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Abstract
In 1995, Chapman et al (1995 Phys. Rev. Lett. 75 2783) showed experimentally that the
interference contrast in a three-grating atom interferometer does not vanish in the presence of
scattering events with photons, as required by the complementarity principle. In this work, we
present an analytical study of this experiment by determining the evolution of an atom’s wave
function along the three-grating Mach–Zehnder interferometer under the assumption that the
atom is hit by a photon after passing through the first grating. The consideration of a
transverse wave function in momentum representation is essential in this study. As is shown,
the number of atoms transmitted through the third grating is given by a simple periodic
function of the lateral shift along this grating, both in the absence and in the presence of
photon scattering. Moreover, the relative contrast (laser on/laser off) is shown to be a simple
analytical function of the ratio dp/λi , where dp is the distance between atomic paths at the
scattering locus and λi the scattered photon wavelength. We argue that this dependence, being
in agreement with experimental results, can be considered as showing compatibility between
the wave and corpuscle properties of atoms.

PACS numbers: 03.65.Ta, 42.50.Xa, 03.75.Dg, 37.25.+K

1. Introduction

In an experiment performed by Chapman et al [1] in 1995,
single photons were scattered off the atoms that passed
through the first grating of a three-grating Mach–Zehnder
interferometer [2]. The purpose of this experiment was
to study the influence of photon scattering events on the
atom interference. The dependence of the atom transmission
through the third grating on the distance y′

12 between the
place where the scattering event occurred and the first grating
(figure 1) was then investigated. For each value of y′

12, the
transmission was measured as a function of the lateral shift
1x3 of the third grating, showing that the relative fringe
contrast of the transmission depended on the ratio dp/λi ,
where λi is the scattered photon wavelength, and dp = y′

12λ/d

is the distance between two atomic paths at the scattering
locus; in the latter relation d is the grating constant, λ=

h/mv = 2π/k is the atomic de Broglie wavelength and v

and k are the atomic initial velocity and wave number,
respectively.

The experiment showed that the contrast decreases to
zero for d/λi ≈ 0.5, and several revivals with decreasing
relative maxima follow as d/λi increases [1, 2]. Chapman et al
associated the loss of coherence with complementarity and the
subsequent revival with the spatial resolution function of a
single scattered photon. Moreover, they also considered that
their experiment addresses the following questions: Where
is the coherence lost and how might it be regained? These
questions, in particular revivals of contrast, have been the
subject of discussions and studies [3–6].
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Figure 1. Sketch of the experimental three-grating interferometer
used by Chapman et al [1, 2].

Here, we propose an explanation for the experimental
results observed by Chapman et al [1] by determining the
evolution of the wave function of an atom in a three-grating
interferometer in two cases: (i) the atom moves freely between
the gratings and (ii) the atom is hit by a photon between the
first and second grating. The consideration of a transverse
wave function in momentum representation is essential in our
explanation.

2. Evolution of the wave diffracted by a grating

Consider an initial stationary atomic monochromatic wave,
spreading along the y-axis, that strikes a one-dimensional
grating parallel to the x-axis at y = 0,

9(x, y, t)= e−iωtψ i (x, y)= Bi e−iωt eiky, y < 0, (1)

where Bi is a constant. After reaching the grating, this
incident wave is being transformed into

9(x, y, t)= e−iωtψ(x, y), y > 0, (2a)

ψ(x, y)=
eiky

√
2π

∫ +∞

−∞

dkx c(kx ) eikx x e−ik2
x y/2k, y > 0.

(2b)
Here, we consider gratings such that the function c(kx ) has
non-negligible values only for k2

� k2
x [7, 8]. Under this

assumption, ψ(x, y) satisfies the Helmholtz equation. The
function c(kx ) gives the probability amplitude of transverse
momenta and is determined by the boundary conditions at the
grating. If the grating is completely transparent inside the slits
(union of slit areas is denoted by A) and completely absorbing
outside them, c(kx ) is given by the following equation [7, 8]:

c(kx )=
1

√
2π

∫ +∞

−∞

dx ′ψ(x ′, 0+) e−ikx x ′

=
1

√
2π

∫
A

dx ′ψ i (x ′, 0−) e−ikx x ′

, (3)

where ψ(x ′, 0+) is the wave function just behind the first
grating and ψ i (x ′, 0−) is the wave function just before the
first grating.

As shown by Arsenović et al [9], the solution of the
Helmholtz equation, ψ(x, y), given by (2b), is equivalent to
the Fresnel–Kirchhoff solution

ψ(x, y)=

√
k

2πy
e−iπ/4 eiky

∫ +∞

−∞

dx ′ ψ(x ′, 0+) eik(x−x ′)2/2y .

(4)
The latter form is very useful because one can easily show
from it that there exists direct proportionality between the
functions ψ(x, y) and c(kx/y) in the region far from the
grating:

ψ(x, y)=

√
k

√
y

e−iπ/4 eikx2/2y c

(
kx

y

)
eiky . (5)

The solution given in (2a) and (2b) suggests that, behind
the grating, the atom continues propagating with the initial
longitudinal momentum, since a change of it is negligible.
However, there is a probability density |c(kx )|

2 that an atom
acquires a transverse momentum px = h̄kx . This justifies [4,
5] the substitution of y by h̄kt/m in the integrand of (2b) and
defining the so-called wave function of the transverse motion,

ψ tr(x, t = ym/h̄k)=
1

√
2π

∫ +∞

−∞

dkx c(kx , t) eikx x

=
1

√
2π

∫ +∞

−∞

dkx c(kx )e
−ik2

x h̄t/2meikx x ,

(6)

where c(kx , t) is the time-dependent transverse wave function
in momentum representation,

c(kx , t)=
1

√
2π

∫ +∞

−∞

dxψ tr(x, t)e−ikx x

= c(kx )e
−ik2

x h̄t/2m . (7)

As can be seen, ψ tr(x, t) has the form of a non-stationary
solution of the one-dimensional free-particle time-dependent
Schrödinger equation. The solution (2a) is then a product
[7–9] of a longitudinal plane wave and a non-stationary
transverse wave function,

9(x, y, t)= e−iωt eikyψ tr(x, t). (8)

3. Evolution of the diffracted wave after the atom
is hit by a photon

We shall now use the above atomic wave function behind the
grating and its interpretation to determine the atomic wave
function after the atom absorbed and re-emitted a photon
somewhere along the x-axis at a time t ′

12 and a distance
y′

12 = vt ′

12 = (h̄k/m)t ′

12 from the first grating. As a result of
the scattering with the photon, there is a change of the atomic
transverse momentum 1kx , which also leads to a change of
the wave function in the momentum representation. We denote
the wave function after the photon–atom scattering event in
momentum representation as c1kx (kx , t). It has to satisfy∣∣c1kx (kx , t ′

12)
∣∣2 =

∣∣c(kx −1kx , t ′

12)
∣∣2 . (9)

2
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From this relation, it follows that

c1kx (kx , t ′

12)= c(kx −1kx , t ′

12)e
i f (1kx ,kx ), (10)

where f (1kx , kx ) is (for now) an unknown phase function.
The corresponding transverse wave function at time t ′

12 is then
given by

ψ tr
1kx
(x, t ′

12)=
1

√
2π

∫ +∞

−∞

dkx c1kx (kx , t ′

12) eikx x , (11)

which should satisfy∣∣ψ tr
1kx
(x, t ′

12)
∣∣2 =

∣∣ψ tr(x, t ′

12)
∣∣2 . (12)

Using (10), one can show that the latter condition will be
fulfilled if

f (1kx , kx )= 0. (13)

After substituting (10) and (13) into (11), one finds that,
just after the photon–atom scattering event, the atomic wave
function becomes

ψ tr
1kx
(x, t ′

12)=
1

√
2π

e−i1k2
x h̄t ′

12/2m

×

∫ +∞

−∞

dkx c(kx −1kx )e
−ik2

x h̄t ′

12/2m eikx (x+1x0), (14)

where we have introduced the magnitude

1x0 =
1kx h̄t ′

12

m
=
1kx y′

12

k
. (15)

Assuming that the function (14) keeps the same form for
t > t ′

12, we may write

ψ tr
1kx
(x, t)=

1
√

2π
e−i1k2

x h̄t/2m

×

∫
dkx c(kx −1kx )e

−i1k2
x h̄t/2m eikx (x+1x0).

(16)

By changing now the integration variable k ′
x = kx −1kx and

using the relation h̄t/m = y/k, equation (16) transforms into

ψ tr
1kx
(x, y)=

1
√

2π
ei1kx (x+1x0)−i1k2

x y/k

×

∫ +∞

−∞

dk ′

x c(k ′

x )e
−ik

′2
x y/2keik ′

x (x+1x0−y1kx/k).

(17)

Then, after multiplying (17) by eiky , we obtain the
space-dependent wave function, which is the continuation
of (2b) for y > y′

12, i.e.

ψ1kx (x, y)= eikyψ tr
1kx
(x, y). (18)

In analogy to the approximation (5) for (2b) and (4), the
wave function (18) can also be approximated in the far field
by the simpler form,

ψ1kx (x, y)= eiky

√
k

√
y

e−iπ/4e−i(1k2
x y/2k)ei(k(x+1x0)

2/2y)

× c

(
k(x +1x0)

y
−1kx

)
. (19)

Figure 2. The function |ψ1kx (x, y = y12)|
2 when the laser is off (a),

with 1kx = 0, and when the laser is on (b), with y′

12 = 5kd/8ki and
1kx = ki . The parameters considered are v = 1400 m s−1,
k = mNa · v/h̄ = 5.09067 × 1011 m−1, ki = 2π/(589 nm)=

1.06675 × 107 m−1, y12 = y23 = 0.65 m, d = 2 × 10−7 m,
δ = 1 × 10−7 m and n = 24.

Assuming that the beam incident on the first grating is a plane
wave that illuminates n slits, from (3) we find that

c(kx )=

√
2

√
πnδ

sin (kxδ/2)

kx

sin (kx dn/2)

sin (kx d/2)
, (20)

where d is the grating period and δ is the slit width.
The wave function ψ1kx (x, y = y12) that reaches the

second grating has two narrow maxima, each one covering
several slits. The square modulus of this function is shown
in figure 2(a) for the laser off and in figure 2(b) for the
laser on.

4. The wave function behind the second grating

In order to determine the wave function behind the second
grating, it is convenient to apply the form (4) of the atomic

3
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wave function. Thus, we have

ψ(x, y)=

√
k

2πy
e−iπ/4 eiky

∫ +∞

−∞

dx ′ ψ(x ′, y+0
12 )e

i(k(x−x ′)2/2y),

y > y12, (21)

where ψ(x ′, y+0
12 ) is the wave function just after the second

grating.
If the laser is off (1kx = 0), the wave function does not

depend on y′

12. We then find that the square modulus of the
wave function striking the third grating has the form shown
in figure 3(a): it oscillates with period d. If the laser is turned
on, the function has the same form again, but it undergoes
a shift along the x-axis (see figure 3(b)) for an amount that
depends on 1kx .

5. Transmission through the third grating

In the experiment of Chapman et al [1] the corresponding
patterns were obtained by counting the number of atoms
transmitted through the third grating. So, in order to compare
the above analytical results with experimental data, it is
necessary to evaluate the number of transmitted atoms through
the third grating for various values of its lateral shift1x3. The
transmission is evaluated by integrating first the intensity in
the region of the first maximum (i.e. in the range of x shown
in figure 3) for fixed values of the lateral shift and transferred
impulses 1kx to the atom during the photon scattering, i.e.

T (y′

12,1kx ,1x3)=

∫
slits

∣∣ψ1kx (x, y = y12 + y23)
∣∣2 dx . (22)

The numerical results we have obtained for different values of
y′

12 and 1kx show that the function T (y′

12,1kx ,1x3) has the
following simple periodic form:

T (y′

12,1kx ,1x3)= a + b cos(2π1x3/d + dp1kx ), (23)

where a and b are constants that do not depend on y′

12 and
1kx , and the quantity

dp = (2π/kd)y′

12 (24)

is the distance between the paths (the lines of maxima of
the atomic wave function) at the place of scattering with
a photon.

Next, we have to integrate over all possible values of
the transferred momentum taking into account the probability
distribution of the transferred momentum, P1(1kx ). As shown
by Mandel and Wolf [10], this distribution is given by

P1(1kx )=
3

8ki

[
1 +

(
1 −

1kx

ki

)2
]
. (25)

Consequently,

T (y′

12,1x3)=

∫ 2ki

0
d(1kx ) P1(1kx ) T (y′

12,1kx ,1x3)

=

∫ 2ki

0
d(1kx )

3

8ki

[
1 +

(
1 −

1kx

ki

)2
]

× (a + b cos(2π 1x3/d + dp1kx )), (26)

Figure 3. The function |ψ1kx (x, y = y12 + y23)|
2 when the laser is

off (a), with 1kx = 0, and when the laser is on (b), with
y′

12 = 5kd/8ki and 1kx = ki . The parameters considered are the
same as in figure 2. The period of the fast oscillations observed is
the same as the grating period.

After analytical integration of (26), we obtain

T (y′

12,1x3)= a + bB cos
(
2π 1x3/d + dpki

)
, (27)

where

B =
3

4π

λi

dp

×

[(
1 −

1

(2π)2
λ2

i

d2
p

)
sin

(
2π

dp

λi

)
+

1

2π

λi

dp
cos

(
2π

dp

λi

)]
.

(28)

As is apparent from (27), the contrast when the laser is off and
on is determined by the quantities a, b and B, as

C0 =

∣∣∣∣ba
∣∣∣∣ , C =

Tmax − Tmin

Tmax + Tmin
=

∣∣∣∣ba B

∣∣∣∣ , (29)

4
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Figure 4. Relative contrast as a function of dp/λi .

with the relative contrast being

C/C0 = |B|. (30)

The relative contrast displayed in figure 4 is an analytic
function of the ratio dp/λi .

6. Conclusions

Our description and explanation of the experiment by
Chapman et al [1, 2] is based on the assumption that
there is a wave associated with an atom. The evolution
of the wave is determined by the Schrödinger equation,
the boundary conditions imposed by the gratings and the
interaction between the atom and a photon. As shown here,
an initial harmonic atomic wave is transformed by the first
grating into a wave with narrow maxima at the points along
and in the close vicinity of three particular paths (although
only two of them are of relevance in this experiment) and
negligible values at any other point. The two maxima move
together; in other words, the wave is coherent. At the grating,
the particle associated with the wave acquires randomly a
new value for its momentum, which directs the particle
towards one of the paths along which it moves following the
time evolution of a wave field. The photon scattering that
takes place between the first and second gratings causes the
change of the atomic transverse momentum. Consequently,
the atomic wave function is shifted along the x-axis, but

without destroying the coherence, and the contrast of the
transmission function will not depend neither on the point of
scattering nor on the photon wavelength.

The dependence of the transmission on the ratio dp/λi

is obtained after integrating over all possible values of
transferred momenta. In this explanation, wave and particle
properties are compatible since both are present and play a
role. Within the model presented here, the behavior of contrast
can be explained for all values of dp/λi . Moreover, the
problem of explaining the so-called revivals of the coherence
after it was ‘lost’ at dp/λi

∼= 0.5 does not appear, as required
by complementarity.
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