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Abstract

Motivated by recent experiments where interference patterns behind a grating are obtained by
accumulating single photon events, we provide here an electromagnetic energy flow-line
description to explain the emergence of such patterns. We find and discuss an analogy between
the equation describing these energy flow lines and the equation of Bohmian trajectories used

to describe the motion of massive particles.

PACS numbers: 03.50.De, 03.65.Ta, 42.25.Hz, 42.50.—p

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The possibility of performing quantum interference
experiments with low-intensity beams (i.e. one per particle) of
photons [1-3] and material particles [4—6] has intensified the
theoretical search for the topology of the photon paths [7-9]
and particle trajectories [10-14] that describe the process
behind the interference grating. The aim of all the proposed
approaches is to simulate the appearance of the interference
pattern by accumulation of single-particle events.

In Bohmian mechanics one may simulate this process
for material particles. Bohmian trajectories follow the
streamlines associated with the quantum-mechanical
probability current density and, therefore, reproduce exactly
the quantum-mechanical particle space distribution in
both the near and the far fields [10-12]. Alternatively, the
emergence of the interference pattern in the far field has also
been simulated by sets of rectilinear trajectories characterized
by the momentum distribution associated with the particle
wave function [13, 14]. In the far field, the distribution
of momentum components along Bohmian trajectories is
consistent with this distribution [14].

In this paper, we show how to determine electromagnetic
energy (EME) flow lines behind an interference grating,
where the components of the magnetic and electric vector
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fields satisfy Maxwell’s equations. These fields are expressed
in terms of a function that explicitly takes into account
the boundary conditions imposed by the grating. The EME
flow lines are then determined after numerically solving
the path equation arising from the Poynting energy flow
vector. In particular, we show here EME flow lines behind
gratings consisting of different numbers of slits. These sets
of lines supplement those presented by Prosser [7] for both a
semi-infinite plane and gratings with one and two slits. The
EME flow lines show that the energy redistributed behind the
grating until reaching the Fraunhofer regime. In particular, the
process that corresponds to multiple slit gratings is of interest,
for we can observe a smooth transition from a Talbot pattern
in the near field to the characteristic Fraunhofer peaks in the
far field.

It is tempting to conclude from the results obtained that
the motion of an eventual photon wave packet thus represents
an energy flow along a group of flow lines. This conclusion
is supported also by the fact that the path equation for the
EME flow lines has the same form as the equation for the
quantum flow associated with material particles. This explains
why there is complete similarity in interference phenomena
with photons and material particles. Experimentally, the
final interference patterns as well as the processes of their
emergence are analogous [1-6].

© 2009 The Royal Swedish Academy of Sciences Printed in the UK
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2. The complex Poynting vector and the equation
for the EME flow lines

The diffraction of electromagnetic radiation by a grating is
described by the solution of Maxwell’s equations in vacuum
that satisfy the grating boundary conditions [15]. We consider
the simplest solutions of Maxwell’s equations: harmonic
electromagnetic waves

H(r, r) = H(r)e ", (1)
E(r, 1) = E(r)e . )

The physical electric and magnetic fields are obtained by
taking the real parts of the corresponding complex quantities.
The space-dependent parts of these fields (which are complex
amplitudes) satisfy the time-independent Maxwell equations

V x H(r) = —iweE(r), 3)
V x E(r) = iopuoH(r), “
V-H(r) =0, ®)
V.-E(r) =0. ©)

From these equations it follows that both fields, E(r) and
H(r), satisfy the Helmholtz equation

VZH(r) + K*H(r) = 0, (7)

VZE(r) + k*E(r) =0, 8)

where k = w/c.

The EME flow lines are now determined from the energy
flux vector, which is the time-averaged flux of energy, given
by the real part of the complex Poynting vector [16]

S(r) = 1Re[E(r) x H*(r)]. ©)

Note that, since the flow of energy goes in the direction of the
Poynting vector, the EME flow lines can then be determined
from the parametric differential equation

dr _15@
ds cU®@)’

(10)

where s is a certain arc length along the corresponding path
and U (r) is the time-averaged electromagnetic energy density

U(r) = ;[eE(r) - E*(r) + poH(r) - H ()], (11)

3. The Poynting vector in the case of
two-dimensional diffraction by a plane grating

To describe simple diffraction experiments, we will consider
that the grating is on the XZ plane at y =0, with the
incident plane harmonic wave traveling along the y-direction.
Moreover, we assume the problem to be completely
independent of the z-coordinate (i.e. very long slits along
this coordinate). In order to encompass all possible cases
of polarization, we express the magnetic and electric fields
before the grating as a superposition of two waves: H

polarized, for which the magnetic field is along z (A
components), and E polarized, for which the electric field is
along z (B components) [17]. That is,

H(r, 1) = H(r)e

= [Aee, + BeYeMe | e, (12)
E(r, 1) = E(r)e
k . o .
= — [-Aee, + BeYee Je7 . (13)
€

Here, ¢ is the phase shift between the x- and z-components
of the field, and the constants A and B are real. For ¢ =0 or
7, the incident wave is linearly polarized, whereas the cases
A =B, with ¢ = £m /2, describe circular polarization. The
cases A # B with ¢ =+x/2, and ¢ #0, w, £ /2 for any
value of the ratio A/ B, describe elliptic polarization.

As shown by Born and Wolf [17], the E- and
H-polarization components satisfy two independent sets
of equations since the problem is independent of the
z-coordinate. This implies that the solution that corresponds
to an incident wave, given by (12) and (13), diffracted by a
grating can be expressed as

H=—ik"'Be? we +ik !B’ 1'/’ey+Awez, (14)
iA 0 1A 0 kB .
_ AW, AW KB ey, (15)
€ow Iy €ow 0X €W
where ¥ (x, y) is a solution of the Helmholtz equation
V2 +k* =0, (16)

which satisfies the grating boundary conditions. From (14)
and (15), we can now express the components of the
time-averaged Poynting vector in terms of the constants A,
B and ¢ and the function ¥ (x, y) as

_b o (YT 0y

Sx—460w(A +B )(w r v ax>, a7
_ o (YT 0y

Sy—460w(A +B )(10 By v 3y>’ (18)
260a)k dx dy dx dy

In the case of a linearly polarized initial wave (¢ =0
or i), it follows from equation (19) that the z-component of
the Poynting vector vanishes. Thus, the EME flow lines will
remain confined to the XY plane and, from the parametric
differential equation (10), we find that the differential
equation

81#*_ %
o_s, (55 o0

dx " o™ 0
. (w‘” w—"’)

will determine the eventual photon paths, which are obtained
by numerical integration. As can be noticed, the topology
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of the EME flow lines in the case of linear polarization
is independent of the constants A and B, and therefore
independent of the direction of polarization.

On the other hand, for circular and elliptic polarizations
the z-component of the Poynting vector is nonzero, thus
leading to important differences in the properties of the
corresponding EME flow lines, which will not be planar,
as can be inferred from the nonanishing z-component in
equation (10). The properties of EME flow lines in these cases
are beyond the scope of the present work and will be explored
in a forthcoming paper.

4. Flow lines behind a specific grating

In order to plot flow lines for a specific grating we
need explicit expressions for the magnetic and electric
fields behind a grating. Traditionally, explicit solutions have
been written using the solution of the Helmholtz equation
in the form of the Fresnel-Kirchhoff integral [17]. By
making the appropriate approximations, the solution was
then transformed into the expressions valid in the Fresnel
and Fraunhofer regions, respectively. The Talbot effect and
Talbot-Laue effect were also explained [18] by making
the appropriate approximations and transformations of the
Fresnel-Kirchhoff integral.

If the x-component of the wave vector satisfies the
relation k >> k., the solution of the Helmholtz equation may
also be expressed as a superposition of transverse modes
(STM) of the field multiplied by an exponential function
of the longitudinal coordinate [19]. As shown by Arsenovic¢
et al [20], this form is equivalent to the Fresnel-Kirchhoff
integral. For an incident plane wave falling on the grating
at y =0 and lying on the XZ plane, the STM form of the
solution reads

eiky 0
A/ 27 J-o0

where the function c(k,) is determined by the incident wave
and the grating boundary conditions as

(k) oikex g—ik?y/2k dk,,

Vvx,y) = @1

1 o .
clthy) = — / (x,0)e = dx. (22)
V2 Joo v
Within the approximation k > k,, one finds
a a d )
_w < _w _w I~ 1]“[,’ (23)
0x ay ady

and, therefore, the EME density (11) becomes proportional to
[ (x, VI, ie.

U(r) = 3 uo(A>+ B)|Y (x, y)I%,

which is obtained from (11), (14) and (15).

Assuming that the grating is completely transparent
inside the slits and completely absorbing outside them, we
have that v (x, 0) = O for points outside the slit aperture and
Y(x, 0) = ¥in(x, 0) for the inside points, where Vi, (x, 0) is
the field component of the incident wave. In the case of an
incident plane wave propagating along the y-axis, ¥, (x, 0)
is a constant. For a grating with N apertures separated

(24)

Wt
I

9 : . . -2 0 2
d

4 6 8 -0

Figure 1. EME flow lines behind a Ronchi grating (§ = d/2)
with N = 5 slits, . = 500nm, d = 201 = 10 um and
Lt =d*/A» =200 um.

(b)

Figure 2. EME flow lines behind a Ronchi grating (6 = d/2)
with N = 30 slits, A = 500 nm, d = 201 = 10 um and

Lt =d?/A =200 um. (a) EME lines from the upper part of the
grating (y > 0). (b) EME lines from six central slits of the grating.

by a distance d and all with the same width §, a simple
integration [19] renders

1 [3 sin(k,8/2) sin(Nk.d/2)

M) =N sz sinted)2)

(25)

In figures 1 and 2, we have represented the EME flow
lines behind Ronchi gratings with 5 and 30 slits, respectively.
The unit along the y-axis is the so-called Talbot distance,
Lt = d?/x, which gives the repetition period behind a grating
of the diffracted wave [12]; the unit along the axis parallel
to the grating (x-axis) is the period d of this grating. As
seen, the topology displayed by the EME flow lines is very
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Figure 3. Histogram of the number of trajectories ending at various points along the x-axis at a distance y = 4.3 L for four different values
of the total number of photons: (a) 100, (b) 1000, (c) 2000 and (d) 5000. Here diffraction is produced by a two-slit grating and the initial
conditions (positions along the two slits) for the photon data are chosen at random. The red line is a plot of the function |1 (x, y)|*. It is seen
that at the chosen distance y = 4.3 L, the maximum of the distribution at x /d = 8.6, associated with k,d = 4, is absent. This follows from
(25), because for N = 2, d = 24, the second interference maximum, being at k,d = 4, coincides with the first diffraction minimum.

similar to that displayed by Bohmian trajectories for massive
particles [10—12]. Note that the quantum density current

ih
J=—(IVU¥* —u*Vy) (26)
2m
determines the particle trajectories in Bohmian mechanics
through the equation of motion
dr J

TR 27
where p=W*W. The latter equation is analogous to
equation (10), though this analogy is not totally complete: in
the case of particles with a mass m, the relation y = hkt/m
holds, whereas the same is not true for photons. When the
wave function W does not depend on z, J has only x- and
y-components,

ih ov* L0V

Jo=— |V —wr—, (28)
2m 0x 0x
ih ow* LOW

Jy=— (W —wr—). 29)
2m ay ay

Equations (28) and (29) have the same form as equations (17)
and (18). Thus, the EME flow lines in the case of
a linearly polarized incident wave are similar to the
Bohmian trajectories of massive particles described by a
two-dimensional wave function.

5. Emergence of the interference pattern by
accumulation of single photon arrivals

In the case of massive particles the modulus square of
the wave function describes the distribution of particles at a
distance y from the grating in the far field after (theoretically)
an infinite number of particles have reached the detector
(at y). This theoretical result has been nicely confirmed
by a new generation of experiments that use low-intensity
beams of particles. In these experiments, the final interference
patterns are built up after particles accumulate gradually
one by one at a scanning screen [2, 3, 5, 6]. Numerical
simulations of particle arrivals, assuming that they move
along de Broglie-Bohm’s trajectories [10-12] and MD
trajectories [13], describe theoretically this process. This
means that a trajectory-based interpretation completes the
standard interpretation of the wave function, where a picture
in terms of single events is missing.

Analogously, one can proceed in the same way with
photons assuming that they move along the EME flow lines
described in the previous section. This is illustrated in figure 3,
where we have plotted histograms (blue dots) obtained
from the accumulation of photons for a two-slit diffraction
experiment (with A =500nm, d =20\ and § =d/2). In
particular, the histograms have been made by considering
equally spaced bins (with a width of 0.9d) at an observation
distance yo, = 4.3 L from the plane of the grating, where the
Fraunhofer pattern is already well converged (this happens
when the observation distance is greater than the so-called
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Rayleigh distance [21], which in this case is yg ~ (2§ +
d/2)2/4nk ~0.2L1 < yob). As can be seen, as we move
from panel (a) to (d) the histogram data approach better
and better the smooth (red) line, which represents the EME
density U (x, yop) given by equation (24) as the number of
photons per time unit increases, as also seen in the experiment
[2, 3]. It is interesting to note that the photons (or,
equivalently, the initial positions of their paths) distribute
randomly along the distance covered by each slit aperture
and, therefore, their arrival positions at y = 4.3 Ly will also be
random. However, they will accumulate in accordance to U (r)
because of the guidance condition given by equation (10),
which can alternatively be expressed [17] as

S(r) =U(r)v, (30

where v is a sort of effective vectorial velocity field that
transports the EME density through space in the form of the
EME density current. The vector field v is always oriented in
the direction of the wave vector k. Thus, before the grating, it
is aligned along the y-direction, and behind the grating, its
alignment will depend on the particular point (x, y) where
the field is evaluated, becoming almost constant along some
specific direction only within the Fraunhofer regime.

Acknowledgments

MD, DA and MB acknowledge support from the Ministry
of Science of Serbia under the project ‘Quantum and
Optical Interferometry’, number 141003; ASS and SM-A
acknowledge support from the Ministerio de Ciencia
e Innovacién (Spain) under the project FIS2007-62006.
ASS also thanks the Consejo Superior de Investigaciones
Cientificas for a JAE-Doc Contract.

References

[1] Parker S 1971 Am. J. Phys. 39 420
Parker S 1972 Am. J. Phys. 40 1003
[2] Dimitrova T L and Weis A 2008 Am. J. Phys. 76 137
[3] http://ophelia.princeton.edu/~page/single_photon.html
[4] Rauch H and Werner S A 2000 Neutron Interferometry:
Lessons in Experimental Quantum Mechanics (Oxford:
Clarendon)
[5] Tonomura A, Endo J, Matsuda T, Kawasaki T and Ezawa H
1989 Am. J. Phys. 57 117
[6] Shimuzu F, Shimuzu K and Takuma H 1992 Phys. Rev. A 46
R17
[7] Prosser R D 1976 Int. J. Theor. Phys. 15 169
Prosser R D 1976 Int. J. Theor. Phys. 15 181
[8] Ghose P, Majumdar A S, Guha S and Sau J 2001 Phys. Lett. A
290 205
[9] Holland P R 1993 The Quantum Theory of Motion
(Cambridge: Cambridge University Press)
[10] Sanz A S, Borondo F and Miret-Artés S 2002 J. Phys.:
Condens. Matter 14 6109
[11] Gondran M and Gondran A 2005 Am. J. Phys. 73 507
[12] Sanz A S and Miret-Artés S 2007 J. Chem. Phys. 126
234106
[13] Bozi¢ M and Arsenovi¢ D 2006 Acta Phys. Hung. B 26 219
[14] Davidovi¢ M, Arsenovi¢ D, Bozi¢ M, Sanz A S and
Miret-Artés S 2008 Eur. Phys. J. Spec. Top. 160 95
[15] Sommerfeld A 1954 Lectures on Theoretical Physics
vol 4 (New York: Academic)
[16] Jackson J D 1998 Classical Electrodynamics 3rd edn
(New York: Wiley)
[17] Born M and Wolf E 2002 Principles of Optics Tth edn
(expanded) (Oxford: Pergamon)
[18] Clauser J F and Reinsch M W 1992 Appl. Phys. B 54 380
[19] Arsenovi¢ D, Bozi¢ M and Vuskovic L 2002 J. Opt. B:
Quantum Semiclass. Opt. 4 S358
[20] Arsenovi¢ D, Bozi¢ M, Man’ko O V and Man’ko V I 2005
J. Russ. Laser Res. 26
[21] Sanz A S, Borondo F and Miret-Artés S 2000 Phys. Rev. B 61
7743


http://dx.doi.org/10.1119/1.1986168
http://dx.doi.org/10.1119/1.1986731
http://dx.doi.org/10.1119/1.2815364
http://dx.doi.org/10.1119/1.16104
http://dx.doi.org/10.1103/PhysRevA.46.R17
http://dx.doi.org/10.1103/PhysRevA.46.R17
http://dx.doi.org/10.1007/BF01807089
http://dx.doi.org/10.1007/BF01807090
http://dx.doi.org/10.1016/S0375-9601(01)00677-6
http://dx.doi.org/10.1088/0953-8984/14/24/312
http://dx.doi.org/10.1119/1.1858484
http://dx.doi.org/10.1063/1.2741555
http://dx.doi.org/10.1063/1.2741555
http://dx.doi.org/10.1556/APH.26.2006.1-2.26
http://dx.doi.org/10.1140/epjst/e2008-00713-0
http://dx.doi.org/10.1007/BF00325384
http://dx.doi.org/10.1088/1464-4266/4/4/320
http://dx.doi.org/10.1103/PhysRevB.61.7743
http://dx.doi.org/10.1103/PhysRevB.61.7743
http://ophelia.princeton.edu/~page/single_photon.html

	1. Introduction
	2. The complex Poynting vector and the equation for the EME flow lines
	3. The Poynting vector in the case of two-dimensional diffraction by a plane grating
	4. Flow lines behind a specific grating
	5. Emergence of the interference pattern by accumulation of single photon arrivals
	Acknowledgments
	References

