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Abstract. We present a new approximation technique for quantum field theory. The 
standard one-loop result is used as a seed for a recursive formula that gives a sequence 
of  improved Gaussian approximations for the generating functional. In a different 
setting, the basic idea of this recursive scheme is used in the second part of the paper to  
substantialy speed up the standard Monte Carlo algorithm. 

1. INTRODUCTION 

Quantum field theory is compactly written in terms of path integrals. Path integrals 
have been specially usefull in dealing with symmetries, quantizing gauge theories, etc. At 
some point, however, we need to calculate the path integrals. The problem is that the 
only path integrals that we know how to solve correspond to free theories (Gaussian 
integrals). We would be in a very  sorry state if we didn't have a generic approximation 
scheme at our disposal. Semi-classical or loop expansion is just such an approximation 
scheme. In fact, much of what we know about quantum field theory comes from one-loop 
results. The one-loop result is obtained by Taylor expanding the action around classical 
fields and disregarding cubic and higher terms. In this way the path integral is 
approximated by a Gaussian.  

In this paper we will consider another Gaussian approximation to the path integral. 
Unlike the one-loop result, here we will Taylor expand about the average field ϕ ≡ 〈φ〉. 
We shall show that this  leads to an improved approximation given in terms of a 
recursive relation.  
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2. THE GAUSSIAN APPROXIMATION 

The central object in quantum field theory is the generating functional Z[J]. 
Functional derivatives of Z[J] with respect to the external fields J(x) give the Green's 
functions of the theory. The generating functional is determined from the (Euclidian) 
action S[φ] through the path integral 
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The integration measure is, formaly, simply 
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where d is the dimension of space-time. We are interested in looking at a set of 
approximations to the above path integral. The approximations are valid in all d. In this 
letter, however, we are going to look at the simpler case of d = 0 theories, where it is easy 
to compare our results with exact numerical calculations. In d = 0 functionals become 
functions, and the path integral reverts to a single definite integral over the whole real 
line.  
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An even more useful object is W(J) − the generator of connected diagrams, defined by  
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In statistical mechanics parlance this is the free energy. The quantum average of the field 
φ is 
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In the Gaussian approximation, we Taylor expand the action in the path integral around 
some reference point φref, and keep terms that are at most quadratic in φ − φref . Thus, we 
use  
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The integral in (3) is now a Gaussian and we find, up to an unimportant constant, that 
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For this approximation to make sense, the integral must get its dominant contribution 
from the vicinity of the reference point φref . The standard Gaussian approximation 
corresponds to the choice φref = φclass(J), where φclass is the solution of the classical 
equation of motion S' = J. The classical solution is  the maximum of the integrand in (3). 
This specific choice of φref gives us the standard one-loop result 
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As  is well known, loop expansion is just an expansion in powers of ћ. The one-loop 
result gives us the first quantum correction to classical physics. From now on  we set 
ћ = 1.   

3. IMPROVING THE GAUSSIAN APPROXIMATION 

In this section we will choose a different expansion point φref for  our general 
Gaussian formula (7). The idea is to expand around the average field ϕ. Although the 
classical solution gives the maximum of the integrand, expansion around ϕ gives a better 
approximation for the area under the curve. This is in particular true for large values of J. 
We will  work with φ4

 theory in d = 0, whose action is given by  
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The  classical equation of motion is now a cubic algebraic equation. We easily find the 
unique real solution. In this way we get a closed form expression for the one-loop 
approximation W1(J). The Gaussian approximation around the average field ϕ is simply 
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To be able to calculate this in closed form  we need to know ϕ(J), which is tantamount to 
knowing how to do the theory exactly, since ϕ and its derivatives give all the connected 
Green's functions. The use of equation (10) comes about when one solves it 
iteratively.We use equations (5) and (7) as the basis for the following iterative process. 
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Differentiating (7) we find 
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For the seed of this iteration we choose the classical field, i.e. ϕ0 = φclass . In this way we 
obtain a sequence of points ϕ0,ϕ1,ϕ2,... or equivallently of approximations to the 
connected generating functional W1, W2, W3,.... given by Wn+1(J) = WGauss(J,ϕn(J)). The 
idea behind this is obvious − we want to obtain a sequence of Wn(J)'s that give better and 
better approximations to W(J). The following two figures show that this realy works. 
From Figure 1 we see that the sequence of ϕn's converges to ϕ∞ . In iterating (12) we 
necessarily discretize the J 's. The coursness of this discretization effects the speed of 
convergence of the ϕn 's. The standard way out of this problem is to introduce a small 
mixing parameter ε. Instead of the recursive relation ϕn+1 = f(ϕn) one then consideres 
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ϕn+1 = (1 − ε)ϕn + εf(ϕn). Note that ϕ∞ ≠ ϕ. The reason for this is obvious: We used the 
Gaussian approximation WGauss in defining our recursive relation, and there is no reason 
to expect that this converges to the exact result. It does, however, converge and ϕ∞ 
represents an excellent approximation to ϕ. To see this, in Figure 2 we have ploted the 

ratio 
∞ϕ−ϕ

ϕ−ϕ 0 . This ratio represents a direct measure of the improvement of  approxima-

tions in going from the one-loop result W1(J) = WGauss(J,ϕ0(J))  to our improved Gaussian 
result W∞(J) = WGauss(J,ϕ∞(J)). 

 
Fig. 1.  Plots of ϕ − ϕ0 (dotted line), ϕ − ϕ1 (dashed line), ϕ − ϕ2 (thin line) and ϕ − ϕ∞ 

(thick line) as functions of J. Here we had g = 1. 

 
Fig. 2.  Plot of the ratio |(ϕ − ϕ0)/( ϕ − ϕ∞)| as a function of J. This is a direct measure  

of how the new approximation outperforms the standard one-loop result.  
Here we had g = 1. 

As  we have already mentioned, our new approximation was tailored to work well for 
large J. This can be read off  directly from Figure 2. For example, for J = 15 the 
improved Gaussian is about one hundred times better than the one-loop result. The new 
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approximation is poorest for J ≈ 2,  but even there it beats the old approximation by a 
factor of seven. Most of the time we are interested in working with small or zero external 
fields. In the vicinity of J = 0 the new approximation is fourteen times better than  the old 
one.  

4. MONTE CARLO 

 
The aim of our investigations so far has been to develop better analytic approximation 

schemes that can be applied to general quantum field theories. We worked in d = 0 in 
order to be able to make a simple comparison with exact (numerical) results. In this 
section we will look at the numerical techniques themselves. We used the Monte Carlo 
algorithm [1] for  calculating path integrals. In d = 0 Monte Carlo is not the most 
efficient way to do things − its advantages become apparent as we look at larger and 
larger numbers of integrations. We  use Monte Carlo in order to investigate the algorithm 
itself in light of  what we  have learned in the previous two sections.  

We start with a brief introduction of the method. In order to calculate the definite 
integral ∫ f (φ)dφ we choose a non-negative function p(φ) normalized so that ∫ p(φ)dφ = 1. 
Therefore, p(φ) is a probability distribution. The integral is now 
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where 〈F〉p represents the mean value of F with respect to the probability distribution p. 
Therefore, the integral of f is given as the mean value of f / p on a sample of random 
numbers whose probability distribution is given by p. In practice, this mean value is 
estimated using a finite number Nmc of Monte Carlo samples, and the error of such an 
estimate is itself estimated to be 2

// pfpf σ=σ , where the variance equals 
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The central limit theorem guarantees that the Monte Carlo algorithm converges to ∫ f dφ 
for an arbitrary choice of distribution p. The only condition that must be met is ∞<σ2

/ pf . 
This freedom in the choice of p is used to speed-up the convergence of the algorithm. 
The speed of convergence is measured by the efficiency ε, given by 

 2
/

1

pfTσ
=ε , (15) 

where T represents the total computation time. Note that a hundred fold increase of 
efficiency corresponds to one extra significant figure in the final result.  

In our calculation we chose p(φ) to be the Gaussian normal distribution 
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where a and σ completely determine the distribution. There are two reasons for using this 
distribution. First of all, the function we are integrating can be approximated by a 
Gaussian over a wide range of parameters J and g. A good choice of a and σ makes f / p 
alomost constant over the range of integration, thus making the variance small. Second, 
there exists a specific algorithm for generating random numbers conforming to a 
Gaussian distribution. The Box-Muller algorithm [3]  is much more efficient than the 
standard Metropolis algorithm [2] since it doesn't give rise to autocorrelations of 
generated numbers. In the Metropolis algorithm autocorrelations can be pronounced, and 
their removal substantialy slows down the simulation.  

The choice of probability distribution has a great effect on the efficiency. For 
example, the efficiency corresponding to the uniform distribution on the interval  
φ ∈  [-100,100] is 3.5 1010 times smaller than the efficiency achieved by the Gaussian 
distribution centered at a = φclass with optimal choice of width σ. Having chosen p to be a 
Gaussian, the computation time T depends only on the number of Monte Carlo samples 
Nmc. Therefore, in our case, maximalization of efficiency is equivallent to a 
minimalization of the variance 2

/ pfσ . 
In the previous sections we saw that it is even better to expand around ϕ. In the 

Monte Carlo setting this should translate into a further increase in efficiency. This is 
precisely what  we  see. By varying the center of the Gaussian a (always using optimal 
width for that given a), we find maximum efficiency precisely at a = ϕ as we can see in 
Figure 3.  

 
Fig. 3. The variance as a function of a. The plot is for g = 10, J = 1. The variance  

is minimized for ϕ(1) = 0.376799 (black dot). The classical field is 
φclass(1) = 0.614072 (grey dot). 

Figure 4 compares the efficiencies εC of simulations about φclass and εQ for simulations 
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about ϕ for various values of J. It is seen that we get a  two fold improvement in 
efficiency. This may not seem spectacular, and in d = 0 it realy is not. However, once we 
consider theories in d > 0 we are dealing with true path integrals. If we approximate the 
path integral with N integrals then the expansion around ϕ gives a jump in efficiency of 
2N. Even for a modest simulation with N = 20 this corresponds to an increase of six 
orders of magnitude. 

 
Fig. 4. The ratio εQ/εC as a function of  J  for g = 1. 

The problem with this calculation is that we already need to have the exact result for 
ϕ in order to get the stated increase in speed. The way out is obvious and is reminiscent 
of the step we made in the previous section in going from (10) to (11). Therefore, we 
need to start Monte Carlo with a Gaussian distribution centered about φclass. After a while 
this gives us an approximation to ϕ say mc

1ϕ . Using this as the center of a new probability 

distribution we obtain mc
2ϕ , etc. Unlike the series ϕ0, ϕ1, ϕ2, ... of the previous section, 

this one necessarily converges to the exact result − even oridinary Monte Carlo does that. 
The improved Monte Carlo scheme, however, can be tailored to yield an efficiency very 
near to the ideal value εQ  [4]. 

5. CONCLUSION 

We have looked at two different ways how one can take advantage of the (rather 
intuitive) fact that in quantum field theory Gaussians are best centered about the average 
field ϕ ≡ 〈φ〉. We cast the Gaussian approximation about ϕ as a recursive relation. 
Working of φ4 theory in d = 0 we have shown that the iterates of this equation present 
better and better approximations to W(J). This sequence of approximations ends with 
W∞(J), i.e. the best Gaussian approximation. The first iterate in this sequence is the 
standard one-loop result. The second (W2) is not much more complicated, and is already 
much better than the one-loop approximation. In looking at theories in d > 0 it may be 
possible to use W2 to get a better analytic approximation to (say) the effective potential.  
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The second use for the newly centered Gaussians is in Monte Carlo calculations. The 
Monte Carlo algorithm is most efficient when one generates random numbers through 
Gaussian probability distributions centered about ϕ. We have shown that this can 
substantialy speed up the algorithm. For an N-fold integral the speed up is roughly 2N. 
We are currently working on applying the improved Monte Carlo algorithm to models in 
d ≥1. 
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POBOLJŠANA GAUSOVSKA APROKSIMACIJA  
U KVANTNOJ  TEORIJI POLJA 

A. Balaž, A. Belić, A. Bogojević 

Dat je prikaz nove aproksimativne tehnike u kvantnoj teoriji polja. Standardni rezultat do na 
jednu petlju je iskorišćen kao početna tačka rekurzivne formule koja daje niz poboljšanih 
gausovskih aproksimacija generišućeg funkcionala. Sa druge strane, u drugom delu članka, 
osnovna ideja ove rekurzivne sheme je iskorišćena za suštinsko ubrzanje standardnog Monte Carlo 
algoritma.  


