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Abstract
The visibility of the interference pattern in Feynman’s atomic light microscope is studied
theoretically using the evolution of the wave function of individual atoms passing through a
double slit grating and interacting with laser light (of the wave vector ki ). Assuming that the
slits’ width (δ) is much smaller than the slits’ distance (d), the expressions for visibility as
functions of dki were derived for uniform and for Mandel distribution of transferred
momentum during photon atom resonance scattering. The decreasing of oscillations of
visibility with increasing dki was explained taking into account the wave functions of
individual atoms and the statistics of transverse momentum transferred to atoms. The
influence of nonnegligible slits’ width on visibility was studied numerically. It is found that
revivals are present for infinitesimally wide slits as well as when slits have finite width.

PACS numbers: 03.65, 42.50.Xa, 03.75.Dg, 37.25.+K

(Some figures may appear in colour only in the online journal)

1. Introduction

The realization by Chapman et al [1] of Feynman’s light
microscope gedanken experiment [2] inspired numerous
theoretical studies, analyses and discussions [3–16]. An
important finding of this experiment, revival of visibility
beyond the limit dki = π , attracted special interest and
analysis. Kokorowski et al [6] explained revivals as follows:
‘Beneath an overall decay in coherence with distance, periodic
coherence revivals are observed. This shape follows directly
from the Fourier transform of the dipole radiation pattern
for spontaneous emission. It has also been explained in
terms of the ability of a single photon to provide which-path
information [1]: the contrast drops to zero when the path
separation is approximately equal to the resolving power of an
ideal Heisenberg microscope d ≈ λi/2, with revivals resulting
from path ambiguity due to diffraction structure in the image’.

Arsenović et al [13] explained the decrease and revival
of visibility by assuming that a wave is associated with each
individual atom. The authors found how this wave evolves
as the atom travels through the three-gratings Mach–Zehnder

1 Author to whom any correspondence should be addressed.

interferometer (MZI) and used this wave function to derive
the expression for the dependence of visibility on dki . The
experimental regain of visibility, induced by selecting a subset
of atoms from the set of all those transmitted through the
third grating, was explained by studying the dependence
of visibility on the probability distribution of transferred
momenta [14, 15] during photon atom scattering. From these
results, Davidović and co-workers [13, 14] derived a general
conclusion that individual atoms possess simultaneously wave
and particle properties. However, when many atoms are
collected, each arriving with a different quantum state, it
might so happen that wave properties are not displayed.

In order to make the argumentation by Arsenović et al
[13] and Božić et al [14] simpler and clearer, the method
previously applied to atoms traveling through an MZI we
apply here to atoms traveling through the double slit grating.
The MZI was considered in [13–15], since it was used
for experimental reasons, in the experiment by Chapman
et al [1]. But double slit grating was used in Feynman’s
Gedanken light microscope, as well as in an atomic
version of Feynman’s light microscope proposed by Scully
et al [17]. In this version, two micromaser cavities situated
in front of the slits serve to get ‘which way’ information.

0031-8949/12/014002+07$33.00 1 © 2012 The Royal Swedish Academy of Sciences Printed in the UK
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Figure 1. The scheme of Feynman’s atomic microscope. After
passing through a grating, atoms undergo resonance scattering with
photons from a laser beam parallel to a grating at a distance y′

12.
Atoms are detected at the screen at the distance y from the grating.

The paper by Scully et al [17] induced a vivid discussion [4]
on the origin of the disappearance of interference in
‘which-way’ experiments: recoil (Heisenberg’s uncertainty
relations) versus decoherence (correlations between the
measuring apparatus and the systems being observed). We
hope that our study of visibility presented here might be useful
for this discussion.

2. The influence of a grating and of subsequent
photon–atom scattering on the wave function
evolution

We start our description with the atom wave function
9(x, y, t) behind a grating at y = 0 (figure 1). This
wave function can be expressed as a solution of the
time-dependent free particle Schrödinger equation with the
initial condition9(x, y = 0+, 0). Assuming that the grating is
one-dimensional and extends along the x-axis, thus neglecting
the z-direction, the wave function behind the grating will
read [13]

9(x, y, t)= eikye−iωtψ(x, y), (2.1)

where h̄ω = (h̄2k2/2m) and ψ(x, y) is a solution of the
corresponding Helmholtz equation. This solution may be
written in the Fresnel–Kirhoff form:

ψ(x, y)=

√
k

2πy
e−iπ/4eiky

∫ +∞

−∞

dx ′ψ(x ′, 0+)ei(k(x−x ′)2/2y),

for y > 0, (2.2)

where ψ(x, 0+) denotes the function ψ(x, y) just behind a
grating. The form (2.2) is equivalent [18] to the following
form:

ψ(x, y)=
eiky

√
2π

∫ +∞

−∞

dkx c(kx ) eikx x e−ik2
x y/2k, for y > 0,

(2.3)
where c(kx ) is the probability amplitude of transverse
momentum determined by the incident wave function

ψ(x, 0−) and the transmission function T (x) of the grating:

c(kx )=
1

√
2π

∫
∞

−∞

dx ψ(x, 0+) e−ikx x

=
1

√
2π

∫ +∞

−∞

dx T (x)ψ(x, 0−) e−ikx x . (2.4)

If the slits are totally transparent and walls between the slits
totally absorbing, the transmission function is written as a sum
of functions t j (x)

T (x)=

∑
x j

t j (x) (2.5)

such that

t j (x)= 1, for x ∈ [x j ,−δ/2, x j + δ/2],

t j (x)= 0, for x /∈ [x j ,−δ/2, x j + δ/2].
(2.6)

x j denotes the center of the jth slit. Function c(kx ) for such a
grating with n slits reads

cn(kx )=

√
2

√
πnδ

sin(kxδ/2)

kx

sin(kx dn/2)

sin(kx d/2)
. (2.7)

To determine the evolution of a wave function in Feynman’s
microscope we need the function c(kx ) for n = 2:

c2(kx )=
2

√
πδ

sin(kxδ/2)

kx
cos

kx d

2
. (2.8)

To a very good approximation, the particle motion parallel
to the y-direction can be treated as a classical motion with
constant velocity, which means that the relation y = vt is
applicable. We are also going to consider wave functions
such that c(kx ) has nonnegligible values only whenever
k2

x � k2
y ≈ k2

≡ k2
x + k2

y . Taking this into account, it is useful
to introduce [18] the time-dependent wave function of the
transverse motion

ψ tr(x, t)≡ ψ(x, y) e−iky
∣∣

y=vt . (2.9)

Substituting (2.3) into (2.9) yields

ψ tr(x, t)=
1

√
2π

∫
∞

−∞

dkx c(kx ) eikx x e−ih̄k2
x t/2m (2.10)

from which c(kx ) acquires the meaning of the probability
amplitude of the particle transverse momentum. Therefore,

c(kx , t)= c(kx ) e−ih̄k2
x t/2m (2.11)

will be the time-dependent wave function in the momentum
representation, which allows one to express (2.9) as

ψ tr(x, t)=
1

√
2π

∫
∞

−∞

dkx c(kx , t) eikx x . (2.12)

On the other hand, one can also make an estimation of the
value of the wave function when it has evolved far from the
grating, i.e. for large values of y, where one may assume

2
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x � x ′ in (2.2) and neglect the term x ′2 in the exponential
under the integral, which yields

ψ(x, y)=

√
k

2πy
e−iπ/4 eiky ei(x2k/2y)

×

∫
∞

−∞

dx ′ψ(x ′, 0+) e−i(x ′x/y)k . (2.13)

By taking into account (2.3) one finds

ψ(x, y)=

√
k

√
y

e−iπ/4 ei(kx2/2y)c

(
kx

y

)
eiky, (2.14)

which can be used to find the time-dependent transverse wave
function in the far field

ψ tr(x, t)=

√
m

h̄t
e−iπ/4eix2m/2h̄t c

(
x

m

h̄t

)
. (2.15)

It follows from (2.14) and (2.15) that the x-dependence of
|ψ(x, y)|2 and |ψ tr(x, t)|2 in the far field is governed by the
functions |c(kx/y)|2 and |c(xm/h̄t)|2, respectively.

The photon–atom scattering event induced by laser light
at a distance y′

12 from a grating leads to a change of the atomic
transverse momentum, 1kx , and therefore to a shift of the
wave function in the momentum representation. Hence, after
an atom absorbs and re-emits again a photon somewhere along
the x-axis at a time t ′

12 and a distance y′

12 = vt ′

12 = (h̄k/m)t ′

12
from the grating, the transverse atomic wave function for
y > y′

12 takes the form [13]

ψ tr
1kx
(x, y)= ei1kx (x+1x0)−i1k2

x y/k

×

∫ +∞

−∞

dk ′

x c(k ′

x ) e−ik ′2
x y/2k eik ′

x (x+1x0−y1kx/k),

(2.16)

where

1x0 =
1kx h̄t ′

12

m
=
1kx y′

12

k
. (2.17)

From (2.16) one obtains the space-dependent wave function

ψ1kx (x, y)= eikyψ tr
1kx
(x, y)=

eiky

√
2π

· ei1kx (x+1x0)−i1k2
x y/k

×

∫ +∞

−∞

dk ′

x c(k ′

x ) e−ik ′2
x y/2k eik ′

x (x+1x0−y1kx/k).

(2.18)

In analogy to the approximation (2.14) for (2.3), the wave
function (2.18) can also be approximated in the far field by
the simpler form

ψ1kx (x, y)= eiky

√
k

√
y

e−π/4e−i(1k2
x y/2k)ei(k(x+1x0)

2/2y)

× c

(
k(x +1x0)

y
−1kx

)
. (2.19)

From this expression it follows that the overall form of the
modulus square of the wave function |ψ1kx (x, y)|2 is the same
as the form of |ψ(x, y)|2 = |ψ0(x, y)|2. But for 1kx 6= 0, at

the distance y > y′

12 from the first grating, this form is shifted
along the x-axis by

1x(1kx )= −1x0 + y
1kx

k
=
1kx

k
(y − y′

12). (2.20)

If the scattering happens just behind a double-slit grating
(y′

12 = 0), it follows from (2.17) that 1x0 = 0. Consequently,
the shift is given by

1x(1kx )= y
1kx

k
. (2.21)

3. The dependence of visibility on dki and on the
probability distribution of transferred momentum

The probability density that an atom that has undergone a
change of momentum1kx during the photon–atom scattering
process is found at a point x at the screen situated at a distance
y from the grating is

P(y,1kx , x)= |9(x, y, t)|2 =
∣∣ψ1kx (x, y)

∣∣2 . (3.1)

If it were possible to select all atoms that have undergone
photon–atom scattering with a given change of transverse
momentum 1kx we would detect characteristic double-slit
distribution of atoms on the screen shifted by1x(1kx ), which
is described by the expression

I1kx (x, y)=
k

y

δ

π

sin2[δ/2(kx/y −1kx )]

[δ/2(kx/y −1kx )]2

× cos2

[
d

2

(
kx

y
−1kx

)]
. (3.2)

If slits are infinitesimally small (δ � d), the probability
amplitude (2.8) may be approximated by its first
approximation, which reads

c2(kx )∼=

√
δ

√
π

cos
kx d

2
. (3.3)

In this case I1kx is approximated by the following simple
periodic function, shifted with respect to the point of
symmetry by 1x(1kx ):

I1kx (x, y)=
k

y

δ

π

[
1 + cos

(
d

(
kx

y
−1kx

))]
. (3.4)

In this case visibility is constant, V = 1.
But in the real experiment one detects atoms which have

undergone any change of momentum in a certain interval. In
the case of the resonance photon–atom experiment, as in the
experiment [1], this interval is [0, 2ki ], where ki is the wave
vector of photons from the laser. Therefore, the number of
atoms around a point (x, y) is proportional to the integral
of (3.2) over all possible values of 1kx , taking into account
the distribution P(1kx ) of transferred momentum:

I (x, y)=

∫ 2ki

0
I1kx (x, y)× P(1kx )× d(1kx ). (3.5)

3
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By substituting (3.2) into (3.5), we find

I (x, y)=
δ

π

k

y

∫ 2ki

0

sin2[δ/2(kx/y −1kx )]

[δ/2(kx/y −1kx )]2

× cos2

[
d

2

(
kx

y
−1kx

)]
× P(1kx )d(1kx ).

(3.6)

This very complicated integral cannot be integrated
analytically, but only numerically.

4. Visibility in the case of infinitesimally small slits

Fortunately, assuming that slits are infinitesimally small, the
analytic integration of the integral in (3.6) is possible for
distributions P(1kx ) which are of physical interest. Using the
approximation (3.3) and assuming that P(1kx ) is normalized
to 1, the integral (3.6) is approximated by

I (x, y)∼=
δ

π

k

y

[
1 +Vc(d, ki ) cos

(
d

kx

y

)
+Vs(d, ki ) sin

(
d

kx

y

)]

≡
δ

π

k

y

[
1 + V cos

(
d

kx

y
−φ

)]
, (4.1)

where

Vc(ki , d)=

∫ 2ki

0
d(1kx ) cos(d ·1kx )

∗ P(1kx ), Vs(ki , d)

=

∫ 2ki

0
d(1kx ) sin(d ·1kx )

∗ P(1kx ). (4.2)

Visibility and the phase of the interference pattern described
by (4.1) are given by

V (ki , d)=

√
V 2

c (ki , d)+ V 2
s (ki , d), tgφ =

Vs(ki , d)

Vc(ki , d)
.

(4.3)

For uniform distribution over the interval [0, 2ki ], Pu(1kx )=

1/2ki , from (4.2), we find

Vc,u(ki , d)=
sin(2dki )

2dki
, Vs,u(ki , d)=

1 − cos(2dki )

2dki
.

(4.4)

By combining (4.3) and (4.4), we obtain visibility and phase
for the uniform distribution of transferred momentum:

Vu(ki , d)=
|sin(dki )|

dki
, φu = dki . (4.5)

The graph of visibility for the uniform distribution is
presented in figure 2. This is an oscillatory function of
dki with decreasing maxima. Zeros of this function are
for dki = π, π, 3π . . . .This is understandable. For dki =

π, 2π, 3π, . . . , the integration in (4.2) is over integer periods
of the function of 1kx whose period is equal to 2π/d .
Visibility is a product of P(1kx )= 1/2ki , which is inversely
proportional to ki and of an integral which does not increase

Figure 2. The dependence of visibility on dki for uniform
(- - -, equation (4.5)) and Mandel’s distribution (——,
equation (4.9)) of transferred momentum, assuming that δ � d
and y′

12 = 0.

with ki (but oscillates) despite the fact that the range of
integration is proportional to ki .

If photons are resonantly scattered by atoms which just
passed through the grating, the distribution of transferred
momentum to the atoms,PM(1kx ), was determined by
Mandel [19]. It reads [19, 20]

PM(1kx )=

(
3

8ki

)[
1 +

(
1 −

1kx

ki

)2
]
. (4.6)

Therefore, in order to determine visibility in this case it is
necessary to evaluate the integrals

Vc,M(ki , d)=
3

8ki

∫ 2ki

0
d(1kx ) cos(d ·1kx )

×

(
2 − 2

1kx

ki
+

(
1kx

ki

)2
)
,

Vs,M(ki , d)=
3

8ki

∫ 2ki

0
d(1kx ) sin(d ·1kx )

×

(
2 − 2

1kx

ki
+

(
1kx

ki

)2
)
. (4.7)

The above integrals may be computed analytically. The
result is

Vc,M(d, ki )=
2

d3k2
i

cos dki

×
[
2dki cos dki − 2 sin dki + 2d2k2

i sin 2dki
]
,

Vs,M(d, ki )=
2

d3k2
i

sin dki

×
[
2dki cos dki − 2 sin dki + 2d2k2

i sin 2dki
]
.

(4.8)

Using the above expressions we find that in the case of very
small slits, the intensity at the screen, at distance y from a

4
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(a) (b)

(c)

(e)

(d)

(f)

Figure 3. The graphs of the function I (x, y) given in (3.6) for six values of the slits’ separation d and for Mandel’s distribution PM(1kx ).
The values of d in figures 3(a)–(f) are d = 1.2δ, 5.1δ, 7.9δ, 11.3δ, 14.3δ and 20.3δ, respectively. The values of other quantities are
y = 0.65 m, δ = 0.5 × 10−7 m, ki = 1.0621 × 107 1 m−1 and k = 5.09067 × 1011 liter m−1.

grating, is a simple periodic function (4.1) of the coordinate x,
with visibility and phase given by

VM(ki , d)=
3

2

1

dki

∣∣∣∣(1 −
1

d2k2
i

)
sin(dki )+

1

dki
cos(dki )

∣∣∣∣ ,
φM = dki (4.9)

The function (4.9) is identical to the function obtained by
Arsenović et al [13] for visibility of interference in an MZI,
which agrees very well with the experimental curve [1].
Visibility curve (4.9) is graphically presented in figure 2.

5. The influence of the finite width of the slits
on visibility

In order to investigate the influence of the finite width of the
slits on the interference curve and visibility, we shall evaluate

Figure 4. Visibility as a function of d, evaluated from the
definition (5.4), using numerically evaluated I (x, y) defined
in (3.6), for P(1kx )= PM(1kx ) given in (4.6). The values of d
below the black points in increasing order correspond to the values
of d for which graphs are presented in figures 3(a)–(f).

5
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Table 1. Summary and comparison of two different interpretations of the cause of quantum interference and of the loss and revivals of it.

The Bohr-like The de Broglie-like
interpretation interpretation

Cause of interference Impossibility to get ‘which way’ Particle motion is influenced by
information the evolution of its wave function

Cause of the decrease Availability of ‘which The shift of the atomic wave function
and loss of visibility way’ information which depends on the change of atoms’

transverse momentum, during a photon atom
scattering event. The statistical distribution of
these shifts in many such events causes
visibility to be an oscillatory function of dki

with decreasing amplitude.

Cause of revivals Path ambiguity due to The visibility is an oscillatory
diffraction structure in the image function of dki with decreasing

amplitude of oscillations. So, the
initial decreasing part belongs to the
first oscillation, the first revival is the
second oscillation, the second revival
is the third oscillation, etc.

Conclusion about the Wave and particle properties Wave and particle properties
nature of duality are complementary are coexistent (compatible).

the intensity I (x, y) by approximating the function c2(kx ) by
the function

c2(kx )∼=

√
δ

√
π

[
1 −

1

6

(
kxδ

2

)2
]

cos
kx d

2
. (5.1)

In this case, as it may be seen from the following expressions,
there are many more integrals to be evaluated. One also
sees that the resulting function will not be a simple periodic
function of the coordinate x, but quasi-periodic.

I (x, y)=
k

y

2

πδ

[
1 + cos

(
d

kx

y

)
· Vc,M

(
d, ki , δ,

kx

y

)

+ sin

(
d

kx

y

)
· Vs,M

(
d, ki , δ,

kx

y

)]
, (5.2)

Vc,M

(
d, ki , δ,

kx

y

)
=

∫ 2ki

0
d(1kx ) cos(d ·1kx )

×

(
1 −

δ2

6 · 4

(
kx

y
−1kx

)2
)2 (

3

8ki

)

×

(
2 − 2

1kx

ki
+

(
1kx

ki

)2
)
,

Vs,M

(
d, ki , δ,

kx

y

)
=

∫ 2ki

0
d(1kx ) sin(d ·1kx )

×

(
1 −

δ2

6 · 4

(
kx

y
−1kx

)2
)2 (

3

8ki

)

×

(
2 − 2

1kx

ki
+

(
1kx

ki

)2
)
. (5.3)

Therefore, when δ is not negligible, intensity at the screen at
distance y is not a periodic function of x, but quasi-periodic.

The function I (x, y), evaluated by numerical integration of
the function under the integral sign in (3.6) with Mandel
distribution (4.6), is graphically presented in figure 3 for
six values of the slits’ distance d, keeping the slits’ width
constant. One clearly sees that I (x, y) is a quasi-periodic
function with amplitudes of oscillations strongly dependent
on d. For this quasi-periodic function I (x, y), it seems
appropriate to define visibility by taking into account the
central maximum I1max (which is the largest of all local
maxima), its first neighboring maximum I2max, and the
minimum Imin in between these two maxima. So, we use the
following definition of visibility:

V =
[(I1max + I2max)/2] − Imin

[(I1max + I2max)/2] + Imin
. (5.4)

We determined I1max, I2max and Imin from the numerically
evaluated intensity given in (3.6) for a large number of values
of the slits distance d, keeping δ, ki , k fixed. Visibility
evaluated in this way is presented in figure 4. By comparing
figures 2 and 4, we see that visibility, which we evaluated by
taking into account oscillations around the central maximum
of (3.6), turns out to have the same graphical form as (4.9),
obtained from the first order approximation (4.1) with respect
to δ/d of I (x, y).

6. Conclusions

By determining the time evolution of the wave function of the
single atom in Feynman’s atomic light microscope, we found
the functional dependence of visibility of interference on the
product dki . In the case of infinitesimally small slit widths an
analytic expression for visibility was obtained. By numerical
simulation we found that the dependence described by this
analytic expression is valid for nonnegligible slit widths, too.
Since revivals exist for infinitesimally small slits as well as
when slits have finite width, we conclude that the existence
of revivals does not depend on the width of the slits and
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diffraction structure. So, the assertion that [6] ‘revivals result
from path ambiguity due to diffraction structure in the image’
is questionable.

The expression obtained here for visibility is the same
as that found by Arsenović et al [13] for visibility of
interference in a Mach Zehnder atomic interferometer.
The MZI was used in the experimental realization [1]
of Feynman’s atomic light microscope. The theoretical
description exposed here of Feynmann’s atomic double
slit light microscope supports de Broglie’s understanding
of wave–particle duality [21]. According to de Broglie’s
interpretation wave and particle properties are coexistent
(compatible). A comparison of the reasoning leading to this
conclusion with Bohr’s argument [22] that wave and particle
properties are complementary is presented in table 1.
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