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Abstract
Entanglement dynamics in representative examples of Markov open quantum systems with
qualitatively different dynamics are studied. Rings of qubits with thermal or dephasing local
environment are used to study the qualitative properties of the entanglement dynamics
depending on the interqubit interaction, type of environment and the initial state. It is
demonstrated that the effect of the local environment is manifested as an exponential decrease
of the entanglement superimposed on the entanglement dynamics in the isolated system.

PACS numbers: 03.65.Yz, 05.45.Mt, 03.67.Mn, 75.10.Pq, 05.45.Pq

1. Introduction

Entanglement dynamics in solid-state systems are of great
interest today. This is partly because of the potential use of
solid-state devices for quantum information purposes, such
as quantum computing and entanglement transport [1, 2],
and partly because of the insights entanglement can give on
the physics of such devices. The fact that quantum phase
transitions can be recognized by a change in entanglement
behaviour is an example of such an insight [3, 4].

Classically, the dynamics of a system can be either
integrable or nonintegrable. In quantum mechanics, non-
integrability is not so easily defined since any bounded
finite system must be quasi-periodic. Still, for spin systems,
a system is often considered quantum integrable if it
is completely solvable in the thermodynamic limit and
nonintegrable otherwise [5]. It is just as difficult to define
quantum chaos. A working definition that is consistent with
the observed data uses the nearest-neighbour level spacing
(NNLS) of the energy spectra of systems. For integrable
systems, a Poissonian NNLS is observed, whereas systems
considered to be quantum chaotic have a Wigner NNLS. The
Wigner NNLS is also observed in Hamiltonians constructed
from random matrices [6].

There are indications that a change in entanglement
behaviour could also serve as a general indicator of quantum
chaos similar to the classical Lyaponov exponents [7, 8]. For
example, for some spin chains, the von Neumann entropy
of half the chain increases linearly for quantum chaotic

parameters and logarithmically for integrable parameters
with the chain length [9, 10]. The entanglement in a
quantum chaotic spin chain is expected to be predominantly
multipartite, at the cost of pairwise entanglement [9–11].
However, in [10], it was questioned whether this behaviour is
just the result of mixing of eigenfunctions rather than quantum
chaos.

Since no realistic quantum system is really isolated, it
makes sense to ask: what is the behaviour of entanglement
in integrable and nonintegrable spin chains exposed to an
outer environment? The influence of different temperatures of
a thermal environment has been studied for the Heisenberg
and transverse Ising models [12] and a realistic model of
Josephson junctions [13]. Interestingly, measured by the
logarithmic negativity, some parameter values were found to
have a steady-state entanglement different from 0 even in the
presence of an environment [13].

We have used the model of [5, 9] to closely study
the decay of entanglement under different dynamics and
environments. As a measure of pairwise entanglement, we
have used entanglement of formation [14], E(|9〉). We have
found an exponential decrease in entanglement, resulting
in the vanishing of all entanglement. Our results will be
presented for one of the states examined.

2. Methods

Instead of solving the Lindblad equation, we have used
quantum state diffusion (QSD) formalism. In the QSD picture,
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a quantum state diffuses through state space not unlike the
diffusive motion of a Brownian particle in water. Itô calculus,
which has been developed for stochastic differentials, serves
as the mathematical backbone of the theory. In complex Itô
calculus, there are two kinds of differentials, ordinary dt as
well as complex stochastic differentials dξ [15].

2.1. The QSD equation

QSD is just one way to get a consistent stochastic Schrödinger
equation. It is based on the Itô calculus diffusion equation [15]

|d9〉 =

∑
i

(|vi 〉dt + |ai 〉dξi ). (1)

To this is added that the stochastic differentials dξi are time
independent, that the state vector remains normalized and that
the ensemble mean of all state vector tractories must generate
a density matrix obeying the Lindblad equation,

ρ(t) = M |9(t)〉〈9(t)|. (2)

These four assumptions give the following unique form to the
QSD equation [15]:

|d9(t)〉 = − iH1|9(t)〉dt −

∑
k

1
2 L2

1k |9(t)〉 dt

+
∑

k

L1k |9(t)〉 dξk . (3)

The operators H1 and L1k are shifted versions of
the system Hamiltonian H and the environment Lindblad
operators Lk [15]:

H1 = H − 〈H〉,

L1k = Lk − 〈Lk〉.
(4)

This equation has been numerically solved using enough
trajectories not to see any difference depending on the random
number series used.

2.2. Entanglement of formation

In the asymptotic limit the entanglement of formation
E(|Psi〉) of a two-qubit state |Psi〉 is a unique measure
of pairwise entanglement [16]. Even if entanglement of
formation loses its unique status for finite numbers of pairs
|9〉, it is still a useful entanglement measure, since it can be
calculated exactly for the mixed state density matrix ρ(i j) of
two qubits, i and j . This is done in terms of the quantity called
concurrence, C(ρ(i j)) [17, 18],

E(ρ) = H

(
1 +

√
1 − C(ρ)2

2

)
, (5)

with H(x) being the binary entropy

H(x) = −x log2 x − (1 − x) log2(1 − x). (6)

Concurrence itself can be calculated from the eigenvalues of
the matrix ρρ̃ with ρ̃ = (σ2 ⊗ σ2)ρ

∗(σ2 ⊗ σ2). If λ1 · · · λ4 are
the eigenvalues in descending order, the concurrence is [18]

C(ρ) = max
(

0,
√

λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
. (7)

In order to obtain the relevant subsystem density matrix
for the qubits i and j , the expectation values 〈σ i

kσ
j

l 〉 have
been extracted from the QSD simulations. The indices k, l =

1, . . . , 3 label the qubit Pauli matrices and k, l = 0 is the
identity matrix. Since the 16 σ i

k ⊗ σ
j

l matrices are a basis
for all 4 × 4 matrices, the two-qubit density matrices can be
reconstructed.

To better see the loss of entanglement, we have also
calculated the quantity

Eavr(ρ(i j)(t)) =
1

t

∫ t

0
E(ρ(i j)(s)) ds. (8)

Since Eavr takes a long time to go to zero when compared
with the open system entanglement evolution we have also
calculated

Eavr(ρ(i j)(t), 1T ) =
1

1T ′

∫ t

t−1T
E(ρ(i j)(s)) ds,

1T ′
=

{
t, t < 1T,

1T, 1T 6 t.
(9)

3. Model

Our model is the same as that studied in [9] and also described
in [5]. A kicked version of it has been studied in [11]. We have
used a ring of six qubits with the Hamiltonian

H =

6∑
i=1

(hxσ
i
x + hzσ

i
z ) + J

6∑
i=1

σ i
xσ

i+1
x . (10)

Since the qubits are in a ring, we have the boundary
condition σ 7

x = σ 1
x . When hz = 0 or hx = 0 the model is

quantum integrable. The case J = 1, hx = 1.4 and hz = 0
will henceforth be called the symmetric case and J = 1,
hx = 0 and hz = 1.4 will be called the nonsymmetric case.
The nonsymmetric case is the same as the transverse
Ising model and thus only solvable by the Jordan–Wigner
transformation [19]. As an example of a nonintegrable
Hamiltonian, we have used J = 1, hx = 1.0 and hz = 1.0.

The Lindblad operators of a thermal environment
are [20, 21]

L i =
0(n̄ + 1)σ i

−

2
+

0n̄σ i
+

2
(11)

and those for the dephasing environment are [20]

L i = 0σ i
+σ

i
−
. (12)

We have treated the parameters 0 and n̄ as constants and
used the values 0 = 0.03 and n̄ = 0.5 in our calculations.
Temperature dependence has been studied in [12, 13].

3.1. Initial states

A common initial state for simulating entanglement dynamics
in spin chains is

|9max〉 =
1

√
2
(|↑↓〉 + |↓↑〉) ⊗ |↓↓↓↓〉. (13)

2
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Figure 1. Entanglement dynamics for the qubits of the Bell pair of
|9max〉. Lines in black (grey) show entanglement for the isolated
(open) system. Top: symmetric Hamiltonian. Middle: nonsymmetric
Hamiltonian. Bottom: nonintegrable Hamiltonian.

This state, for example, allows for the demonstration of
entanglement transport. We have studied this state as well
as separable states such as |Psisep〉 = |↓↓↓↓↓↓〉 and the
W state [22]. We have also studied these states with all spins
in the opposite direction.

4. Results

All the states studied have given qualitatively the same results
and therefore we will present only those for |9max〉. Both
dephasing and thermal environments were found to give an
exponential dampening of the entanglement dynamics. Only
the rate of dampening differed. Time is given in dimensionless
units t · J .

The dynamics of the two qubits of the Bell pair of |9max〉

are shown for the three cases in figure 1. The dynamics
between the three cases are radically different. For the
symmetric case, the other qubit pairs are uninfluenced by the
Bell pair. However, in the nonsymmetric case, the Bell state
entanglement is periodically transported between the original
Bell state and the qubit pair on the other side of the ring.
For the nonintegrable dynamics, the pairwise entanglement
disappears quickly, which is as expected [9–11].
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Figure 2. Eavr is plotted for |9max〉 in an open system. Black:
symmetric Hamiltonian. Dark grey upper line (dashed): isolated
Eavr for the nonsymmetric Hamiltonian. Dark grey lower line:
nonsymmetric Hamiltonian. Light grey line: nonintegrable
Hamiltonian.

Eavr(ρ12(t)) for |9max〉 is shown in figure 2. The averaged
entanglement Eavr(ρi j (t)) converges to an exponential decay.
This is also true of Eavr(ρ(i j)(t), 1T ) large enough to average
out the oscillations of entanglement.

5. Summary

We have examined the behaviour of three distinct
entanglement dynamics in an open system for various
initial states. The amount of entanglement is certainly highly
dependent on the state and the Hamiltonian. The qualitative
complexity of entanglement dynamics mainly depended on
the integrability as well as symmetry of the Hamiltonian.
Both the thermal and dephasing environments were seen to
cause an exponential decrease in entanglement, resulting in
the disappearance of all two-qubit entanglements.
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[14] Bennett C H, Bernstein H J, Popescu S and Schumacher B
1996 Phys. Rev. A 53 2046

[15] Percival I 1998 Quantum State Diffusion (Cambridge:
Cambridge University Press)

[16] Vedral V, Plenio M B, Rippin M A and Knight P L 1997
Phys. Rev. Lett. 78 2275

[17] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K
1996 Phys. Rev. A 54 3824

[18] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[19] Pfeuty P 1970 Ann. Phys. 57 79
[20] Breuer H-P and Petruccione F 2002 The Theory of Open

Quantum Systems (Oxford: Oxford University Press)
[21] Mintert F, Carvalho A R R, Kuś M and Buchleitner A 2005
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