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Abstract
Constrained Hamiltonian dynamics is exploited to provide the mathematical framework of a
coarse-grained description of the quantum system of nonlinear interacting oscillators. The
coarse graining is treated as an equivalence relation on the set of quantum states resulting in
the emergence of classical phase space. The equivalence relation imposes constraints on the
Hamiltonian dynamics of the quantum system. It is seen that the evolution of the
coarse-grained system preserves constant and minimal quantum fluctuations of the
fundamental observables. This leads to the emergence of the corresponding classical system
on a sufficiently large scale.

PACS numbers: 03.65.Fd, 03.65.Sq

1. Introduction

The relation between quantum and classical mechanics
(QC-relation) is very complex with many complementary
aspects roughly belonging to two main groups. The first
group is related to the problems of formal or mathematical
relations between quantum and classical formalisms (for an
excellent review, see [1]). Problems of the other group deal
with the description of the physical reasons or processes
that effectuate the quantum-to-classical transition [2–5].
Kibble [6, 7] pointed out that quantum evolution, determined
by the linear Schrödinger equation, can be represented as a
Hamiltonian dynamical system on an appropriate phase space.
This approach developed into the full geometric Hamiltonian
formulation of quantum mechanics [8–15] that provides a
suitable framework for discussions of nonlinear constraints
imposed on a quantum system [16–18].

In this paper, we consider a system of oscillators
possibly nonlinear and interacting. Quantization of a
classical system of oscillators is common knowledge from
quantum theory [19]. We show that the quantum system of
oscillators constrained with a specific type of constraints is
equivalent to a finite-dimensional Hamiltonian system that
preserves constant and minimal quantum fluctuations of the
fundamental observables during the entire evolution. This
Hamiltonian system approaches the classical one if some

classical parameters are small. We give an interpretation
of these results as the mathematical formulation of the
emergence of classical systems from a coarse-grained
description of quantum systems.

2. Constrained quantum dynamics of a system of
nonlinear oscillators

A system of quantum nonlinear oscillators is given by the
following Hamiltonian:

Ĥ =

n∑
i=1

1

2mi
P̂2

i + V (Q̂1, Q̂2, . . . , Q̂n)=

n∑
i=1

1

2mi
P̂2

i

+
n∑

i=1

miω
2
i

2
Q̂2

i + · · · , (1)

where V is some function of (Q̂1, Q̂2, . . . , Q̂n) having
the properties ∂2 V/∂Q2

i |Qi =0 = miω
2
i (i = 1, 2, . . . , n). In the

general case when the Hamiltonian is not only quadratic in Q̂i ,
the dispersions 1Q̂i , 1P̂i can have different arbitrary high
values in the states along an orbit of Ĥ . As a result, evolution
starting from the coherent state manifold will not reside within
it. However, we make a constrained system defined by the
Hamiltonian (1) and the appropriate set of constraints so that
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the dispersions of all fundamental quantum observables are
preserved during the evolution. The values of the dispersions,
the minimal values that can be obtained simultaneously by
the coordinates and momenta, are reached if and only if each
oscillator is in a coherent state.

We focus on a single nonlinear oscillator case that is
sufficient to point out the typical features of the general case.
To formulate the constraints, we associate with each state ψ
from the manifold of states M a state α(ψ) on the coherent
state manifold 0 such that

α(ψ)= (〈Q̂〉ψ , 〈P̂〉ψ ). (2)

By definition, the operators Q̂ and P̂ have expectations in the
coherent state α(ψ) the same as in the stateψ . The association
of a single coherent state with the whole set of states
establishes an equivalence relation, which plays a crucial
role in the coarse-graining procedure. Equivalence classes
of quantum states determine the corresponding quantum
observables that can be seen as physically distinguishable.
Thus, in the Hamiltonian system with constraints only
functions defined on 0 are considered as physically
distinguishable. If two functions on M correspond to
two different operators but generate the same function on
0, the two operators should be considered as physically
indistinguishable. We see that imposing the constraint on
the quantum system in fact provides the mathematical
representation of a coarse-grained description of the quantum
system.

Using the notation (2), we take the following two
constraints:

8q = 〈V (Q̂)〉ψ − 〈V (Q̂)〉α(ψ) = 0, (3a)

8p = 〈P̂2
〉ψ − 〈P̂2

〉α(ψ) = 0, (3b)

to be imposed on the oscillator with arbitrary fixed potential
V (Q̂). The role of the constraints is to preserve during the
evolution the association of the set of points ψ(t) with the
corresponding single coherent state α(ψ(t)).

The total Hamiltonian takes the standard form [20, 21]:
Htot = 〈Ĥ〉ψ + λq8q + λp8p, with the values of Lagrange
multipliers λq = −1 and λp = −1/(2m), yielding Htot =

〈P̂2
〉α(ψ)/(2m)+ 〈V (Q̂)〉α(ψ) ≡ 〈Ĥ〉α(ψ). Noting that 〈P̂2

〉α(ψ)

= 〈P̂〉
2
α(ψ) + mωh̄/2 and dropping the irrelevant constant, we

finally obtain the total constrained Hamiltonian

Htot = 〈P̂〉
2
α(ψ)/(2m)+ 〈V (Q̂)〉α(ψ), (4)

which preserves the evolution on the manifold of the
coherent states 0. The total Hamiltonian (4) is, up to an
additive constant, on the constrained manifold 0 equal to the
initial Hamiltonian H ≡ 〈Ĥ〉ψ . However, while Htot preserves
constant and minimal quantum fluctuations of fundamental
observables, the evolution with H can in general make them
arbitrarily large.

An important fact is that the total Hamiltonian (4)
depends only on the variables q ≡ 〈Q̂〉α(ψ) and p ≡ 〈P̂〉α(ψ),
i.e. on the parameters of the coherent state manifold. Thus, the
constrained evolution of the fields

φ̇(x)=
δHtot(q, p)

δπ(x)
, π̇(x)= −

δHtot(q, p)

δφ(x)
, x ∈ RN

(5)

can be, up to the phase freedom of ψ(x)= (φ(x)+
iπ(x))/

√
2, inferred from the Hamiltonian evolution of the

coherent state parameters

dq

dt
=

p

m
=
∂Htot(q, p)

∂p
,

dp

dt
= −〈V ′(Q̂)〉α(ψ) =

−
∂Htot(q, p)

∂q
, (6)

i.e. the dynamics of the constrained system is given by
the Hamiltonian dynamics of the constrained manifold
parameters.

An important consequence of the constraints is that the
association (2) of the set of pointsψ(t)with the corresponding
single coherent state α(ψ(t)) is well defined during the entire
evolution. In other words, relation (2) provides an equivalence
relation on the manifold M. Points from ψ(t) ∈M which
give the same expectations 〈Q̂〉 and 〈P̂〉 are identified with
the single representative: the coherent state α(ψ) having the
same expectations. We point out that the equivalence relation
is not preserved by the unconstrained Schrödinger evolution
of ψ(t) ∈M. On the other hand, the constrained evolution
is precisely such that it preserves the equivalence of states
over time because it can be expressed entirely in terms of
the expectations q = 〈Q̂〉 and p = 〈P̂〉. In this sense the
constrained evolution and the equivalence relation (2) imply
each other.

For more than one oscillator, which might be nonlinear
and interacting, the condition that 1Q̂i and 1P̂i are
simultaneously minimal implies that each of the oscillators
is always in some pure coherent state |αi (t)〉. Thus, the total
state |ψ(t)〉 is always given by the tensor product of the single
oscillator’s pure coherent states |ψ(t)〉 = ⊗i |αi (t)〉, implying
for example 〈ψ(t)|Q̂1 ⊗ Q̂2|ψ(t)〉 = 〈Q̂1〉α1(t) × 〈Q̂2〉α2(t) =

q1(t)× q2(t). Suppression of quantum fluctuations for each
oscillator’s degree of freedom implies that the degrees of
freedom of different oscillators do not get entangled during
the evolution. This is enough to generalize the results of the
single oscillator analysis to the general case of an arbitrary
number of interacting oscillators with constraints.

We now compare the total Hamiltonian (4) on the
constrained manifold 0 of the coherent states with hcl =

p2/(2m)+ V (q) representing the Hamilton function of a
classical nonlinear oscillator with potential V (q). It can be
proven [22] that the total Hamiltonian at a point α ≡ (q, p)
on the constrained manifold is

Htot =
p2

2m
+ V (q)+

∞∑
k=1

1

2kk!

h̄k V (2k)(q)

(2mω)k
≡ hcl

+
∞∑

k=1

1

2kk!

h̄k V (2k)(q)

(2mω)k
. (7)

In the classical limit h̄ → 0 [23], the terms in the sum in (7)
tend to zero, yielding Htot → hcl, h̄ → 0.

3. Summary

We have formulated a consistent set of dynamical equations
for a system of quantum nonlinear oscillators that maintain
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the evolution on the coherent state manifold. Because such
an evolution preserves minimal fluctuations of fundamental
observables, the total Hamiltonian (including the constraints)
on coherent state manifold differs from the Hamilton function
of a classical nonlinear oscillator with the same interaction
potential by terms that are small in the classical limit. This
yields the corresponding classical behavior on a sufficiently
large scale.
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