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Abstract. We present and comment on a new quantity that we have recently introduced: the path
integral ideal. The new quantity governs the flow of a discrete quantum theory to its continuum limit.
Path integral ideals satisfy a unique integral equation – the distinction between different quantum
theories being in the boundary conditions. An asymptotic expansion of this equation has led to the
derivation of a generalization of Euler’s summation formula for path integrals. The new analytical
method has brought about a systematic improvement of the convergence of path integrals. Applied to
numerical procedures, the new analytical input has resulted in the speedup of numerical simulations
by many orders of magnitude. On the analytical side, the integral equation for ideals may turn out
to be a useful setting for extending the obtained results to a wider setting – e.g. to p-adic valued
theories and theories on non-commuting space-times.
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1. INTRODUCTION

Path integrals present a rich and flexible formalism for dealing with quantum and
statistical theories [1, 2] that has proven extremely useful for handling symmetries,
deriving non-perturbative results, establishing connections between different theories
[3, 4], and extending the quantization procedure to ever more complicated systems.
They have served as catalysts for the exchange of key ideas between different areas of
physics, most notably high energy and condensed matter physics [5, 6]. Today, analytical
and numerical approaches to path integrals [7, 8, 9, 10] play important roles not only in
physics but also in chemistry and materials science, and are acquiring a prominent role
in mathematics and modern finance [11].
Further development of the path integral method is constrained by the small number
of solvable models, as well as by our rather limited knowledge of their precise math-
ematical properties. In fact, most of our knowledge is negative, e.g. we know which
trajectories do not contribute to the path integral rather than which do. One of the few
positive statements concerning path integrals is that relevant trajectories exhibit stochas-
tic self-similarity [1]. As a result they have non-trivial fractal dimension and jaggedness
[12, 13]. Researchers working on numerical approaches to path integrals have success-
fully utilized these kinematic consequences of self-similarity to produce efficient path-
generating algorithms [9, 10].
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In a recent series of papers [14, 15] we have investigated the dynamical implications
of stochastic self-similarity by studying the relation between discretizations of path
integrals with different coarseness. This has resulted in a systematic analytical procedure
that may be used to reduce path integral error to O(ε p

N) for arbitrary p ∈ N, where εN is
the discrete time step. Note that εN = T/N, T being the time of propagation and N the
discretization coarseness. This reduction of error brings about a substantial increase in
the speed of numerical algorithms. Additional information can be found on our web site
[16]. Self-similarity played a crucial role in this procedure in that it allowed us to derive
an integral equation relating discretized theories viewed at different coarseness and to
solve it in terms of an asymptotic series. The asymptotic expansion, however, implies
that the obtained method is directly applicable only for εN < 1.
The fact that we can arbitrarily decrease the error points to the possibility that one can
extend the formalism and obtain exact information (i.e not given as a power series in
εN , and so valid even for large values of εN) about the continuum theory. Large εN
corresponds to long times of propagation, precisely what interests us in quantum field
theory (or in modern finance). Equivalently, in condensed matter and materials science
this corresponds to the physically most interesting region of small temperatures. Large
εN behavior is also central for determining the energy spectrum of a given model, and
as such is applicable in many areas of physics [11] (e.g. atomic and molecular physics,
quantum dots).
The central quantity we will work with in this paper is the path integral ideal which
governs the flow of a generic discrete theory to the continuum. The ideal was first
introduced in [17]. In that paper we showed that the flow to the continuum is classified
according to the degree of divergence of the potential at spatial infinity. In addition we
derived certain asymptotic properties of ideals. We will here show how the formalism
of ideals may be used to derive a generalization of the Euler summation formula to path
integrals [18].

2. EULER SUMMATION FORMULA FOR ORDINARY
INTEGRALS

The current status of the development of the path integral formalism is quite similar to
that of ordinary integrals before the setting up of integration theory by Riemann. In those
days integrals were calculated directly from the defining formula, i.e. one looked at a
specific discretization of the integral (Darboux sum), attempted to do the sum explicitly,
and finally tried to calculate the continuum limit. For example,

I[ f ]≡
∫ T

0
f (t)dt = lim

N→∞
IN [ f ] , where IN [ f ] =

N

∑
n=1

f (tn)εN , (1)

εN = T/N and tn = nεN . It goes without saying that done this way, even the simplest or-
dinary integrals presented a challenge. The mathematicians of the 18th century did not
have computers at their disposal or the development of integration theory might have
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come much later, i.e. they might have succumbed to doing brute force numerical calcu-
lations of integrals of all but the simplest functions. The problem with these hypothetical
numerical calculations would have been two fold: they would have been inefficient (the
discretized sums converge slowly to the continuum value), and they would have worked
(thus quite probably slowing down the further development of integration theory). Luck-
ily, this early numerical road was not open. The last great step in the development of
integration before Riemann was made by Euler.
Discretization is not unique. This makes it possible to change f (t) to some other function
(adding terms proportional to εN , ε2

N , etc.) without changing the integral. Let us assume
that f ∗(t) is such an equivalent function with the added property that the sums IN [ f ∗] do
not depend on N. In fact we shall present a way of explicitly constructing f ∗(t) for any
given f (t). We first look at the simple case of f (t) = 1. Now

IN [1] =
N

∑
n=1

εN = T , (2)

which is already N-independent. Hence, in this case, all the additional terms vanish.
Note that f ∗(t) is completely determined by the original function f (t) (and by εN), so
that the additional terms necessarily depend only on the derivatives f ′, f ′′, etc.
The second step is to take f (t) = t. In this case we get

IN [t] =
N

∑
n=1

tnεN =
N(N +1)

2
T 2

N2 =
T 2

2
+

T 2

2N
. (3)

From this it follows that IN [t− εN
2 ] = T 2

2 . Therefore, up to f ′′ and higher derivatives of f
that all vanish for linear f (t), we have f ∗(t) = f (t)− εN

2 f ′(t).

We continue this procedure by looking at f (t) = t2. In this case we find

IN [t2] =
N

∑
n=1

t2
n εN =

N(N +1)(2N +1)
6

T 3

N3 =
T 3

3
+

T 3

2N
+

T 3

6N2 . (4)

It follows that IN [t2−εNtn− 2
3ε2

N ] = T 3

3 . In terms of f ∗ this gives f ∗(t) = f (t)− εN
2 f ′(t)−

2ε2
N

3 f ′′(t)+ . . .. The additional terms now depend on higher powers of εN as well as on
higher derivatives and are determined by considering IN [t3], and so on. In this way we
have constructed a procedure for finding f ∗(t) for any given f (t). Remembering that
IN [ f ∗] does not depend on N we find

∫ T

0
f (t)dt =

N

∑
n=1

f (tn)εN − εN

2

N

∑
n=1

f ′(tn)εN − 2ε2
N

3

N

∑
n=1

f ′′(tn)εN + . . . . (5)

This is the well-known Euler summation formula. We may also write it more compactly
as

I[ f ] = IN [ f (p)]+O(ε p
N) , (6)
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where f (p) is the truncation of f ∗ to the first p terms. The Euler formula gives the
analytical relation between integrals and their discretized sums. Looked at numerically,
this formula allows us to increase the speed of convergence of discretized expressions
to the continuum limit. For example, in the defining relation the discretized expressions
differ from the continuum by a term of order O(1/N). By using the Euler sum formula
with p terms we can reduce that error to O(1/N p). All that is needed to do this is that
the integrand is differentiable p−1 times. the following sections we will generalize the
above approach to path integrals.

3. GENERAL PROPERTIES OF PATH INTEGRALS

In the functional formalism the quantum mechanical amplitude A(a,b;T ) = 〈b|e−T Ĥ |a〉
is given in terms of a path integral which is simply the N → ∞ limit of the (N−1)– fold
integral expression

AN(a,b;T ) =
(

1
2πεN

)N
2 ∫

dq1 · · ·dqN−1 e−SN . (7)

The Euclidean time interval [0,T ] has been subdivided into N equal time steps of length
εN = T/N, with q0 = a and qN = b. SN is the naively discretized action of the theory.
We focus on actions of the form

S =
∫ T

0
dt

(
1
2

q̇2 +V (q)
)

, (8)

whose naive discretization is simply

SN =
N−1

∑
n=0

(
δ 2

n
2εN

+ εNVn

)
, (9)

where δn = qn+1−qn, Vn = V (q̄n), and q̄n = 1
2(qn+1 +qn). We use units in which h̄ and

particle mass equal 1.
As was the case with ordinary integrals the definition of the path integrals also makes it
necessary to make the transition from the continuum to the discretized theory, a process
that is far from unique. For theories described by eq. (8) we have the freedom to choose
any point in [qn,qn+1] in which to evaluate the potential without changing physics –
the discretized amplitudes do differ, but they tend to the same continuum limit. The
calculations we present turn out to be simplest in the mid-point prescription where
the potential V is evaluated at q̄n. A more important freedom related to our choice
of discretized action has to do with the possibility of introducing additional terms
that explicitly vanish in the continuum limit. Actions with such additional terms will
be called effective. For example, the term ∑N−1

n=0 εN δ 2
n g(q̄n), where g is regular when

εN → 0, does not change the continuum physics since it goes over into ε2
N

∫ T
0 dt q̇2 g(q),
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i.e. it vanishes as ε2
N . Such terms do not change the physics, but they do affect the speed

of convergence. A systematic study of the relation between different discretizations of
the same path integral will allow us to explicitly construct a series of effective actions
with progressively faster convergence to the continuum. Before we do this we will
parallel the derivation in the previous section and derive some general properties of
the best effective action.
The amplitude A(a,b;T ) of some theory with action S satisfies

A(a,b;T ) =
∫

dq1 · · ·dqn−1A(b,qn−1;εN) · · ·A(q1,a;εN) , (10)

for all N. This general relation is a direct consequence of the linearity of states in a
quantum theory. In analogy with ordinary integrals let us now suppose that there exists
an effective action S∗ that is equivalent to S (i.e that leads to the same continuum limit
for all path integrals) with the additional property that its N-fold discretized amplitude
A∗N(a,b;T ) does not depend on N, i.e. that satisfies

A∗N(a,b;T ) = A(a,b;T ) . (11)

As was the case in the previous section we will in fact construct a general procedure for
evaluating this effective action. For actions of the form given in eq. (8) we may write the
amplitude as

A(qn+1,qn;εN) =
(

1
2πεN

) 1
2

exp
(
− δ 2

n
2εN

)
A (qn+1,qn;εN) , (12)

where the reduced amplitude A → 1 as εN → 0. Writing S∗N as

S∗N =
N−1

∑
n=o

(
δ 2

n
2εN

+ εNW ∗
n

)
, (13)

and using eq. (7), (10) and (11) we find

exp(−εNW ∗
n ) = A (qn+1,qn;εN) . (14)

Note that W ∗
n is reminiscent of some effective potential, so it should depend on q̄n,

however, from the above relation we see that it must also depend on δn. In addition,
W ∗ also has an explicit dependence on the discrete time step εN , hence

W ∗
n = W ∗(δn, q̄n;εN) . (15)

As we have seen, the above functional form is a direct consequence of the linearity
of quantum theory. The equivalence of S and S∗ implies that W ∗ → V (q̄) when εN
and δ go to zero. The final general property of W ∗ follows from the reality of am-
plitudes in the Euclidean formalism. Using the hermiticity of the Hamiltonian we find
A(a,b;T ) = A(a,b;T )† = 〈b|e−T Ĥ |a〉† = 〈a|e−T Ĥ |b〉 = A(b,a;T ). In terms of W ∗ this
gives us

W ∗(δn, q̄n;εN) = W ∗(−δn, q̄n;εN) , (16)
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or, said another way, only even powers of δn are present in the expansion of W ∗:

W ∗(δn, q̄n;εN) = g0(q̄n;εN)+δ 2
n g1(q̄n;εN)+δ 4

n g2(q̄n;εN)+ . . . . (17)

All the functions gk are regular in the εN → 0 limit. The link to the starting theory is now
simply g0(q̄n;εN)→V (q̄n) as εN goes to zero. This concludes the general properties of
W ∗. The remaining properties will be analyzed in the following section by studying the
relation of discretizations of different coarseness.
We next derive an equation for path integral ideals by studying the relation between the
2N-fold and N-fold discretizations of the same theory. From eq. (7) we see that we can
write the 2N-fold amplitude as an N-fold amplitude given in terms of a new action S̃N
determined by

e−S̃N =
(

2
πεN

)N
2 ∫

dx1 · · ·dxN e−S2N , (18)

where S2N is the 2N-fold discretization of the starting action. We have written the 2N-
fold discretized coordinates Q0,Q1, . . . ,Q2N in terms of q’s and x’s in the following way:
Q2k = qk and Q2k−1 = xk. Note that we have q0 = a, qN = b, while the N−1 remaining
q’s play the role of the dynamical coordinates in the N-fold discretized theory. The x’s are
the N remaining intermediate points that we integrate over in eq. (18). It is not difficult
to see that if we use the naively discretized action SN one obtains for S̃N an expression
that is not of the same form as SN . Having in mind the results derived at the beginning
of this section it is best to use the effective action

S∗N =
N−1

∑
n=o

(
δ 2

n
2εN

+ εNW ∗(δn, q̄n;εN)
)

, (19)

which gives the same result for both the 2N-fold and N-fold discretizations. Therefore,
in this case we get

e−S∗N =
(

2
πεN

)N
2 ∫

dx1 · · ·dxN e−S∗2N . (20)

From this it is straightforward to show that path integral ideals satisfy

exp(−εN W ∗(δ ,q;εN)) =
√

2
πεN

∫ +∞

−∞
dy e−2y2/εN (21)

×exp

(
− εN

2
W ∗

(
δ
2
− y,q+

δ
4

+
y
2

;
εN

2

)
− εN

2
W ∗

(
δ
2

+ y,q− δ
4

+
y
2

;
εN

2

))
.

We end this section by briefly commenting on some general properties of the above
integral equation. All quantum theories have been reduced to a single integral equation.
We must first solve this equation and only then impose boundary conditions (εN → 0
limit) that link us to a specific theory. The integral equation is easily solved for quadratic
ideals, in which case we recover the usual free particle and harmonic oscillator results.
Eq. (21) is an good starting point for developing various approximation schemes and for
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analyzing non-perturbative properties of ideals [17]. We also believe that thus integral
equation will have natural extensions to fermions, higher dimensions, as well as to more
complex settings such as p-adic theories and quantum theories on non-commuting space-
times. The general solution of the above integral equation in the form of an asymptotic
expansion will be given in the following section.

4. EULER SUMMATION FORMULA FOR PATH INTEGRALS

In order to solve eq. (21) in the form of an asymptotic expansion we write it as

e−εNW ∗(δn,q̄n;εN) =
(

2
πεN

) 1
2 ∫ +∞

−∞
dy exp

(
− 2

εN
y2

)
F

(
q̄n + y;

εN

2

)
, (22)

where

− 2
εN

lnF(x;εN) = g0

(qn+1 + x
2

;εN

)
+g0

(x+qn

2
;εN

)
(23)

+ (qn+1− x)2 g1

(qn+1 + x
2

;εN

)
+(x−qn)2 g1

(x+qn

2
;εN

)
+ . . .

Note the integral in eq. (22) is in a form that is ideal for an asymptotic expansion [19].
The time step εN is playing the role of small parameter (in complete parallel to the role h̄
plays in standard semi-classical, or loop, expansion). As is usual, the above asymptotic
expansion is carried through by first Taylor expanding F

(
q̄n + y; εN

2

)
around q̄n and then

by doing the remaining Gaussian integrals. Assuming that εN < 1 (i.e. N > T ) we have

g0(q̄n;εN)+δ 2
n g1(q̄n;εN)+δ 4

n g2(q̄n;εN)+ . . . = (24)

=− 1
εN

ln

[
∞

∑
m=0

F(2m) (q̄n; εN
2

)

(2m)!!

(εN

4

)m
]

.

Note that F(2m)(x;εN) denotes the corresponding derivative with respect to x. All that
remains is to calculate these expressions using eq. (23) and to expand all the gk’s around
the mid-point q̄n. This is a straight forward though tedious calculation. In this paper we
will illustrate the general procedure for calculating S∗ by explicitly giving its expansion
to order ε3

N :

g0(q̄n ;εN) = g0

(
q̄n;

εN

2

)
+ εN

[
1
4

g1

(
q̄n;

εN

2

)
+

1
32

g′′0
(

q̄n;
εN

2

)]

+ ε2
N

[
3
16

g2

(
q̄n;

εN

2

)
− 1

32
g′0

2
(

q̄n;
εN

2

)
+

1
2048

g(4)
0

(
q̄n;

εN

2

)

+
3

128
g′′1

(
q̄n;

εN

2

)]

g1(q̄n ;εN) =
1
4

g1

(
q̄n;

εN

2

)
+

1
32

g′′0
(

q̄n;
εN

2

)
(25)
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+ εN

[
3
8

g2

(
q̄n;

εN

2

)
+

1
1024

g(4)
0

(
q̄n;

εN

2

)
− 1

64
g′′1

(
q̄n;

εN

2

)]

g2(q̄n ;εN) =
1
16

g2

(
q̄n;

εN

2

)
+

1
6144

g(4)
0

(
q̄n;

εN

2

)
+

1
128

g′′1
(

q̄n;
εN

2

)
.

In the above relations we expanded g0 up to ε2
N , g1 up to εN , etc. We also disregarded

all the higher gk’s. The reason for this is that the short time propagation of any theory
satisfies δ 2

n ∝ εN while the gk term enters the action multiplied by δ 2k
n . In general, if we

wish to expand the effective action to ε p
N we need to evaluate only g0 (up to ε p−1

N ) and
the remaining p− 1 functions gk (up to ε p−1−k

N ). The task of calculating the effective
action to large powers of εN is time-consuming and is best done with the help of a
standard package for algebraic calculations such as Mathematica. Using Mathematica
we determined the corresponding expressions for p≤ 9.
Although the above system of recursive relations is non-linear, it is in fact quite easy
to solve if we remember that the system itself was derived via an expansion in εN .
Having this in mind we first write all the functions as expansions in powers of εN that
are appropriate to the level p we are working at. For p = 3, we have

g0(q̄n;εN) = V (q̄n)+ εNR1(q̄n)+ ε2
NR2(q̄n)

g1(q̄n;εN) = R3(q̄n)+ εNR4(q̄n) (26)
g2(q̄n;εN) = R5(q̄n) .

Putting this into the Eq. (25) we determine the functions R1 to R5 in terms of V . The
p = 3 level solution equals

g0 = V + εN
V ′′

12
+ ε2

N

[
−V ′ 2

24
+

V (4)

240

]

g1 =
V ′′

24
+ εN

V (4)

480
(27)

g2 =
V (4)

1920
.

Note that W ∗ depends only on the initial potential V and its derivatives (as well as on
εN). One can similarly calculate the effective action S∗ to any desired level p. We denote
the p level truncation of the effective action as S(p). S(p) has the property that its N-fold
amplitudes deviate from the continuum expressions as O(ε p

N)

A(a,b;T ) = A(p)
N (a,b;T )+O(ε p

N) . (28)

Comparing this to eq. (6) we see that we have just derived the generalization of the Euler
summation formula to path integrals. Just as with the ordinary Euler formula it gives the
relation between path integrals and their discretizations to any given precision.
It is important to note that one solves for the effective action at level p but once for
all theories, i.e. the solution that is found holds for all initial potentials. The only
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requirement for the level p solution is that the starting potential is differentiable 2p−2
times. Solutions for larger values of p are a bit more cumbersome, however, they are
just as easy to use in simulations. We have found that the growth in complexity of the
effective actions with increasing p has little effect on computation time for p≤ 4, while
simulations with p = 9 are roughly ten times slower due to this. However, this is an
extremely small price to pay for a gain of eight orders of magnitude in the speed of
convergence. Expressions for effective actions up to p = 9 can be found on our web
site [16]. The analytical derivations presented work equally well in both the Euclidean
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 1  10
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FIGURE 1. Deviations from the continuum limit |A(p)
N −A| as functions of N for p = 1,2,4 and 6 for

an anharmonic oscillator with quartic coupling λ = 10, time of propagation T = 1 from a = 0 to b = 1.
NMC was 9.2 ·109 for p = 1,2, 9.2 ·1010 for p = 4, and 3.68 ·1011 for p = 6. Dashed lines correspond to
appropriate 1/N polynomial fits to the data. Solid lines give the leading 1/N behavior. The level p curve
has a 1/N p leading behavior.

and Minkowski formalism (with appropriate iεN regularization), i.e. they are directly
applicable to quantum systems as well as to statistical ones. However, the Monte Carlo
simulations used to numerically document our analytical results necessarily needed
to be done in the Euclidean formalism. We analyzed in detail several models: the
anharmonic oscillator with quartic coupling V = 1

2 q2 + λ
4! q4 and a particle moving in a

modified Pöschl-Teller potential over a wide range of parameters. In all cases we found
agreement with eq. (28). Fig. 1 illustrates this behavior in the case of an anharmonic
oscillator. We see that the p level data indeed differs from the continuum amplitudes as
a polynomial starting with 1/N p. The deviations from the continuum limit |A(p)

N −A|
become exceedingly small for larger values of p making it necessary to use ever larger
values of NMC so that the MC statistical error does not mask these extremely small
deviations. For p = 6 we see that although we used an extremely large number of
MC samples (NMC = 3.68 · 1011) the statistical errors become of the same order as the
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deviations already at N & 8. For p = 9 this is the case even for N = 2, i.e. we already get
the continuum limit within a MC error of around 10−8.

5. CONCLUSION

A general quantum theory may be written in terms of a quantity which we designate
the path integral ideal. We have determined the integral equation satisfied by ideals and
have solved it in terms of an asymptotic series in discretized time step. This solution
represents a generalization of the well known Euler summation formula to path integrals
and leads to the speedup of numerical simulations of path integrals of a general theory
by many orders of magnitude. We have also briefly commented on the use of ideals as
a natural starting point for extensions of quantization to more complex settings such as
p-adic theories.
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