BCS Hamiltonian for the
pairing of CFs is

Heff =
∑
k,σ

ξk�
†
σ (k)�σ (k)

+
∑
k,σ

1

2
(�k�

†
σ (k)�†

σ (−k) + H.c.)

+
∑
k,σ

1

2
(δk�

†
σ (k)�†

−σ (−k) + H.c.), (33)

where ξk = εk − μ,εk ∼ k2, and �k and δk represent intra-
and inter-p-wave pairing functions, respectively. Assuming
a generic BCS Hamiltonian that includes (constant) term∑

k(ga|�k|2 + ge|δk|2), we can conclude, after a straightfor-
ward analysis of free energy in this case, that the coexistence of
pairings is impossible. It is only possible in a special case when
�k = �k− and δk = δk− (or �k = �k+ and δk = δk+), and,
moreover, � = ±δ. Thus, we have two degenerate solutions,
in which a symmetric (or antisymmetric) combination of CFs
is in a Fermi-liquid-like state, and the remaining antisymmetric
(symmetric) combination is in a p-wave state.

The p wave is expected to have chirality opposite the one
dictated by external field (based on a continuity argument that
takes into account smaller distance-d behavior as we already
discussed), and thus the intrapairing has to be of a PH Pfaffian
kind. The two states cannot represent the intermediate phase in
its generality, but they may be relevant states for the description
of the putative phase transition between the intermediate and
the Fermi-liquid-like phase present at large distances between
the layers; their lower Bogoliubov bands describe a Fermi liq-
uid behavior in one of the two superpositions of layer degrees
of freedom, but also their upper Bogolibov bands describe
a p wave, likely critical behavior in the other (orthogonal)
superposition. The p-wave behavior is likely critical for the
same reason we discussed in the monolayer case; in the strict
PH symmetric circumstances (for a system as a whole), the p

wave that respects this symmetry must be critical.
We can conclude that the mean-field treatment cannot

capture the complex physics of the intermediate phase, but it is
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suggestive that the paired state in Eq. (25) (at a smaller d), and
the two states with both Fermi-liquid physics and PH Pfaffian
pairing of symmetric and antisymmetric superpositions of
layer degrees of freedom, i.e., CFs (at a larger d) may mark
the boundaries of the intermediate phase.

IV. CONCLUSIONS

In this work, we explained why a PH Pfaffian state in
the (PH symmetric) half-filled LLL of a monolayer and an
analogous state in the PH symmetric bilayer (in which each
layer is half-filled LL) can be considered as critical states,
i.e., states that cannot describe a phase under PH symmetry.
This is consistent with numerical work in Refs. [8–11], in
the case of a monolayer, and the most recent results, in
Ref. [39], in the case of a bilayer. We showed in the case
of monolayer that the inclusion of a PH symmetry breaking
(like LL mixing) may stabilize PH Pfaffian consistent with
experiments [48]. We expect that an inclusion of PH symmetry
breaking in the bilayer will stabilize an analogous (opposite
chirality p-wave pairing) state; i.e., just as in the monolayer
case, we can consider analytical pairings, which under PH
symmetry breaking mass(es) may be stabilized. On the sphere,
by choosing the PH symmetric shift we can stabilize the (111)
excitonic or critical state for any distance between the layers
[31,37,55].

Nevertheless, on a torus, with no bias as shift on sphere,
the evolution of the bilayer includes other phases that do not
possess a Goldstone mode or behave as a CF Fermi-liquid-like
phase [39], because they are stable phases in the presence of the

underlying PH symmetry of the Hamiltonian in the half-filled
LLs.

In the monolayer case, we find that the PH Pfaffian (as
a gapped topological phase) cannot exist in a PH symmetric
half-filled LL. We reached this conclusion by examining the
intrinsic s-wave order parameter in the Son’s formulation;
analytic and nonanalytic versions lead to critical states, i.e.,
gapless states (that cannot describe a gapped topological
state). In the bilayer case, we cannot reach such a conclusion
that eliminates any other scenario. If we assume an analytic,
intrinsic s-wave pairing [which would lead to pairing function
g(z) ∼ 1

z∗|z| , instead of g(z) ∼ 1
z∗ in Eq. (22)], this may be

still a viable gapless state (with the right chirality [37] but
different decay function)—a representative of a gapless phase
in the bilayer case. This CF pairing state may be in the
same universality class of the (111) state, and the excitonic
order may exist for any distance between layers [31]. The
CF representation invariably favors CF pairing in the bilayer
[18,31]. Still this pairing may be rather unstable and give way
to two Fermi-liquid-like states at large distances [39] and the
intermediate phase as described in Ref. [39] and here.
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