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Non-perturbative approach to the quantum Hall bilayer
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We find in a systematic way universality classes of homogeneous ground state wave functions that
describe superfluid disordering and possible phases in the quantum Hall bilayer at filling factor one.
New quasiparticles with vorticity that emerge in this description are neutral fermions that constitute
highly correlated states in the superfluid phase characteristic for smaller distances between layers.
They emerge as unbound and free at a certain distance between layers in a quantum phase transition
that resembles Berezinskii-Kosterlitz-Thouless (BKT) unbinding at T = 0. Their unbinding can
also occur through finite temperature phase transition into the same incoherent phase as found in
[A.R. Champagne et al., arXiv:0709.0718] This neutral fermion physics is stabilized by impurities
in experiments which bind charged merons - the elementary vorticity quasiparticles of a translatory
invariant system. In a translatory invariant system superfluid disordering via meron-antimeron loop
condensation leads to a topological phase associated with the toric code model.

PACS numbers: 73.43.-f, 73.43.Nq, 03.65.Vf

Introduction The quantum Hall bilayer (QHB) at ν = 1
consists of two layers of two two-dimensional electron
gases that are brought close to one another in the quan-
tum Hall regime of strong magnetic fields. When the
distance between the layers is much smaller than the
average distance between electrons inside each layer in-
ter and intra Coulomb interactions are about the same.
Then the expected ν = 1 state is the state of a single
layer filled lowest Landau level (LLL) generalized to two
species. There is obvious degeneracy in dividing elec-
trons into two groups which leads to the phenomenon
of spontaneous symmetry breaking [1] and the existence
of a Goldstone mode [2]. The expected superfluid be-
havior was verified also by very large zero bias voltage
peak in tunneling conductance [3], but no clear evidence
was found for finite temperature BKT transition [4] in
transport experiments [5].

Therefore there is a need to systematically address the
question of superfluid disordering in the QHB. In partic-
ular there is a need to understand the role of quantum
disordering in this system that becomes important as the
distance between the layers is increased. In the most of
the previous work the starting point for the discussion
of the physics of the bilayer was the ground state (GS)
for the very small distance between the layers as a mean
field solution to which none or some corrections were de-
veloped [4, 6]. We will take a non-perturbative approach
inspired by the Laughlin solution of the ν = 1/3 problem
in which we will uniquely determine possible wave func-
tions (WFs) for the GSs of the bilayer at an arbitrary
distance.

There are two basic paradigms of superfluid disor-
dering that we know: (1) BKT (2D XY model) for
which the transition proceeds via unbinding of dipoles
of vortex-antivortex pairs, and (2) λ transition type (3D
XY model) for which the transition is characterized by
a condensation of vortex-antivortex loops. In what fol-
lows through the WF analysis we will show that these two

models correspond to two possible kinds of superfluid dis-
ordering in the QHB (1) one in the presence of impurities
and (2) the other for translatory invariant system, respec-
tively. The analysis of corresponding WFs will show the
importance of neutral fermions. Each neutral fermion is
a composite of two same vorticity but opposite charge el-
ementary vortex quasiparticles - merons [4]. In the pres-
ence of impurities merons are locked, and associated tran-
sitions proceed via unbinding of pairs of opposite vortic-
ity neutral fermions. The recently found finite tempera-
ture transition [7] and the quantum phase transition with
respect to changing distance [7, 8] correspond to this un-
binding. On the other hand, the analysis will show that
in a translatory invariant system meron excitations via
their loop condensation will produce an incompressible
liquid state for the neutral sector. Its low-energy excita-
tions can be described by a BF Chern-Simons theory [9],
the same theory that desribes the excitations of the toric
code model.

Universality classes of ground states A great deal is
known from the experimental and theoretical point of
view of the QHB in the two extremes when the distance
between layers, d, is (1) much smaller or (2) much larger
than the magnetic length, lB = (~/eB)1/2, B - the mag-
netic field, the characteristic distance between the elec-
trons inside any of the layers. When d << lB, i.e. in-
ter and intra Coulomb interactions are about the same,
the good starting point and description is so-called (111)
state [10],

Ψ111(z↑, z↓) =
∏
i<j

(zi↑ − zj↑)
∏
k<l

(zk↓ − zl↓)
∏
p,q

(zp↑ − zq↓)

(1)
where zi↑ and zi↓ are two-dimensional complex coordi-
nates of electrons in upper and lower layer respectively
and we omitted the Gaussian factors. This is suggestive
of the exciton binding [11]; any electron coordinate is also
zero of the WF for any other electron coordinate - the
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FIG. 1: Possible universality classes of wave functions

correlation hole is just opposite to electron. This exci-
ton description can be a viewpoint of the phenomenon of
superfluidity found in these systems [2, 3] and is closely
connected to the concept of composite bosons (CBs) [12]
that can be used as natural quantum Hall quasiparticles
in this system. When d >> lB we have the case of the
decoupled layers and the GS is a product of single layer
filling factor 1/2 WFs; each describes a Fermi-liquid-like
state [13],

Ψ1/2(w) = P{Fs(w, w)
∏
i<j

(wi↑ − wj↑)
2} (2)

where Fs is the Slater determinant of free waves of nonin-
teracting particles in zero magnetic field and P represents
projection to LLL. Underlying quasiparticles are compos-
ite fermions (CFs), the usual quasiparticles of the single
layer quantum Hall physics.

To answer the question of intermediate distances we
may try to, classically speaking, divide electrons into two
groups, one in which electrons correlate as CBs and the
other as CFs [14]. (The ratio between the numbers of
CBs and CFs would be determined by the distance be-
tween layers.) The WF constructed in this way would
need an overall antisymmetrization in the end, but also
intercorrelations among the groups as each electron of
the system sees the same number of flux quanta through
the system (equal to the number of electrons). This re-
quires that the highest power of any electron coordinate
is the same as the number of electrons in the thermody-
namic limit. If we denote by a line the Laughlin-Jastrow
factor

∏
A,B(zA−zB) between two groups of electrons, A

and B (A, B = CB, CF ), the possibilities for the QHB
GSWFs can be summarized as in Fig. 1. If we ignore
the possibility of pairing between CFs denoted by wrig-
gly lines in Fig.1(c,d) we have two basic families of the
GSWFs depicted in Fig.1(a,b). The intercorrelations in
the first family in Fig.1(a) are in the spirit of Ψ111 cor-
relations, and those in the second family in Fig.1(b) are
in the spirit of the decoupled state, Ψ1/2 × Ψ1/2, where

we correlate exclusively inside each layer. We can imag-
ine a mixture of both intercorrelations in a single wave
function but these mixed states, by their basic response
[15], fall into one of the universality classes depicted in
Fig. 1. Phenomenological (that ignore the overall anti-
symmetrization) Chern-Simons field theories can be eas-
ily constructed for the wave functions in Fig.1 and their
basic response extracted [15]. We get that the states in
Fig.1(a) and Fig.1(c) are superfluids, and the states in
Fig.1(b) and (d) are disordered superfluids, compressible
and incompressible, respectively.

The two basic possibilities of connecting two extremes
as depicted in Fig. 1, i.e. without and with pairing
of CFs, must correspond to the two possible ways or
paradigms that we know of disordering a superfluid. We
will substantiate this claim further by examining the two
superfluid constructions (Fig. 1(a) and (c)) in more de-
tail. Also we will find that the form of the long distance
pairing among CFs is fixed.

Neutral fermions and BKT disordering Let’s write out
the unprojected in the LLL version of the construction
in Fig. 1(a):

Ψ1 = A { Ψ111(z↑, z↓)Ψ1/2(w↑)Ψ1/2(w↓)

×
∏
i,j

(zi↑ − wj↑)
∏
k,l

(zk↑ − wl↓)

×
∏
p,q

(zi↓ − wq↑)
∏
m,n

(zm↓ − wn↓)}, (3)

where zσ’s and wσ’s denote coordinates of electrons be-
longing to the layer with index σ and A stands for an
overall antisymmetrization. By using the expressions
for the densities of electrons in each layer, ρσ(η) =∑

i δ2(η − zσ
i ), here zσ’s denote all electrons of the layer

σ, we can rewrite the wave function in the following way,

Ψ1 =

∫
d2η1↑ · · ·

∫
d2ηn↓

∏
k<l(ηk↑ − ηl↑)

∏
p<q(ηp↓ − ηq↓)∏

i,j(ηi↑ − ηj↓)

Fs(η↑) ×Fs(η↓) ×

ρ↑(η1↑) · · · ρ
↓(ηn↓)Ψ111(z↑, z↓),

(4)

where n is the total number of electrons that correlate
as CFs. The expression in Eq.(4) reminds us of a dual
picture in terms of some quasiparticles with η coordinates
as in [16]. To find those quasiparticles we will rewrite
Eq.(4) as

Ψ1 =

∫
d2η1↑ · · ·

∫
d2ηn↓

∏
k<l |ηk↑ − ηl↑|

∏
p<q |ηp↓ − ηq↓|∏

i,j |ηi↑ − ηj↓|

Fs(η↑) ×Fs(η↓) ×

{exp{iφ(η1↑ · · · ηn↓)} ×

ρ↑(η1↑) · · · ρ
↓(ηn↓)Ψ111(z↑, z↓)}

(5)
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FIG. 2: The quadrupolar configurations of merons that make
neutral fermion pair

where exp{iφ(η)} factor denotes the phase part of the
Laughlin-Jastrow factors in front of the Fermi seas in
Eq.(4). If we take and define that the phase factor al-
ways vanishes when any of two η’s from the same layer
coincide, we can prove, using plasma properties of the
charge sector of Ψ111 [16, 17], that the expression in the
curly brackets,

|η1↑ · · · ηn↓ >=

exp{iφ(η1↑ · · · ηn↓)}ρ
↑(η1↑) · · · ρ

↓(ηn↓)|Ψ111 > (6)

makes a Fock basis in the coordinate space for some
neutral fermion quasiparticles. (Neutral because in the
construction of the state there is no net magnetic flux
through the system.) More precisely,

< η
′

1↑, η
′

2↑ · · · η
′

n↓|η1↑, η2↑ · · · ηn↓ >

δ2(η
′

1↑ − η1↑)δ
2(η

′

2↑ − η2↑) · · · δ
2(η

′

n↓ − ηn↓) −

δ2(η
′

1↑ − η2↑)δ
2(η

′

2↑ − η1↑) · · · δ
2(η

′

n↓ − ηn↓) + · · · (7)

On the other hand, merons are true elementary vorticity
quasiparticles of the translatory invariant QHB system
at least for small distances between layers as shown in
Ref. [4] and carry both charge and vorticity. Therefore
the neutral fermion basis can not be a complete basis for
neutral excitations of the QHB in the translatory invari-
ant case because the neutral fermions carry layer index
and can not describe, for example, meron dipole configu-
rations with no net vorticity and no layer denomination.

Just by looking at Eq.(5) we can read out the GSWF
in the dual picture in terms of neutral fermions,

Ψdual(η) =

∏
k<l |ηk↑ − ηl↑|

∏
p<q |ηp↓ − ηq↓|∏

i,j |ηi↑ − ηj↓|
Fs(η↑)Fs(η↓)

(8)
This is a wave function of 2D Coulomb fermionic plasma
[18] and it describes the superfluid state in Fig 1(a). It
encodes dipole positioning of opposite vorticity (layer in-
dex) neutral fermions. In the superfluid phase, with re-
spect to merons, a neutral fermion dipole should be in
essence a superposition of quadrupolar combinations of
merons - two dipoles which come in pairs but at arbitrary
distance as illustrated in Fig. 2. In this way, as dipoles,
neutral fermions constitute the lowest lying states of the
QHB - (pseudo)spin waves [2, 12]. If neutral fermions
may be considered as eigenstates they must lie very high

FIG. 3: The time evolution of a vortex-antivortex pair (a)
without and (b) with quantum fluctuations

in spectrum; like electrons in fractional quantum Hall
states they constitute the physics of Ψ1 but their wave
function Eq.(8) describes a highly correlated state. It is
our conjecture that the functions, Eq.(8), make a com-
plete set for the description of the superfluid ground state
evolution in the presence of impurities in experiments and
should constitute a basis for explanation of quantum and
finite temperature phase transitions [7] through a BKT
neutral fermion unbinding.

Quantum fluctuations and loop condensation The two
paradigms - models of superfluid disordering as applied
to our 2+1 dimensional system mean that the time evolu-
tion is such that (1) meron -antimeron pairs are locked as
in Fig. 3(a) or (2) created and annihilated at some later
time and therefore making a loop as in Fig. 3 (b). The
loops in time signify the presence of quantum fluctua-
tions. The mean field approach to a 2D or 3D superfluid
entails a spin wave contribution to the GSWF, in our
case exp{c

∑
k ρ↑kρ↓−k}Ψ111 = Ψ111 i.e. a trivial contribu-

tion. We find this by simple application of the definitions
of the densities:ρσ(x) =

∑
i δ2(x − zσ

i ) (no projection to
the LLL implied). On the other hand, the Chern-Simons
(CS) field theory approach based on the mean field Ψ111

solution [6, 19] in the RPA approximation of treat-

ing quantum corrections finds exp{
∑

k
f(d)

k ρ↑kρ↓−k}Ψ111,
where f(d) is a positive function of d (distance between
the layers). In order to find out the spin wave part in our
WFs we first take the 1 + 1 neutral fermion construction
as in Eq.(4):∫

d2η1↑

∫
d2η2↓

1

(η1↑ − η2↓)
ρ↑(η1↑)ρ

↓(η2↓) (9)

This can not belong to the spin wave contribution be-
cause it is antisymmetric under ↑↓ exchange, and our
conclusion must be that in the neutral fermion construc-
tions (Fig.1(a)) the spin wave contribution is trivial - a
mean field one as introduced above. In the case of the
pairing constructions (Fig.1(c)) the 1 + 1 CF part can
be ∫

d2η1↑

∫
d2η2↓

1

|η1↑ − η2↓|2
ρ↑(η1↑)ρ

↓(η2↓) (10)

where we took g(z) = 1
z∗

for the pairing func-
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tion and the expression is symmetric under ↑↓ ex-
change. This in the long-distance limit reduces to
{
∑

(−) ln(klB)ρ↑kρ↓−k}Ψ111 with lB as the small dis-
tance cutoff. Extracting the spin wave contribu-
tions from other n + n neutral fermion constructions
[17] we can get an overall contribution of a form,

exp{
∑

k f̃(d)(−) ln(klB)ρ↑kρ↓−k}Ψ111. So indeed we get
corrections from quantum fluctuations like in [6, 19] al-
though a slightly different expression [21]. Therefore,
from this analysis, we can conclude that a perturbative
expansion in the n+n CF constructions of Fig.1(c) with
g(z) = 1

z∗
is well justified and parallels previous ap-

proaches in a translatory invariant system [6, 19] that
are based on corrections to Ψ111 state.

There is also another justification for the choice g(z) =
1
z∗

for our WF. While calculating the spin wave contri-
bution [17] using the n+n neutral fermion constructions,
it was necessary to use the following identity,

Det{
1

ηi↑ − ηj↓
} × Det{

1

η∗
i↑ − η∗

j↓

} =

∏
k<l |ηk↑ − ηl↑|

2
∏

p<q |ηp↓ − ηq↓|
2

∏
i,j |ηi↑ − ηj↓|2

, (11)

which follows from the bosonization theory [22] in which
two Majorana field correlators in the holomorphic and
antiholomorfic sector on the l.h.s. are equal to the cor-
relator on the r.h.s. of bosonic vertex operators. If we
leave the dual picture and examine the final form of the
state of Fig.1(d) when there are no CBs, we are lead to
its following forms,

Ψ2 = Det{
1

z∗i↑ − z∗j↓
}

∏
i<j

(zi↑ − zj↑)
2
∏
k<l

(zk↓ − zl↓)
2

= Det{
1

z∗i↑ − z∗j↓
}Det{

1

zk↑ − zl↓
}Ψ111, (12)

where to get the last line we used the Cauchy determi-
nant identity. The neutral part of Ψ2 (not carrying a net
flux through the system as Ψ111 does) that consists of the
two determinants is, as we have written in Eq.(11) above,
nothing but a correlator of a single (nonchiral) bosonic
CFT. According to [23] CFT theory correlators not only
describe quantum Hall system WFs but also can be used
to find out about and connect to its edge and bulk theo-
ries. The bulk theory in this case, for the neutral part, is
the P, T invariant BF Chern-Simons theory [9, 17] and
its edge theory is associated with the bosonic CFT. So
at the end of the QHB evolution with distance in a clean
system we may have a topological phase. The superfluid
disordering via meron-antimeron loop condensation can
produce such a phase whose ground state on the other
hand can be viewed as a condensate of loops in space and
time.

The complete bulk theory when we consider also the
charge degrees of freedom contains also U(1)1 CS theory.

The degeneracy of the system GSs on the torus must
be 4 [20, 24]. Therefore sufficiently clean QHB systems
may be used as generators for states described by dou-
bled CS field theories [24] as the Abelian BF theory - a
non-trivial example. The states are generated through
superfluid disordering via loop condensation. They are
important because their non-Abelian varieties may be
used for universal topological quantum computing [25].
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