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Abstract
We use the optical Bloch equations to calculate spontaneous emission and Zeeman coherences
of the probe laser beam in coaxial pump–probe configuration in rubidium (Rb) vapor.
To properly model the open Fg = 2 → Fe = 1 transition, the solution of the time-dependent
optical Bloch equations was necessary. Also, due to the nature of a room temperature Rb
vapor, we performed averaging of the total population of the excited Fe = 1 state over different
atomic velocities according to the Maxwell–Boltzmann distribution and over different
directions of propagation of atoms through pump and probe laser beams. Time-dependent
diagonal and nondiagonal density matrix elements for atoms are presented and discussed.

PACS numbers: 42.50.Gy, 42.50.Nn, 42.65.−k

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The search for better sensors leads scientists to study atoms
and their interaction with light. Use of cells with alkali vapor
introduces simple but powerful and cheap tools for atomic
spectroscopy. The properties of coherently prepared media
([1] and references therein) have attracted great attention.
Electromagnetically induced transparency (EIT) ([2] and
references therein) has been studied intensively. Narrow EIT
structures have been obtained in buffer gas, pure rubidium
(Rb) and cells with coherence-preserving wall coating.

In cells with coated walls, resonance narrowing is
obtained thanks to reuse of coherently prepared atoms after
many collisions with the cell wall [3]. Buffer gas limits the
rate of atom diffusion out of the laser beam and allows the
return of atoms back to the laser beam, thus considerably
increasing the coherence buildup time [4].

The subject of this paper is the theoretical simulation
of the interaction between atoms and two spatially separated
laser excitation regions in a pure Rb vapor cell as a
function of the axial magnetic field B. We use the hollow
pump laser beam to create the coherence. This coherence
was subsequently tested by calculated transmission of the
copropagating probe beam located at its center. Inverse beam

geometry has been used by Briaudeau et al [5] where the
sub-Doppler feature was observed in the transmission of the
hollow probe beam, through a very thin (10 µm) cell, whereas
the pump beam is placed at the probe center.

2. Theory

Our model uses these assumptions:

1. In an uncoated pure Rb vapor cell, all atoms after
collision with a cell wall reset their state, i.e. lose the
coherence induced during previous interactions.

2. Our laser beam configuration has radial symmetry.
3. Atoms interact only with laser beams, magnetic field and

cell walls due to low vapor pressure at room temperature,
i.e. there is no collisions between atoms. This implies that
atom trajectories are straight lines.

4. The vapor is in thermal equilibrium, i.e. the
Maxwell–Boltzmann velocity distribution describes
the motion of atoms in the cell.

5. The magnetic field is homogeneous and stationary
EB(Er , t) = const.

6. Atom fluorescence is proportional to the excited-level
population and is related to absorption.
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2.1. The density matrix method

The transition Fg = 2 → Fe = 1 at the 87Rb D1 line is open
(figure 1(a)). There are two possible deexcitation paths from
the Fe = 1 level: to the coupled Fg = 2 and to the uncoupled
Fg = 1 level. A configuration like this needs to be treated
as time dependent in contrast to closed transitions where
stationary solutions for the density matrix exist and could be
used. So, we solve numerically the time-dependent optical
Bloch equations:
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Figure 1. (a) Atomic energy level diagram for 87Rb D1 line ground
and excited levels, (b) the energy level diagram for magnetic
sublevels of the Fg = 2 → Fe = 1 transition and (c) pump and probe
laser beam radial profiles used in the theoretical model. In (a) and
(b), solid lines represent laser light coupling energy levels and
dotted lines show the de-excitation paths from excited levels.

and µai a j q is the matrix dipole element, and h̄ωei and h̄ωgi are
the energies of the Zeeman sublevels. Fast oscillations at the
laser frequency in equation (1) were eliminated by common
substitution %ei g j = %̃ei g j × e−iωt . The summation F ′

g is over
ground states Fg = 1, 2. E0x , E0y and E0z are the x-, y-,
z-components of the laser’s electric vector and ϕ yx and ϕzx

are the corresponding phases. The laser beam propagation
direction is along the z-axis.

EE = Eex cos ωt · E0x + Eey cos(ωt + ϕ yx ) · E0y

+ Eez cos(ωt + ϕzx ) · E0z . (3)

The identity

∑
F ′

g

(2F ′

g + 1)

{
Jg Je 1
Fe F ′

g Ig

}2

=
1

2Je + 1
(4)

relates 0L in equation (1) to the emission rate 0

0 = 20L〈Jg‖eEr‖Je〉
2 2Jg + 1

2Je + 1
. (5)

Here, 〈Jg‖eEr‖Je〉
2 is the reduced matrix element of the dipole

operator between the ground and excited states [6].
As schematically given in figure 1(c), the probe laser

beam propagates along the axis of the hollow pump beam.
Both the pump and probe beams have the same frequency, ω.
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Figure 2. Calculated dependence of excited level populations as a function of the radial position of an atom (as the atom passes through the
pump beam, the ‘dark region’ and the probe region) for different values of B. Columns: population of excited magnetic sublevels from left
to right m = −1, 0, 1, respectively. Results are given for the magnetic field values of 0, 50, 170 and 290 mG, for four rows top to bottom and
average pump and probe powers of 2 mW and 20 µW, respectively, for the atom velocity of 260 m s−1 and its trajectory along the probe
beam diameter. The distances that atoms travel through the pump, ‘dark’ and probe regions are 3.5, 1.7 and 1.5 mm, respectively.

Their radial intensity profiles are modelled by

E(r)=
Erf

(
(r − r1)/a(r2 − r1)

)
− Erf

(
(r − r2)/a(r2 − r1)

)
2

,

(6)
where r1, r2 and a are suitable parameters, and

Erf(z) =
2

√
π

∫ z

0
e−t2

dt. (7)

Density matrix elements in equation (1) are functions of
time, whereas the laser electric field amplitude is a function
of the radial coordinate r (see equation (6)). We replace
r in equation (6) with v ∗ t , where v is the atom velocity.
We assume that the atoms have straight trajectories and
Maxwell–Boltzmann velocity distribution. We assume that
the atoms pass through the center of the probe beam.
Integration of equation (1) is performed from t = 0, or from
the point where the atom enters the pump beam, while the
atom is in the nonilluminated or precession region, and finally
while the atom is in the probe beam. Integration is stopped
when the atom leaves the probe beam.

Because the density matrix is Hermitian, this allow us to
speed up the simulation by reducing the number of equations

from 8 ∗ 8 = 64 to 36 with substitutions %ei e j = %e j ei ,
%gi g j = %g j gi and %̃gi e j = %̃e j gi .

We first discuss some partial results shown in figures 2
and 3.

In figure 2, we show populations of the magnetic
sublevels of the excited Fe = 1 level. Polarizations of the
pump and the probe beam are linear and parallel to each
other. For B = 0, we see generation of the ideal dark state
in the pump beam, after a short interaction, and then the atom
stays in the dark state in the probe beam. This corresponds to
the EIT or to the total medium transparency for the resonant
probe light. For B 6= 0, the dark state is not ideally dark. As
a result, the fluorescence of an atom in the pump beam or
excited sublevel population increases with the magnetic field.
In the probe beam, the spatial dependence of the fluorescence
is different and strongly depends on the B. At B = 0 and
B = 170 mG, we have none or low excited level population,
but for B = 50 mG this population is high.

In figure 3, the first row shows the total Fe = 1 level
population, whereas on the second row the Zeeman coherence
%g0 g−2 has been shown. The phase of the coherence

α = arg (%g0 g−2) (8)

plays a key role in the interaction between atoms and the
probe beam. If α = 0 + 2kπ , where k is an integer, the atoms
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B=290 mG

Figure 3. Calculated dependence of spontaneous emission and of ground-state coherence between the Zeeman sublevels as a function of
the radial position of an atom (as the atom passes through the pump beam, the ‘dark region’ and the probe region) for different values of B.
The first row: spontaneous emission from the excited Fe = 2 hyperfine level. The second row: the real (solid line) and imaginary (dashed
line) parts of the Zeeman coherence induced between mF = 0 and mF − 2 Zeeman sublevels of Fg = 2. Beam powers and dimensions are
the same as in figure 2.

Figure 4. Calculated dependence of spontaneous emission for
atoms with a velocity of 260 m−1 s at the entrance into the probe
beam. Beam powers and dimensions are the same as in figure 2.

do not interact with the resonant light, but for α = π + 2kπ

absorption is maximal. Coherence phase changes, in the ‘dark
region’, could be approximated with

1α(t) = 2π
2µBgF B

h
t, (9)

where µB is the Bohr magneton, gF is the gyromagnetic
factor of the level and h is the Planck constant. From this we
may conclude that for atoms with the same velocity and for
different magnetic fields B, the phase of the coherence and
absorption in the probe beam will be different.

In figure 4, the total excited level population has been
shown as a function of the axial magnetic field right after
atoms enter the probe beam. The minima, in figure 4 are
characteristic Ramsey fringes. But, in Rb vapor, atoms have
Maxwell–Boltzmann velocity distribution. This will wash out
higher order Ramsey fringes in the probe transmission.

2.2. Averaging

In this model, laser intensities and beam dimensions are
inputs used to calculate the density matrix for an array of

magnetic field values and an array of velocity vectors. The
atom fluorescence is proportional to the total excited-state
population

5e(t, B, Ev) =

∑
i

%ei ei (t, B, Ev), (10)

where Ev is the atom velocity vector. The total fluorescence
from an atom due to excitation by the probe beam is

Ie(B, Ev) =

∫ to

ti

5e(t, B, Ev) dt, (11)

where to − ti is the atom transit time through the probe beam.
This time is determined by the atom trajectory in the probe
beam, i.e. by the velocity component perpendicular to the
laser beam, vx . To calculate the total fluorescence ϒ(B), we
averaged Ie(B, Ev) over atom trajectories, i.e. over incident
angles of an atom on the probe beam and over different atom
velocities ( Ev summation). vz , the velocity component parallel
to the laser beam, determines the Doppler shift in the laser
frequency seen by an atom:

ϒ(B) =

∑
Ev

|Ev|Ie(B, Ev)Wb(T, |Ev|), (12)

where |Ev| accounts for atom flux through the laser beam. In
equation (12),

Wb(T, v) = 4π

(
M

2πkT

)3/2

v2e−Mv2/2kT (13)

is the Maxwell–Boltzmann distribution, k is the Boltzmann
constant, T is the temperature of rubidium vapor and M is
the mass of an 87Rb atom. We have found that the main
contribution to the total fluorescence ϒ(B) comes from atoms
with small vz . The range of velocities vz contributing to the
fluorescence increases with the laser beam intensity.

2.3. Results

Line shapes of probe transmission are given in figure 5
for various angles between the electric vectors of linearly

4



Phys. Scr. T135 (2009) 014026 Z Grujić et al

Figure 5. Calculated spontaneous emission as a function of the
magnetic field for different probe beam polarization angles with
respect to pump beam polarization (0◦ solid line, 20◦ dashed line,
45◦ dotted line, 70◦ dashed-dotted line, 90◦ dashed dot-dot line).
Beam powers and dimensions are the same as in figure 2.

polarized pump and probe beams. Magnetic field, according to
its strength, adds the phase to the dark state as the atom travels
along the unlit region. Then the atom enters the probe with
some accumulated phase. Polarization of the probe determines
the accumulated phase and hence the magnetic field for which
the atom–probe interaction is the strongest. Indeed, as the
probe’s polarization angle increases, the first transmission

peak shifts towards higher values of B. Good agreement with
preliminary experimental results has been achieved [7].

3. Conclusion

We have demonstrated dark Raman resonance due to Ramsey
interference in spatially separated pump and probe beams.
The pump and probe laser beams copropagate tuned to the
Fg = 2 → Fe = 1 transition D1 line in 87Rb. These results are
of interest for quantum optics of the dark states.
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