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Abstract. A perturbation method was used to solve optical Bloch equations
(OBEs) for the transition Fg = 1 → Fe = 2, in order to describe the role
of ground-level Zeeman coherences in the formation of electromagnetically
induced absorption (EIA). A narrow Lorentzian peak, centered at zero
value of the scanning magnetic field, appears in the analytical expression
of the second-order correction of a density-matrix element for ground-level
Zeeman coherences, (ρg−1,g+1)x2 . Through analytical expressions for lower-order
corrections of density-matrix elements, we were able to establish clear relations
between the narrow Lorentzian in (ρg−1,g+1)x2 and higher-order corrections of
optical coherences, i.e. EIA. We see from analytical expressions that these
two resonances have opposite signs and that EIA becomes electromagnetically
induced transparency (EIT) in the limit of low efficiency of spontaneous
transfer of coherences from excited-level to ground-level Zeeman sublevels. The
transient behavior of EIA follows the time evolution of (ρg−1,g+1)x2 . After the
coupling laser is turned on, both the Lorentzian peak in (ρg−1,g+1)x2 and EIA
reach steady state via over-damped oscillations.
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1. Introduction

Coherent phenomena such as coherent population trapping (CPT) [1]–[3] and the cancellation
of light absorption, as manifested by electromagnetically induced transmission (EIT) [4],
continue to attract great attention. But under certain laser–atom interaction schemes (multi-
V-schemes, for example), coherence interaction can lead to increased absorption, giving rise
to electromagnetically induced absorption (EIA) [5]. EIA is observed under the condition that
lasers couple two degenerate atomic levels and that the angular moment of the excited state
is higher than that of the ground state, Fg = F → Fe = F + 1 [6]. More recently, EIA was
observed [7, 8] in open systems and in systems for which Fe = Fg − 1 and Fg = Fe stand, and
models were developed to interpret this ‘anomalous’ EIA [9].

For a closed transition interacting with a single-frequency field, it was shown [10] that
EIA is due to the redistribution of atomic population among ground-state Zeeman sublevels—
by optical pumping of atomic population in the ground states which are maximally coupled
to the excited state. For a pump–probe excitation of a degenerate two-level system, EIA may
also occur due to the transfer of coherence through spontaneous emission from the excited
state [11, 12]. Using an N -configuration atom, Taichenachev et al [12] have shown that the sign
of the absorption resonance can change, depending on the rate of coherence transfer, and that
EIA can turn into enhanced transmission in the case of zero or even a low rate of coherence
transfer. EIA in an N -type interaction scheme has also been investigated for various pump and
probe intensities with and without transfer of coherence and Doppler broadening in [13], both
analytically and numerically. The results were compared with the results obtained for realistic
atomic systems.

It was also shown that the transfer of coherence can give rise to EIA when the pump and
probe photons have different polarizations, and when ground-state population trapping does not
occur [14]. The authors of [14] have shown that EIA, which is due to the transfer of population,
can develop in an open system, with the same pump and probe polarizations. For the latter
mechanism to occur, collisional transfer of population from the ground state to a reservoir
(a nearby hyperfine level that does not interact with the pump) should be greater than that
from the excited state. The same group recently analyzed [15] the relation between ground-state
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coherences and EIA in the pump–probe configuration. They have shown numerically that the
spectroscopic signal depends on ground- and excited-state populations and Zeeman coherences.
The role played by transfer of coherence from the excited to the ground hyperfine state was also
analyzed. Our previous work on phenomena of enhanced absorption includes the investigation
of EIA amplitudes and linewidths as a function of different parameters, such as laser intensity,
polarization and transverse magnetic fields [16]–[18].

Although the temporal evolution of CPT has been thoroughly studied [19]–[21], the
transient properties of EIA have only been sparsely investigated. The transmission of a fixed
frequency laser beam for sudden turn on and off of a static magnetic field was studied in [22]
and the temporal evolution of EIA in the pump–probe spectroscopy of a degenerate two-level
atomic transition was studied in [23].

In this paper, we use analytical expressions for density-matrix elements, obtained by
applying the perturbation method to the closed multilevel Fg = 1 → Fe = 2 transition, in the
Hanle configuration, to study the development of EIA. The analytical expressions of low-order
corrections of density-matrix elements provide valuable information on the mechanisms that are
important for induction of EIA which cannot be deduced from numerical solutions of the optical
Bloch equations (OBEs) for the same multilevel atomic system. We particularly investigate
the importance of a narrow Lorentzian peak, found in the steady-state analytical expression
of ground-state coherence (ρg−1,g+1)x2 as a function of external magnetic field, on the overall
behavior of EIA. The effectiveness of coherence transfer to the excited-state Zeeman sublevels,
and subsequent spontaneous coherence transfer from the excited state, was for the first time
explicitly presented. The relation between ground-level Zeeman coherences and EIA was also
investigated in the transient regime for external magnetic fields smaller and larger than the
magnetic field corresponding to the linewidth of the narrow Lorentzian in (ρg−1,g+1)x2 .

2. Optical Bloch equations and the perturbation method for the Fg = 1 → Fe = 2
transition

Density matrix ρ̂ is calculated from OBEs:

dρ̂(t)

dt
= −

i

h̄
[Ĥ0, ρ̂(t)] −

i

h̄
[ĤI, ρ̂(t)] − ˆSE(b)ρ̂(t) − γ ρ̂(t) + γ ρ̂0, (1)

for the Fg = 1 → Fe = 2 atomic transition (see figure 1). OBEs in explicit form are given in
appendix A. Diagonal elements of ρ̂, ρgi ,gi and ρei ,ei are populations, while ρgi ,g j and ρei ,e j

are Zeeman coherences. Indices g and e stand for the ground and excited levels (see figure 1).
Elements ρgi ,e j and ρei ,g j are optical coherences, and in the rotating wave approximation the
usual substitution ρei g j = ρ̃ei g j (e)

−iωt is introduced, where ω is the laser frequency. ĤI is the
interaction Hamiltonian, characterized by the Rabi frequency �, which is proportional to the
magnitude of the laser electric field E, and by the ellipticity ε. Linearly polarized laser light
propagates parallel to the direction of static magnetic field Bs. The quantization axis is chosen
parallel to the magnetic field. The interaction with the magnetic field Bs is given by the
Hamiltonian part Ĥ0. The energies describing the Zeeman splitting of the ground and excited
levels with magnetic quantum numbers mg(e), Eg(e) = ωg(e)h̄, due to applied magnetic field Bs,
were calculated by using Eg(e) = µBlFg(e)mg(e)Bs. Here µB is the Bohr magneton and lFg,e is
the Lande gyromagnetic factor for two hyperfine levels. ˆSE(b) is the abbreviated spontaneous
emission operator whose rate is 0. The parameter 06 b 6 1 describes the efficiency of the
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Figure 1. Fg = 1 and Fe = 2 hyperfine levels with notation of magnetic
sublevels.

transfer of coherences from excited to ground sublevels due to spontaneous emission; b = 0
means no transfer, while b = 1 means a complete spontaneous transfer of coherence. The term
γ ρ̂ describes the relaxation of all density-matrix elements due to the finite time for an atom to
cross the laser beam. The continuous flux of atoms to the laser beam, with equal population of
three ground Zeeman sublevels, is described by γ ρ̂0. The role of laser detuning (and Doppler
broadening) is not discussed.

Macroscopic polarization of atomic media, calculated from

P = N 〈er〉 = NeTr(ρ̂ r̂) (2)

gives complex susceptibility χ expressed as a sum of optical coherences. The imaginary part
of χ represents loss per unit wavelength, i.e. the absorption coefficient [24]. The constant N
in equation (2) stands for atomic concentration, and is irrelevant in this study. By EIA in the
following text, we mean the absorption coefficient calculated by using equation (2).

We use the perturbation method for both the steady-state (by taking the left-hand side
of equation (1) equal to 0) and time-dependent solution of equation (1). We start from time-
dependent OBEs in matrix form, ẋ(t) = Ax(t) − y, where x represents the column of density-
matrix elements sorted as {ρg−1,g−1, ρg−1,g0 . . . ρe+2,e+2}; A is the system’s matrix and y is the
non-homogeneous part. We separate A into the unperturbed and perturbed parts, A = A0 + Apert.
Since the interaction of an atom with the laser light’s field is considered a perturbation [25, 26],
we have the following: (a) all terms with Rabi frequencies belong to the matrix Apert and (b) the
elements of Apert are much smaller than those of A0 (� � 0). Solutions of the time-dependent
OBEs obtained by the perturbation method are

ẋ0(t) = A0x0(t) − y,

ẋn+1(t) = A0xn+1(t) + Apertxn(t).
(3)

By taking the left-hand sides equal to 0 in previous equations, the solutions of the steady-state
OBEs are

x0 = −A−1
0 y,

xn+1 = −A−1
0 Apertxn.

(4)

For any density-matrix element, the solution of the method has an unperturbed part x0 and
a series of successive corrections of the density matrix xn, where n is the iteration number. The
solutions of the perturbation method, xn from equations (3) and (4), are such that each density
matrix can have only even or only odd non-zero corrections. In the case of small perturbations,
� smaller than ' 0.030, each density-matrix element is dominantly determined by its first
non-zero correction, and the sum of the non-perturbed part and corrections converges quickly
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Figure 2. Schematic diagram showing which density-matrix elements are
corrected by solutions of the unperturbed part x0 and successive corrections
from x1 to x4. The scheme is for the transition Fg = 1 → Fe = 2. Lines indicate
coherences, whereas circles are populations. For notation of magnetic sublevels,
see figure 1.

to the exact solutions of OBEs. By exact, we mean the numerical solution of a system of linear
(differential) equations given in equation (1) for the full atomic system (given in figure 1).

The order of appearance of non-zero corrections of density-matrix elements, either even or
odd, is schematically (by the column of symbols in the right of the figure) shown in figure 2.
The solution of the unperturbed part x0 is the redistribution of the ground-state populations, 1/3
for each ground-state sublevel, the same as the initial condition for time-dependent OBEs. The
first correction x1 is non-zero only for optical coherences, for which the selection rule between
magnetic sublevels 1mg,e = ±1 stands. The second correction applies for all populations and
also for Zeeman coherences of the sublevels such that 1mg,g = ±2 or 1me,e = ±2. The third
and all higher-order odd corrections correct all optical coherences, while fourth and all higher-
order even corrections correct all populations and all Zeeman coherences of the transition
Fg = 1 → Fe = 2. By all we mean the coherences that are coupled by linearly polarized light,
therefore being non-zero by the exact and the perturbative solution of the OBEs. As seen
from figure 2, each odd correction is a new contribution to optical coherence, while even
corrections bring new contributions to populations and Zeeman coherences via additional level
couplings.

3. Results and discussion

3.1. Steady-state electromagnetically induced absorption

In the perturbation method, EIA appears after including the higher-order (n > 3) corrections,
the odd corrections of absorption coefficient or the even corrections of excited-state populations
(observable as fluorescence). The perturbation method also shows that already the second
correction of ground-level Zeeman coherences, ρg−1,g+1 and ρg+1,g−1 as a function of magnetic
field Bs, has a narrow resonance, a complex Lorentzian (CL). In the following, we show that the
Lorentzian-like behavior of (ρg−1,g+1)x2 is responsible for the appearance of EIA in higher-order
corrections.
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The analytical expression for (ρg−1,g+1)x2 is the sum of products of two and three CLs:

(ρg−1,g+1)x2 =
(ε2

− 1)�2

45

1

(γ − i
2lFgµB

h̄ Bs)

{
−

2

(2γ + 0 − i
2lFgµB

h̄ Bs)
+

b0

(γ + 0 − i 2lFeµB

h̄ Bs)

×

[
2

(2γ + 0− i
2(2lFe−lFg )µB

h̄ Bs)
+

3

(2γ + 0− i 2lFeµB

h̄ Bs)
+

2

(2γ + 0− i
2lFgµB

h̄ Bs)

]}
,

(5)

while (ρg+1,g−1)x2 is the complex conjugate. The derivation of equation (5) is explained in
appendix B. The terms within curly brackets in equation (5) contain wide CLs since 0 � γ .
For the values of magnetic field within EIA, the sum of products inside the curly brackets is
nearly constant and wide CLs can be approximated with 1

0
. Then (ρg−1,g+1)x2 , as a function of

magnetic field, can be written as

nC L(Bs) =
(ε2

− 1)�2(−2 + 7b)

450

1

γ ± i
2lFg µB

h̄ Bs

(6)

=
(ε2

− 1)�2(−2 + 7b)

450

γ ∓ 2ilFg BsµB

γ 2 +
4l2

Fg
µ2

B

h̄2 B2
s

,

i.e. a single narrow complex Lorentzian (nCL). Here, lower sign is for ρg−1,g+1 and upper is for
ρg+1,g−1 . The full-width at half-maximum (FWHM) of nCL(Bs) is equal to γ h̄

lFgµB
and its amplitude

is (ε2
−1)�2(−2+7b)

450γ
. Since only the real part affects absorption, we consider only the real part of

nCL(Bs) for amplitudes and FWHMs.
The nCL (we will omit dependence on Bs in the following text) appearing in (ρg+1,g−1)x2

is transferred to the other coherences and to the populations by the iterative procedure given in
section 2 and schematically presented in figure 2. Note that this transfer to the next successive
correction is only to the density-matrix elements which, according to equation (4), depend on
(ρg−1,g+1)x2 .

In figure 3 we have plotted the corrections and the sums of corrections for the absorption
coefficient (EIA) as a function of external magnetic field. For comparison, the absorption
coefficient from the exact solution of the OBEs is also presented. Figure 3 shows that the narrow
Lorentzian first appears in the third correction of the absorption coefficient. The observed EIA
is due to nCL of (ρg−1,g+1)x2 transferred to optical coherences, and superimposed on a broader
pedestal which originated from the first-order correction of the absorption coefficient. As seen
in figure 3, the narrow peak developed in the third correction is numerically almost equal to the
EIA obtained from the exact solution of the OBEs.

The results presented in figure 4 compare the properties of the real part of (ρg−1,g+1)x2

(equation (5)) and of the exact solution for EIA. The FWHMs and amplitudes of two resonances
were obtained from fits to the sum of wide and narrow Lorentzians. We show the dependences
of the FWHMs and amplitudes on Rabi frequency � (panels (a) and (b)), relaxation rate γ

(panels (c) and (d)) and the efficiency of spontaneous transfer of coherences b (panels (e) and
(f)). When not variable, parameters in the calculations have values such as 0 = 2π6 MHz,
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Figure 3. EIA as a function of external magnetic field. The results obtained by
using the perturbation method (first non-zero correction and sums of successive
corrections) and the exact solutions of the OBEs are presented. The results are
for the linearly polarized light, 0 = 2π6 MHz, � = 0.0150 and γ = 0.0030.

� = 0.0150, γ = 0.0030, ε = 0 and b = 1. Note that EIA’s sign differs from the sign of the
real part of (ρg−1,g+1)x2 . Flat dependence of FWHM on � in figure 4(a) is because (ρg−1,g+1)x2 is
invariant with respect to �2, whereas the dependence of EIA’s amplitude on � is proportional to
�2 (see equation (6)). The dependence on the relaxation rate γ , given in (c) and (d), shows nearly
identical behavior of both (ρg−1,g+1)x2 and the exact EIA. The dependence of amplitude can be
approximated as ∼

1
γ

and of FWHM as ∼ γ (see equation (6)). The increase of relaxation rate
leads to the loss of ground-level coherences and to the consequential decrease of EIA amplitude.

As presented in equation (6), the sign of nCL is determined by parameter b. We see in
figure 4(f) that the change of b from 1 to zero causes the change of sign of the resonance from
EIA to EIT. For b =

2
7 , both (ρg−1,g+1)x2 and the exact solution for EIA change signs. Note that

this EIT is not due to CPT, since the transition Fg = 1 → Fe = 2 does not have ‘dark states’
(noninteracting states given by ĤI|DS〉 = 0) [2, 27, 28] among the ground-state sublevels. This
is analogous to the result obtained in [12] which uses the N -atomic scheme. In [12], the role of
the ground-state Zeeman coherence, transfer to the excited-state coherence was not discussed.
In [13], it was shown that the transfer of coherences can affect the whole spectrum, not only the
EIA peak. The spontaneous transfer of Zeeman coherences from the excited to ground levels
influences, as shown in [11], the nonlinear resonances in probe-field spectroscopy. The transfer
of coherences can be neglected [29] if excited states are far apart in energy.

Although approximative, the perturbative method gives important nontrivial results. The
EIA amplitudes and widths can be very well approximated from a simple analytical expression
for (ρg−1,g+1)x2 . Also, from the analytical expression for the third correction of the absorption
coefficient (not shown here), we can see that the term for the narrow Lorentzian in the EIA is
the same (with opposite sign) Lorentzian present in (ρg−1,g+1)x2 .
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http://www.njp.org/


8

Figure 4. Comparison of the FWHM (left column) and the amplitude (right
column) obtained from profiles of the EIA, i.e. absorption coefficient (blue
curves) and the real part of (ρg−1,g+1)x2 (green curves). Various parameters were
varied—Rabi frequency, relaxation rate and efficiency of spontaneous transfer
of coherences. Note that, in the right column, there are different scales for
amplitudes indicated with different colors (blue and green). In panel (e), there
are few evasions that are due to the error of fitting.

3.2. Transient evolution of electromagnetically induced absorption

In figure 5, we present the exact solution of the evolution of the EIA as a function of magnetic
field and time after sudden application of the laser field. The transient behavior of EIA is
different from the behavior of the rest of the wide pedestal of the absorption coefficient: while
the evolution of EIA shows no oscillations, the evolution of other parts of the absorption
coefficient shows small oscillations. The model for the probe absorption in the pump–probe
configuration based on the N-atomic scheme [23] shows a central peak with oscillating wings,
such as the Hanle EIA in figure 5.

The perturbation method can explain the observed transient behavior of the absorption
coefficient through simple analytical expressions. By using equation (3) first by differentiating
ẋn+1(t) and then substituting ẋn(t) and ẋn+1(t) into it, one obtains differential equations of forced
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Figure 5. Dependence of the exact solution of EIA, i.e. absorption coefficient,
on time and magnetic field Bs. The presented results are for linearly polarized
light, 0 = 2π6 MHz, � = 0.0150 and γ = 0.0030. Note that there is a cutoff at
the beginning of the time scale.

damped harmonic oscillators in matrix form:

ẍn+1(t) − A2
0xn+1(t) = (Apert A0 + A0 Apert)xn(t) + A2

pertxn−1(t). (7)

It is apparent that each correction of each density-matrix element performs forced oscillations,
where the damping force (right side) is a linear combination of corrections to density-matrix
elements.

Our analysis shows that the evolution of corrections of all density-matrix elements, and
therefore the sum of corrections, is of the form

soln(t) = α0 +
∑

i

(
βi +

∑
k

γi,kt k

)
eωi t , (8)

where α0, βi , γi,k and ωi are generally complex numbers, and k 6 n − 2. The last sum on the
right-hand side of equation (8) appears only for higher-order corrections (n > 3).

The complex function eωt in equation (8), with ω being the complex number ω = ωR + iωI,
can also be written as

eωt
= sinh(ωt) + cosh(ωt) = eωRt cos(ωIt) + ieωRt sin(ωIt). (9)

The period of eωt is given by the imaginary part of ω and is 2π

ωI . The real part of ω has to be
negative in order for both eωRt to converge to 0 and the solution of correction of the density-
matrix element to converge to the steady-state value α0 (equation (8)). The transient behavior of
each density-matrix element is determined by the ratio between the real and imaginary parts of
eωi t in equation (8). If the real part is smaller than the imaginary part (absolute values), eωt shows
oscillations (the oscillator is under-damped), whereas for |ωR

| > |ωI
| there are no oscillations
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Table 1. Complex frequencies of all density-matrix elements related to harmonic
oscillators by equation (7). m and n in the last three rows stand for magnetic
quantum numbers. Density-matrix elements are separated into three groups
by horizontal lines. The first and second groups are slow-evolving elements
(∝ e−γ t ). The second group only gives elements for which the ratio of real and
imaginary parts depends on the magnetic field Bs. The third group represents
fast-evolving elements, optical coherences, and excited-state populations and
coherences (∝ e−0t or e−0/2t ).

Density-matrix element Complex frequency, ω

ρg−1,g−1 , ρg0,g0 , ρg+1,g+1 −γ

ρg−1,g+1 −γ + i
2lFg µB

h̄ Bs

ρg+1,g−1 −γ − i
2lFg µB

h̄ Bs

ρgm ,en −γ −
0
2 + i

µB(lFe n−lFg m)

h̄ Bs

ρem ,gn −γ −
0
2 + i

µB(lFg n−lFe m)

h̄ Bs

ρem ,en −γ − 0 + iµBlFe (n−m)

h̄ Bs

and eωt follows exponential decay (the oscillator is over-damped). Note that the contributions
from the terms t keωi (t) in equation (8) are negligible for the time interval considered here. In the
following discussion, we will neglect their influence.

Equation (7) represents a non-homogeneous system of equations. Complex frequencies
ωi of harmonic oscillators, obtained from the homogeneous part of equation (7), are diagonal
elements of matrix A0. Complex frequencies from the non-homogeneous part of equation (7)
are inherited from the solutions of lower-order corrections. Here, we omit the details of
how complex frequencies transfer from lower- to higher-order corrections. All frequencies in
equation (8) appearing in a particular correction of a particular density-matrix element are
obtained in such an iterative way. As the correction order increases, so does the number of
terms, i.e. frequencies in equation (8). The analytical expressions of these matrix elements are
given in table 1.

The terms in equation (8) have complex frequencies whose values can be grouped into three
groups. The terms with spontaneous emission rate 0 in the real part of the complex frequency
of ωi follow exponential decay and rapidly decay to zero for magnetic fields considered
here and because 0 is much larger than γ . Following this short time interval, the evolution
of EIA is determined by the evolution of ground-level populations and coherences whose
complex frequencies are shown in the first three rows of table 1. In figure 5, we show only
the time evolution given by those complex frequencies, when the contributions from all other
density-matrix elements are practically zero. For complex frequencies belonging to ground-level
coherences, the ratio between the real and imaginary parts of the complex frequency depends on
the magnetic field Bs. For smaller Bs, corresponding to the range of magnetic fields of the EIA,
γ >

2lFgµB

h̄ Bs and the oscillations are over-damped. For larger Bs, the values outside the EIA, the
oscillator performs an under-damped oscillation. This is clearly seen in the time dependence of
(ρg−1,g+1)x2(t), presented in figure 6 for different values of Bs.
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Figure 6. Real (a) and imaginary (b) parts of the time dependence of
(ρg−1,g+1)x2(t) for five magnetic fields. We give dependences for Bs such that
two of them are smaller (red and green curves) and two are larger (blue and
cyan curves) than Bhm (black curve). Bhm is the magnetic field corresponding
to the half amplitude of the nCL. There are qualitative differences of transient
waveforms of (ρg−1,g+1)x2 in these two regions: damped oscillations for Bs > Bhm

and monotonic decay to a steady-state value for Bs < Bhm . The presented results
are for linearly polarized light, 0 = 2π6 MHz, � = 0.0150 and γ = 0.0030.

Figure 7. FWHM (a) and amplitude (b) of EIA (blue curves) and the real part of
(ρg−1,g+1)x2(t) (green curves) as a function of time. Note that in (b) there are
different scales for amplitudes indicated with different colors (corresponding
to blue and green). The presented results are for linearly polarized light,
0 = 2π6 MHz, � = 0.0150 and γ = 0.0030.

In figure 7, we compare the time dependence of (ρg−1,g+1)x2(t) and of the exact solution
for EIA. It can be seen that their amplitudes (with opposite signs) and FWHMs have almost
identical time developments. On the other hand, our analysis shows that during the transient
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regime, (ρg−1,g+1)x2(t) can be approximated by

(ρg−1,g+1)x2(t) ' (ρg−1,g+1)x2

[
1 − e−(γ−i(2lFgµB/h̄)Bs)t

]
(10)

' nCL(Bs)
[
1 − e−(γ−i(2lFgµB/h̄)Bs)t

]
,

after wide Lorentzians were again replaced with 1
0

. Due to very similar transient behavior
with EIA (figure 7), equation (10) effectively relates the transient behavior of EIA, the time
development of its amplitudes and linewidths, with the Lorentzian peak in the steady-state
solution of (ρg−1,g+1)x2(t). The analytical expression for transient EIA amplitude can thus
be approximated by using equation (10) as (ε2

−1)�2(−2+7b)

450γ
(1 − e−γ t). For EIA’s FWHM, a

transcendental equation is obtained which has no analytical solution.
From the time-dependent analysis of EIA by a perturbative method, we have found that

the transient behavior of EIA is influenced by the transient behavior of ground-level Zeeman
coherences. We see that a narrow Lorentzian peak, which appears in the steady solutions of
(ρg−1,g+1)x2 and in EIA, plays a role in their time-dependent behavior. Their time dependence
shows over-damped oscillations, as opposed to under-damped oscillations of their pedestals.

4. Conclusion

Steady-state and time-dependent perturbation methods were used to describe the development of
EIA. For this study, we used the closed Fg = 1 → Fe = 2 transition in the Hanle configuration.
The analytical expressions of the perturbative method present a strong dependence of EIA on
coherences developed in ground-state Zeeman sublevels, and on the efficiency of spontaneous
coherence transfer. This method allowed us to follow the transfer of the narrow Lorentzian
found in the analytical expression of the second correction of ground-level Zeeman coherences,
(ρg−1,g+1)x2 , as a function of external magnetic field, to higher-order corrections of other density-
matrix elements, and to the EIA. The behavior of EIA closely follows the behavior of the
peak in (ρg−1,g+1)x2 . If spontaneous emission of coherences from the excited-state Zeeman
sublevels is suppressed, the steady-state resonances of both ground-state Zeeman coherences
and optical coherences change sign and the process leads to EIT. Since the atomic scheme
Fg = 1 → Fe = 2 does not have dark states among the ground-state sublevels, EIT, which
appears when spontaneous transfer is suppressed, is not due to CPT, but due to the interference
between the amplitudes of ground-state Zeeman sublevels.

The time-dependent perturbation method shows similar, over-damped oscillations of the
narrow Lorentzian in (ρg−1,g+1)x2(t) and of the EIA, contrary to the under-damped oscillations
of the same density-matrix elements, but for magnetic fields outside narrow peaks. The same
expression and parameters that define the steady-state linewidths of the second correction of
the ground-level Zeeman coherences, and of the EIA, γ h̄

lFgµB
, define the critical magnetic field at

which the transient behavior of EIA changes from over-damped to damped oscillations.

Acknowledgments

This work was supported by the Ministry of Science and Technological Development of the
Republic of Serbia, under grant number III45016. We thank A Kovačević for a careful reading
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Appendix A. Optical Bloch equations

OBEs were solved for linearly polarized light EE(Er0, t) = Eex cos(ωt)E0x directed along the
x-axis and for magnetic field EB along the z-axis. The quantization axis is along the z-axis.
In explicit form, the OBEs stand:

ρ̇ei ,e j = i(ωe j − ωei )ρei ,e j +
iE0x

2
√

2h̄

Fg∑
k=−Fg

[
ρ̃ei ,gk (−µgk ,e j ,−1 + µgk ,e j ,+1) + (µei ,gk ,−1 − µei ,gk ,+1)ρ̃gk ,e j

]
− 0ρei ,e j − γρei ,e j ,

˙̃ρei ,g j
= i(ωL + ωg j − ωei )ρ̃ei ,g j +

iE0x

2
√

2h̄

×


Fe∑

k=−Fe

[ρei ,ek (−µek ,g j ,−1 + µek ,g j ,+1) +
Fg∑

k=−Fg

[(µei ,gk ,−1 − µei ,gk ,+1)ρgk ,g j ]


−

0

2
ρ̃ei ,g j − γ ρ̃ei ,g j ,

˙̃ρg j ,ei
= i(−ωL + ωei − ωg j )ρ̃g j ,ei +

iE0x

2
√

2h̄

×


Fg∑

k=−Fg

[ρg j ,gk (−µgk ,ei ,−1 + µgk ,ei ,+1)] +
Fe∑

k=−Fe

[(µg j ,ek ,−1 − µg j ,ek ,+1)ρek ,ei ]


−

0

2
ρ̃g j ,ei − γ ρ̃g j ,ei ,

ρ̇gi ,g j = i(ωg j − ωgi )ρgi ,g j

+
iE0x

2
√

2h̄

Fe∑
k=−Fe

[
ρ̃gi ,ek (−µek ,g j ,−1 + µek ,g j ,+1) + (µgi ,ek ,−1 − µgi ,ek ,+1)ρ̃ek ,g j

]
−(2Fg + 1)0

q=+1∑
q=−1

[b + (1 − b)δi j ]µei+q ,gi ,qµ
∗

e j+q ,g j ,q
ρei+q ,e j+q

−γ

[
ρgi ,g j −

1

(2Fg + 1)
δi j

]
. (A.1)

Appendix B. Derivation of equation (5)

We start from equation (4). A new matrix P = −A−1
0 Apert is introduced that has dimensions

64 × 64. Matrix P has elements with indices from (g−1, g−1) to (e+2, e+2) corresponding to
density-matrix elements of ρ. Matrix P and all the other presented results are obtained by using
the application for analytical calculations.

The solution for zeroth-order correction x0 is equal populations among the ground states
by 1/3. From equation (4) the second correction is x2 = P2x0, which for ρg−1,g+1 yields the
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Table B1. Analytical expressions for elements of matrix P that were used to
calculate equation (5).

Element of matrix P Analytical expression

P(g−1 ,e0),(g−1 ,g−1)

−1−ε
, −

P(e0 ,g+1),(g+1 ,g+1)

1−ε
−

i
√

2
15 �

2γ +0−i
2lFg µB

h̄ Bs

P(g−1 ,g+1),(e−1 ,g0)

−1−ε
, −

P(g−1 ,g+1),(g0 ,e+1)

1−ε
−

ib0�

2
√

10(γ +0−i
2lFe µB

h̄ Bs)(γ−i
2lFg µB

h̄ Bs)

P(g0 ,e+1),(g0 ,g0)

−1−ε
, −

P(e−1 ,g0),(g0 ,g0)

1−ε
−

i
√

2
5 �

2γ +0−i
2lFe µB

h̄ Bs

P(g−1 ,g+1),(e−2 ,g−1)

−1−ε
, −

P(g−1 ,g+1),(g+1 ,e+2)

1−ε
−

ib0�

6
√

5(γ +0−i
2lFe µB

h̄ Bs)(γ−i
2lFg µB

h̄ Bs)

P(g+1 ,e+2),(g+1 ,g+1)

−1−ε
, −

P(e−2 ,g−1),(g−1 ,g−1)

1−ε
−

2i�
√

5(2γ +0−i
4lFe µB

h̄ Bs+i
2lFg µB

h̄ Bs)

P(g−1 ,g+1),(e0 ,g+1)

−1−ε
, −

P(g−1 ,g+1),(g−1 ,e0)

1−ε
−

ib0�
√

30(γ +0−i
2lFe µB

h̄ Bs)(γ−i
2lFg µB

h̄ Bs)
−

−
i�

√
30(−γ +i

2lFg µB
h̄ Bs)

following terms,

(ρg−1,g+1)x2 =
1
3 [P(g−1,g+1),(e0,g+1) P(e0,g+1),(g+1,g+1) + P(g−1,g+1),(e−1,g0) P(e−1,g0),(g0,g0)

+ P(g−1,g+1),(e−2,g−1) P(e−2,g−1),(g−1,g−1) + P(g−1,g+1),(g0,e+1) P(g0,e+1),(g0,g0)

+ P(g−1,g+1),(g−1,e0) P(g−1,e0),(g−1,g−1) + P(g−1,g+1),(g+1,e+2) P(g+1,e+2),(g+1,g+1)] (B.1)

or can be expressed through x1 from x2 = Px1 as

(ρg−1,g+1)x2 = (ρe0,g+1)x1 P(g−1,g+1),(e0,g+1) + (ρe−1,g0)x1 P(g−1,g+1),(e−1,g0) + (ρe−2,g−1)x1 P(g−1,g+1),(e−2,g−1)

+ (ρg0,e+1)x1 P(g−1,g+1),(g0,e+1) + (ρg−1,e0)x1 P(g−1,g+1),(g−1,e0) + (ρg+1,e+2)x1 P(g−1,g+1),(g+1,e+2).

(B.2)

Equation (5) can be obtained from either equation (B.1) or equation (B.2) where analytical
expressions for elements of matrix P can be found in table B1.
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