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Abstract
We analyse and compare the positive and negative arguments on whether
quantum interference violates the classical law of the addition of
probabilities. The analysis takes into account the results of recent
interference experiments in neutron, electron and atom optics. Nonclassical
behaviour of atoms was found in atomic experiments where the
measurements included their time of arrival and space distribution. We
determine probabilities of elementary events associated with the nonclassical
behaviour of particles in interferometers. We show that the emergence of the
interference pattern in the process of accumulation of such elementary
events is consistent with the classical law of the addition of probabilities.

Keywords: Quantum interference, transverse momentum distribution,
probability laws, atom optics, neutron optics, compatibility versus
complementarity

1. Introduction

In the article Quantum theory and the foundations of
probability Koopman [1] wrote:

‘Ever since the advent of modern quantum mechanics
in the late 1920s, the idea has been prevalent that the
classical laws of probability cease, in some sense,
to be valid in the new theory. More or less explicit
statements to this effect have been made in large
number and by many of the most eminent workers in
the new physics [1a]. Some authors have even gone
further and stated that the formal structure of logic
must be altered to conform to the terms of reference
of quantum physics [1b].

Such a thesis is surprising, to say at least, to anyone
holding more or less conventional views regarding
the position of logic, probability and experimental
science: many of us have been apt—perhaps too
naively—to assume that experiments can lead to
conclusions only when worked up by means of logic

and probability, whose laws seem to be on a different
level from those of physical science.’

The primary object of Koopman’s paper is to show that (1)
the thesis in question is entirely without validity and is the
product of a confused view of the laws of probability, and (2)
the situation can be straightened out at a very elementary level.
All that is needed is to make clear and explicit the concept of
event.

In section 2 we define events, taking as the starting point
Koopman’s argumentation and conclusions, and in section 3
their probabilities which are appropriate for an interference
phenomena. In section 4 we add the wavefunction of
the transverse motion in the coordinate and the momentum
representation, and in section 5 we show that the interference
phenomena is a consequence of the fact that the particle
behaviour behind the grating depends on the grating’s
parameters. In section 6 we determine the probabilities of
events associated with this behaviour and show that classical
laws of probabilities are not necessarily violated in quantum
interference. The conclusion is given in section 7.
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Probabilities in quantum interference

2. Koopman’s analysis of the standard arguments
purporting to show that quantum physics is
inconsistent with classical probability

The standard argument starts with the Young interference
experiment where light emitted from the source S and
collimated by passing through the slit C can reach any point x
on a screen by passing through one or the other or both of the
slits A, B. When A or B is closed, there are no interference
fringes on the screen. However, such fringes are present when
they are both open, meaning that the intensity of light at a point
x is not the sum of intensities passing through A and B.

Quantum physics accounts for interference in terms of
statistics of photons. When a corpuscule of light leaves C, it
may reach x in any of the three cases: (i) with A open and B
closed; (ii) with A closed and B open; (iii) with both open.
And the intensity of light at x in each of these situations is
proportional to the corresponding probability of the photon’s
reaching x . If the probabilities are denoted by pA, pB , pA,B ,
respectively, we obviously do not have pA,B = pA + pB ,
because of the interference. This is an alleged experimental
violation of the law of total probability, according to the
following reasoning: ‘the event of the photon’s reaching x
when A and B are both open must occur in one of the following
mutually exclusive ways: either by its passing through A
(probability pA) or through B (probability pB ); therefore
probability should be pA + pB and not the observed value pA,B .’

The fallacy contained in the above argument, explains
Koopman [1], lies in the fact that pA is not the probability of
the photon’s reaching x passing through A. ‘The only correct
characterization of pA in the framework of quantum mechanics
is as the probability of photon’s reaching x ‘by the agency of
A alone being open’. Similarly pA,B must be described as
the probability of reaching x by the agency of both A and B
being open. Thus pA and pB are not the probabilities of two
different outcomes of the same trial but of the same outcomes
of different types of trials: the principle of total probability
does not even enter.’

3. Appropriate probabilities for interference
phenomena

In fact, Koopman’s argumentation leads to the main theoretical
problem of quantum interference, that is the determination
of the following probabilities, introduced by Selleri and
Tarrozi [2]: PA—probability of a quantum particle (quanton)
reaching x after passing through A by the agency of both A
and B being open; PB—the probability of a quantum particle
(quanton) reaching x after passing through B by the agency of
both A and B being open.

From Koopman’s explanation it follows that Feyn-
man [1, 3] implicitly identified the probabilities PA and PB

with the probabilities pA and pB , respectively: PA = pA;
PB = pB . From this identification, which has not been sup-
ported by experiment, the conclusion about the violation of
classical probability laws in quantum interference has been
derived.

Implicitly, Bohr’s discussion with Einstein [4] was about
the relation between these probabilities. Apparently, Bohr had

difficulty accepting the validity of the inequalities

PA �= pA, PB �= pB . (1)

In order to avoid accepting the latter inequalities, Bohr denied
the existence of probabilities PA and PB , by denying the
existence of the particle’s paths. The latter conclusion we
draw from Bohr’s analysis of the two-slit experiment [4]:

‘A closer examination showed, however, that the
suggested control of the momentum transfer would
involve latitude in the knowledge of the position of
the diaphragm, which would exclude the appearance
of the interference phenomena in question. . ..

This point is of great logical consequence, since it
is only the circumstance that we are presented with
a choice of either tracing the path of a particle or
observing interference effects, which allows us to
escape from the paradoxical necessity of concluding
that the behaviour of an electron or a photon should
depend on the presence of a slit in the diaphragm
through which it could be proved not to pass.’

Therefore, for Bohr the dependence of the particle’s
behaviour on its environment (boundary conditions on the
grating) was paradoxical. In order to avoid this ‘paradox’ Bohr
formulated the principle of complementarity.

In the present time we are forced to reconsider this
conclusion of Bohr’s, taking into account the results of
quantum interference experiments performed with neutrons
(reviewed by Rauch and Werner [5]), with electrons [6], with
photons [7], with atoms [8, 9], and with large molecules [10].
In our opinion, the results of those experiments force us to
conclude that the behaviour of a photon, neutron, electron,
atom, molecule behind the grating depends on the number of
open slits, their widths and mutual distances. Consequently,
the behaviour of an electron or a photon DOES DEPEND on
the presence of a slit in the diaphragm through which it had
not passed.

4. The wavefunction of the transverse motion in the
coordinate and in the momentum representations

A particle’s behaviour and motion behind the grating is
determined by its wavefunction, which is a solution of the
Schrödinger equation. If the source is far from the grating the
solution in front of the grating is a plane wave with the initial
momentum p = h̄k along the longitudinal direction y. Behind
the grating the solution was most often written in the Fresnel–
Kirchhoff form [9–11]. By invoking the approximation
which is equivalent to the paraxial approximation in optics,
Tomonaga [12] wrote the solution in the form of a product
of the longitudinal and transverse parts, the former being a
plane wave. The transverse part was written in the form
of a superposition of Gaussians (which spread in time) by
Tomonaga [12], Zurek [13], Bonifacio and Olivares [14], and
others. Božić et al [15] showed that the following form of the
solution:

�(x, y, t) = 1√
2π

e−iωt eiky
∫ +∞

−∞
dkx c(kx)eikx x e−ik2

x y/2k,

y � 0 (2)
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is equivalent to the Fresnel–Kirchhoff form. The function
c(kx ) in equation (2) is determined by the boundary values
of the wavefunction �(x, y, t) at y = 0 and t = 0,

c(kx ) = 1√
2π

∫ +∞

−∞
dx �(x, 0, 0)e−ikx x . (3)

It is assumed that c(kx) tends to zero when px/p = kx/k is
not much smaller than one. This assumption is equivalent to
the paraxial approximation in optics.

The solution is the product of the plane wave propagating
along the y-axis, and of an integral which depends on x and y.
Now we invoke wave–particle duality, as understood by de
Broglie [16], and start to consider a particle surrounded by the
wave described by the wavefunction (2). Its form suggests
that a particle arriving at the slits continues to move with
longitudinal momentum p = mv along the y-axis. But,
there is a probability density c(kx ) that the particle acquires
a value px = h̄kx of the transverse momentum. So, its motion
(evolution) along the x-axis is nonstationary and it is described
by a nonstationary solution of the Schrödinger equation. From
equation (2) one derives the wavefunction of the transverse
motion by substituting the value y = vt of the particle’s y-
coordinate at time t in the integral. So,

ψtr (x, t) = 1√
2π

∫ +∞

−∞
dkx c(kx)eikx x e−ik2

x y/2k

= 1√
2π

∫ +∞

−∞
dkx c(kx )e

ikx x e−iωx t , y = vt � 0 (4)

where ωx ≡ p2
x/2mh̄ and

c(kx) = 1√
2π

∫ +∞

−∞
dx ψtr (x, 0)e−ikx x . (5)

The function c(kx ) is proportional to the probability amplitude
of the particle’s transverse momentum c′(px ).

By substituting the expression (5) into (4) one derives

ψtr (x, t = ym/h̄k)

=
√

k√
2πy

e−iπ/4
∫ +∞

−∞
ψtr(x

′, 0)eik(x−x ′ )2/2y dx ′. (6)

The latter expression of ψtr(x, t) is particularly useful when
ψtr (x, 0) consists of pieces where it takes zero value, like the
example shown in figure 1. This is just the boundary condition
corresponding to the n-slit grating.

For large values of y, equation (6) is approximated by

ψtr (x, t = ym/h̄k)

=
√

k√
2πy

e−iπ/4eikx2/2y
∫ +∞

−∞
dx ′ψtr (x

′, 0)e−ikxx ′/y. (7)

By comparing (5) and (7) one finds

ψtr(x, t = ym/h̄k) =
√

k√
y

e−iπ/4eikx2/2yc(kx/y). (8)

Far from the slits, the transverse wavefunction in the coordinate
representation is proportional to the wavefunction of the
transverse motion in the momentum representation, where
kx/y plays the role of kx . This is an indirect proof of the
equivalence of two forms of the solution of Schrödinger’s

equation; the form presented by equation (2) and the Fresnel–
Kirchhoff form. The latter form leads (up to a constant) to the
relation (8), as shown in [17].

For the boundary conditions of figure 1 it is easy to perform
the integration in equation (5). The resulting expressions for
the one-slit (centred at xc = z) function c1(kx ) and n-slit
function cn(kx ) are

cz
1(kx ) =

√
2√
πδ

sin kx δ

2

kx
e−ikx z (9)

cn(kx ) =
√

2√
πδ

sin kx δ

2

kx

n∑
j=1

e−ikx z j

=
√

2√
πnδ

sin kx δ

2

kx

sin( kx dn
2 )

sin kx d
2

, n > 1. (10)

The one-slit function is of particular interest since the n-slit
function is the sum of one-slit functions. The one-slit function
is a product of a real factor, which depends on the slit width,
by the complex factor, which depends on the centre of the
slit coordinate. The n-slit function cn(kx ) contains the former
factor too. Its second factor, resulting from the summation of
phase factors of all slits, depends on the slit separation d.

It is important to note that the function cn(kx ) is
independent of the initial longitudinal momentum and of the
coordinate y. Its modulus square, |cn(kx )|2 is proportional to
the probability density of the particle transverse momentum
px = h̄kx . It is graphically represented in figure 2 for the
gratings with n = 1, 2, 4, 6 and 8 slits. The characteristic
quantity, the ratio of slit width to slit separation, is δ/d = 0.5.

5. The interference patterns as a consequence of the
dependence of the particle’s behaviour behind the
grating on the grating’s parameters

The independence of |cn(kx )|2 on the distance from the grating
means that the particle’s transverse momentum distribution is
determined only by the width of the slits and their mutual
distances. It is the same for all values of the initial longitudinal
momentum, as far as the values of the transverse momenta are
much smaller than the initial longitudinal momentum. From
this fact we conclude that the particle’s behaviour is determined
by all slits illuminated by the initial particle wave, not only by
the one through which the particle has passed.

It seems that this influence can be attributed to the wave
which accompanies a particle and which evolves according
to equation (2). The transverse motion of the particle is
determined by the transverse momentum it acquired in passing
through a slit and by the evolution of its wave. Its longitudinal
motion is classical and satisfies the relation y = (p/m)t .
The modulus square of the transverse wavefunction, presented
in figure 3 (n = 2) and figure 4 (n = 8), determines the
distribution along the x-axis for the sets of fixed distances y.

The latter figures explain the ‘stationary’ interference pat-
tern as a phenomenon built up by the process of accumulation
of individual events. The particles of the same initial momen-
tum p = mv sent through the slits arrive at various points x on
the screen at the distance y because they have acquired various
transverse velocities passing through the slits. The probability
of particle arrival at the point (x, y) at time t = y/v is equal
to |ψtr(x, y = tv)|2. But, for the final accumulated pattern
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Figure 1. Boundary conditions for the wavefunctionψtr ( x, t) at t = 0 ( y = 0).

Figure 2. The particle’s transverse momentum distribution |cn(kx d)|2 behind the grating with (a) one slit, (b) two slits, (c) four slits, (d) six
slits and (e) eight slits; δ/d = 0.5.

(‘stationary’ pattern), time of arrival is unimportant. Conse-
quently, the distribution over x of accumulated particles, for
a fixed value of y, is given by |ψtr(x, y = th̄k/m)|2. This is
why the same results are obtained by sending many particles
at once with the same initial velocity.

By measuring the particle’s position and time of arrival
Kurtsiefer et al [9] measured the time dependence of the
modulus square of the transverse wavefunction. The beam
of atoms used in the experiment was characterized by a wide
distribution of the initial longitudinal velocities. This method
of measurement is based on the relation t = y/v and the
independence of the function |ψtr(x, t = y/v)|2 from the
initial velocity v. The experimental results of Kurtsiefer et al
are in good agreement with |ψtr(x, t)|2 evaluated using the
Fresnel–Kirchhoff integral. Since the modulus square of the

transverse wavefunction (4) is equivalent to the one evaluated
from the Fresnel–Kirchhoff integral (as was shown by Božić
et al [15]), the distributions evaluated here are in agreement
with the experimental results.

By comparing the momentum distribution (figure 2) and
the space distribution (figures 3 and 4) one sees that in
the Fraunhofer region, the values of x corresponding to
the maximum of the space distribution are consistent with
the values corresponding to the maximum of the transverse
momentum distribution. The following relations are valid:

xmax = (px,max /m)t = (px,max /m)(ym/p) = kx,max y/k.
(11)

This property is the direct consequence of the relation (8)
between the transverse momentum wavefunctions in the
coordinate and in the momentum representations.
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Figure 3. The function |ψtr (x, t)|2 behind the n = 2 grating
(δ = 0.1 µm, d = 0.2 µm) close to the slits (above) and far from the
slits (below). The initial longitudinal wavevector is
k = (π/8)× 1012 m−1, the particle mass is m = 3.8189 × 10−26 kg,
the initial particle velocity v = 1084 m s−1.

Figure 4. The function |ψtr (x, t)|2 behind the n = 8 grating
(δ = 0.1 µm, d = 0.2 µm) close to the slits (above) and far from the
slits (below). The initial longitudinal wavevector is
k = (π/8)× 1012 m−1, the particle mass is m = 3.8189 × 10−26 kg,
the initial particle velocity v = 1084 m s−1.

6. The de Broglian probabilities in the n-slit
interferometer

The evident dependence of the momentum distribution on
the grating parameters and the close relation between the
momentum distribution and the space distribution clearly show,
in our opinion, that the behaviour of a photon, neutron,
electron, atom, molecule behind the grating depends on the
number of open slits, their widths, and mutual distances.

Figure 5. The probability density P̃(x, t) of a particle’s arrival at
the point x at time t (y = vt), behind the n = 1 grating (δ = 1 µm),
evaluated from (14) employing the following parameters:
m = 6.6432 × 10−27 kg, k = 4π × 1010 m−1, and
v = 1995.58 m s−1.

This dependence can be attributed to the wave, which is the
superposition of all waves emerging from every slit illuminated
by the initial particle wave. This wave surrounds the particle
and propagates with it.

The probability of the particle’s arrival at a certain point
(x, y) at time t is P(x, y, t) = |�(x, y, t)|2. If the law of
the addition of probabilities is not violated, this probability
should be equal to the sum of probabilities Pi(x, y, t), where
Pi(x, y, t) is the probability of the quantum particle (quanton)
reaching (x, y) at time t after passing through slit i by the
agency of all n slits being open. Thus,

P(x, y, t) = |�(x, y, t)|2 = |ψtr(x, t)|2 =
n∑

i=1

Pi(x, y, t).

(12)
The probabilities Pi(x, y, t) are called de Broglian probabili-
ties [20].

The direct experimental determination of probabilities
Pi(x, y, t) would be equivalent to the so-called which-path
experiment. But, experiments aimed to determine the path with
certainty have resulted in the destruction of the interference
pattern [18, 19]. Because of that, it was not possible to
measure the probabilities Pi(x, y, t) directly. Moreover, it
was concluded from this fact that the interference patterns
and particle trajectories were incompatible [4, 18, 19]. This
is why there are no comprehensive theoretical studies of the
determination of the probabilities Pi(x, y, t).

In our opinion, the incompatibility of the interference and
the particle trajectories does not follow from the results of
which-way experiments. We consider that these results point
to the necessity to determine theoretically the probabilities
Pi(x, y, t). The first step would be theoretical investigation of
all possible classes of unknown positive definite probabilities
Pi(x, y, t), i = 1, 2, . . . , n, defined by (12). For this purpose it
is necessary to introduce additional plausible assumptions, as
was done in [20–22]. The final goal is to determine which
class corresponds to the real experiments and interference
phenomena.

In this paper we determine a class of Pi (x, y, t), taking into
account the above comparison of the transverse momentum
distribution with the space distribution in the Fraunhofer
region. Based on the results of this comparison, we assume
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(b)

(c)

Figure 6. All graphs are calculated for the two-slit grating with δ = 0.1 µm, d = 0.2 µm, k = (π/8)× 1012 m−1, m = 3.8189 × 10−26 kg,
v = 1084 m s−1. (a1) and (a2) The probability density P̃(x, t) of a particle’s arrival at point x at time t (y = vt) behind the grating
evaluated from (14). (b) The distribution functions |ψtr (x, t)|2 and P̃(x, t) for one value of t (y) far from the slits. (c) The probabilities
P̃i(x, t) evaluated from (15).

(b)

(c)

Figure 7. All graphs are calculated for an eight-slit grating with δ = 0.1 µm, d = 0.2 µm, k = (π/8)× 1012 m−1, m = 3.8189 × 10−26 kg,
v = 1084 m s−1. (a1) and (a2). The probability density P̃(x, t) of a particle’s arrival at point x at time t (y = vt) behind the grating
evaluated from (14). (b) The distribution functions |ψtr (x, t)|2 and P̃(x, t) for one value of t (y) far from the slits. (c) The probabilities
P̃i(x, t) evaluated from (15).

that a particle with transverse momentum px = h̄kx which was
at point (x ′ = x−h̄kx t/m, y = 0) at time t = 0 arrives at point
(x, y) at time t . Of course, we have to integrate over all possible
kx and x ′. Thus, we assume that |�(x, y, t)|2 = |ψtr (x, t)|2
can be approximated by the expression
∫ +∞

−∞
dkx

∫ +∞

−∞
dx ′|cn(kx )|2|ψtr (x

′, 0)|2δ(x − x ′ − h̄kx t/m)

≡ P̃(x, t). (13)

After substitution of the boundary values of |ψtr (x, 0)|2 of
figure 1 into equation (13), integration over x ′ leads to

P̃(x, t) = 1

nδ

n∑
i=1

∫ (m/h̄t)(x−x i
l )

(m/h̄t)(x−x i
r )

|cn(kx )|2dkx =
n∑

i=1

P̃i(x, t)

(14)
where xi

l and xi
r are the coordinates of the left and right edges of

the i th slit. In addition, by comparing equations (14) and (12)
we conclude that the probabilities Pi(x, y, t) of elementary
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events, in the region far from the slits, are given by

P̃i (x, t) = 1

nδ

∫ (m/h̄ t)(x−x i
l )

(m/h̄t)(x−x i
r )

|cn(kx )|2 dkx . (15)

This is the expression for the probability of a particle reaching
(x, y) at time t after passing through the slit i of the n-
slit grating, derived by assuming that particle and wave
properties are compatible. Relation (8) is implicitly used in this
derivation, as well as the law of the addition of probabilities
of elementary events (a particle’s arrivals along the allowed
trajectories).

In figures 5–8 we present graphically various combi-
nations of probabilities P̃(x, t), P̃i(x, t) and P(x, y, t) =
|ψtr (x, t)|2 for one-slit, two-slit and eight-slit gratings. In or-
der to calculate the graphs presented in figures 5 and 8 we used
the following numerical values: grating parameters δ = 1 µm
and d = 8 µm; particle mass, m = 6.6432 × 10−27 kg;
initial longitudinal wavevector, k = 4π × 1010 m−1; ini-
tial longitudinal velocity, v = 1995.58 m s−1. These pa-
rameters are the same as in the experiment of Kurtsiefer
et al [9]. The graphs presented in figures 6 and 7 are cal-
culated with the following numerical values: δ = 0.1 µm,
d = 0.2 µm, k = (π/8)× 1012 m−1, m = 3.8189 × 10−26 kg,
v = 1084 m s−1, which are the parameters in the experiment
of Keith et al [8].

By comparing the P̃(x, t) graphs in figures 5, 6(a), 7(a),
and 8(a) with the corresponding graphs of P(x, y, t) =
|ψtr (x, t)|2 in figures 3 and 4 in this paper and in figures 2
and 3 in [15], one sees that near the slits (Fresnel regime) the
distributions P̃(x, t) and |ψtr (x, t)|2 qualitatively look similar
but they differ numerically. Far from the slits (Fraunhofer
region) the distributions P̃(x, t) and |ψtr (x, t)|2 are almost
identical.

In order to show more clearly the latter agreement, the
functions P̃(x, t) and |ψtr(x, t)|2 are presented on the same
graphs in figures 6(b), 7(b), and 8(b), in the region where
equation (14) approximates very well the modulus square of
equation (4). By taking into account that P̃(x, t) is obtained
by summing the probabilities of particle arrival at the point
(x, y) at time t along various possible trajectories, we conclude
that far from the slits the function P̃i(x, t) might present the
probability of a particle reaching (x, y) at time t after passing
through the slit i of the n-slit grating. Near the slits it does not
present that probability, because the quanton trajectories near
the slits are more complicated than further from the slits. The
straight lines could only approximate the quanton trajectories
far from the slits. The graphs of distributions P̃i(x, t) are
presented in figures 6(c), 7(c), and 8(c).

7. Conclusion

The wavefunction of a particle in the n-slit interferometer
is determined, in the coordinate and in the momentum
representations. The evident dependence of the momentum
distribution on the grating parameters and the close relation
between the momentum distribution and the space distribution
clearly show, in our opinion, that the behaviour of a photon,
neutron, electron, atom, molecule behind the grating depends
on the number of open slits, their widths, and mutual distances.

(a)

Figure 8. All graphs are calculated for the two-slit grating with
δ = 1 µm, d = 8 µm, m = 6.6432 × 10−27 kg, k = 4π × 1010 m−1,
and v = 1995.58 m s−1. (a) The probability density P̃(x, t) of a
particle’s arrival at point x at time t (y = vt) behind the grating
evaluated from (14). (b) The distribution functions |ψtr (x, t)|2 and
P̃(x, t) for one value of t (y) far from the grating. (c) Probabilities
P̃i(x, t) evaluated from (15).

We determined the probabilities of events associated with this
behaviour and explained how the interference pattern emerges
in the process of accumulation of such individual events
(particles arrive at the screen along the allowed trajectories).
These results invalidate the assertions that classical laws of
probability are violated in quantum interference.
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