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Dyons in non-Abelian Born-Infeld theory
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We analyze a non-Abelian extension of the Born-Infeld action forSk#2) group. In the class of spheri-
cally symmetric solutions we find that, in addition to the Gal'tsov-Kerner glueballs, only the analytic dyons
have finite energy. The presented analytic and numerical investigation excludes the existence of pure magnetic
monopoles of 't Hooft—Polyakov type.
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[. INTRODUCTION whereF ,, is the field strength ang'’s are scalar fields. The
Bl action is obtained from Eq3) for y'=0. Conversely, the
Born-Infeld (Bl) electrodynamicq1] was proposed in DBI action can be related to the Bl action in higher dimen-
1934 as a theory in which the energy of electrically chargedsions by dimensional reduction.
point particles is finite, in contrast with Maxwell electrody-  The generalization of Bl electrodynamics to non-Abelian
namics. The Born-Infeld action is built similarly to the action gauge theory is not unique. In the general cask,,if is the
of a relativistic point particle and it introduces the dimen-field strength of the non-Abelian gauge grogpand F,,,
sional parameteg, the “maximal field strength.” It is usu- =F?% T, (T, are the generators &, [T,, Tp]=if 5 Tc) the
ally written in one of the following forms: “determinant” form of the action(1) is not equal to the
“square-root” form (2). Different definitions of non-Abelian
1 Born-Infeld (NBI) Lagrangians are possible, regarding the
Sg1= —,Bzf d“x( \/— de( Ut —FMV) — \/—degw) way of tracing the group indices. The symmetrized trace ver-
B sion of Tseytlin[6—8] is often regarded as the one which
@) describes the nonderivative approximation of string theory;
however, there are other proposal9]. Usually NBI
Lagrangians cannot be put in the closed form in the compo-
= _'Bzf d'x\-g nent fieldsF3, .
i Following Gal'tsov and Kern€gf10], in this paper we will
” .2 analyze the simplest version of NBI action in which the trace
\/1+ 2_,5’2F#VFM B Fﬁ“'(FﬂvF ) _1>’ @ over the group indices is done under the square-root sign.
Gal'tsov and Kerner found particlelike finite-energy solu-
% . . . . _tions for the NBI action for thesU(2) gauge group. Moti-
\évrk(;%rsrti elss [tg]e '::ggﬁ gdL:ﬁlér;]rh'juZ?ittI; ns:]/?:mn;?gz/ 'BLe;SeiigTé/ated py this rgsult and by the fact that the dyonic solutions
are of interest in the brane theory, we analyze a more general

propagation, absence of birefringence, etc. class of solutions. We also discuss the existence of pure
Actions of the BI type arise in string or M theory in two S P
gnonopole solutions.

main contexts. The Bl action represents the nonderivativ
part of the effective open string action. As showr 3j, the
bosonic field partition function for the open string in an ex- Il. ACTION AND FIELD EQUATIONS

ternal field reduces to the Bl Lagrangian in the string theory  1nq initial point of our analysis is the following non-
limit. On the other hand, the Bl action is related to D'bra”eS-Abelian Born-Infeld action in Minkowski space:

This comes from the result that the effective action for the

X

open strings ending on D-branes, after the integration of 1
string degrees of freedorf4,5], is the Dirac-Born-Infeld S= 4—J d*x(1-R), (4)
iy T
(DBI) action:
whereR is defined as
SDBIZ_f dp+1X\/—de( 77,u,V+Fp,V+(9/.Ly|(9VyI)v (3) \/ 1 a A 1 2 ok uvan2
= — prva__ y7a%
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3. The signature which we use is-(+,+,+). Ff‘w are the
field strengths of th&U(2) gauge group,

a _ a a bcpab pcC

F&,=0,A5—d,A%+ePADAS

(6)

with a, b=1, 2, 3. The equations of motion which follow
from the NBI action(4) are

D,P“"=0 (7)
whereP ,, are the “displacements” defined by
L  FHrE-GF*#r2
ZVZ = . (8)
gFrva R
The quantityF* denotes the Hodge dual &f
F*;.LV_E MYPOE (9)
and we use the shorthand notation
G= EFa Fuva (10
= 7F i

The equations of motioKi7) can be complemented with the
Bianchi identities

D, F*#"=0. (1D)

It is important to note that NBI theory has the duality sym- Ba

metry as Bl:

Frv_, P* ,u.v, pHry_, — F* mv

12
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The ansatz for the gauge potentials [df0] was the
“monopole ansatz,”
1—w(r) xX

AS: 0, Aia: €aik ™ s

; ; (13

and it describes the purely magnetic configurations. Electric
and magnetic fields are defined by

Eia: F?O' Biazzeiij?k' (14)
We will generalize the ansafd3) — in fact, we will con-
sider the general spherically symmetric static potential of the
SU(2) group(Witten’s ansat£11]). It is given via three real
functionsag(r), a,(r), andw(r) of the radial coordinate.

The components of the gauge potential read

a

A3=ao(r)7, (15
. X3! 1—w(r) xX
Ar=ay(r) 7 +eai— 1 (16)

Herex?, x', andxX (a, i, k=1, 2, 3 are the Cartesian coor-
dinates. The field strengths for this ansatz are

2

, XiXa oW X{Xa— &ial
Eia:ao_rz—_T—z, (17

;
1-w  (1-wW)2 XX, [1—W) XXa— a2
|:_25iar—2 T2 + 12 r
aw

+r—z€iakxk (18)

Duality invariance can be seen from the vacuum equations
(7) and (11), too. It can be used to generate new vacuumand prime denotes the derivatigédr. The square rooRR

solutions from the given ones. becomes
|
(1-w?)2 w2 aiw? agw’ . [ag(1-w?)]'?
R= \/1+—r4 +2r_2+2 /2 2 0 r4 ) (19)
|
In order to find the equations far(r), a;(r), andw(r) we [ag(1—w?)]’ ! owla, [ral)’
can consider the condition of extremality of the action or (1—w2)( > =—= |z ) , (22
introduce the ansatdl6) into (7)—(11). After the integration r“rR
of angular variables, the action is proportional to the La- ) 5
grangianL, W [ag(1-w?)]"|" B 2w(1-w?) (2w wag
e T R ™R
L:J'o r’(R—1)dr. (20) waj
= (23
Varying the unknown functionsgy, a;, andw, we obtain the
IIl. NBI DYONS

set of the equations:

w?a; =0, (21)

The system of equationi21)—(23) is a complicated non-
linear system. We will search for particular solutions of this
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system with finite energy. The energy of the static configu- 35 - - - - - - - - .
rations is equal to the negative value of the Lagrangian,

M=Fr2(1—7z)dr. (24) 25
0

The convergence of this integral on both boundaries imposes ;
restrictions on the asymptotic behavior of the functiags 15 FF
a,, andw, which we will discuss later.

Let us first consider the simplest equati@1); it implies ; ‘1;112 ............ 1
that eitherw(r)=0 ora,(r)=0. But one can see rather eas- g5 lf o= 2 -

ily that the configurationw(r)=0, a;(r)#0 is gauge
equivalent to the configuratiow(r)=0, a;(r)=0. Indeed, 0
for w(r)=0 we obtain that Eqg21) and(23) are identically
fulfilled, leavinga;(r) undetermined. This means thea(r)

0 5 10 15 20 25 30 35 40 45 50
r

represents the gauge freedom. The valuaf) does not FIG. 1. Dyon solution for various values of.
influence the values of the field strengths in the ca$g)
=0, as can be seen from Eq47)—(18). Therefore, we will The other simple possibility(r)=0, a(r)+#0, is also

always assume that;(r)=0 and denot@gy(r)=a(r) in the  nontrivial. The equations of motion in this case reduce to

following, keeping the indexed notation likg, a;, wy, etc.

for the coefficients in the power-series expansions. a \’
The solutions witha(r)=0, w(r)#0 were discussed by (2— =-

Gal'tsov and Kerner in detail. In this case, the equations of r'rR

motion reduce to

!

r2ar

w | 29

where now we have

(W’)’_ w(1l—w?)
= =

y 25 4 o Ar2
- e SN T -
r

and the square rod® to the expression
This equation can be solved explicitly and its solution is a

(1-w??  w'? two-parameter family
R=\[1+—3—+2—- (26)
r .C —c+fr\/a_1d 31
The simplest solution of Eqg25), w(r)==*1, is the pure ar; G a)=C= o Va+r? & (3D

gaugew(r)=0 is also a solution, and it has the form of the

Dirac monopole; this is the embeddél1) monopole. Its  whereC and o are the integration constants and>1. As
energy is finite: the energy and the field strengths do not depen@ and the
equations are invariant undex(r)— —a(r), we will take
C=0 and the+ sign in front of the square root. The explicit
form of the solution is given in terms of the elliptic integral
[12],

There is also an infinite discrete set of finite-energy solutions

77_3/2

M o= ——— ~1.2360. 2
¢ 31(3/4)2 @

w,(r), neN, the so-called Gal'tsov-Kerner glueballs. These o1 12 —1/4 \/E—r2 1
solutions can be found numerically using the condition that a(r; a)=5(a=1)" e arccos\/zﬂz,i - (32)

function w(r) with the allowed asymptotic forms at—0

and r—o is smooth in the intermediate region. The The functiona(r:a) is shown in Fig. 1 for different values
asymptotic expansions are of «. The limiting value of the parameten=1, gives
a(r)=const, a configuration which is gauge equivalent to the
embedded monopole(r)=0, a(r)=0. The energy of the
solution(31) is

r—0: w(r)=1-br2+0(r?%),

c 1
f—oo: W(r):il+F+O

=i (28)

77.3/2 1
e Y
Let us note that the solutions behaving at infinityvag) I'(3/4)? 2aY*

—0 are excluded, thus leaving only the configurations with

no magnetic charge. Solutions,(r) behave as magnetic It is unbounded below with the maximuM, at a=1. We
dipoles and have energies which tend to the enbfgyfthe  observe that the existence of the electric field decreases the
embedded monopole @s—x . total energy.

1- §) . (33
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We call the solution(31) dyon[13], as in the asymptotic 10

region,r — oo, the behavior of the electric and magnetic fields win ——
is given by gt @0 ]
x X XX 6 1
Ef~Ve—1—7 Bi~- 7, (34
4t ]

which describes the field strengths of pointlike sources. The
“electric charge” of the source is proportional tga—1, 2} ]
while the “magnetic charge” is 1.

Let us discuss the duals of the aforementioned solutions. 0
One defines the splitting of the displacement tensor in terms
of the vectorsD? andH} as 2 ; : :

-10 -5 0 5 10

EI]ka (39 log v

?O:D?' PIJ

FIG. 2. Solution for the parametevs,= — 10, a,=0.5 and in-
tegration steph=10"3. The initial point of integration isr;

B~ GE Ef+GB? ~10°%
EA,_HAim_ 5 gapa S R g

1 1 R 1 1 R

The duality transformatio(12) can then be reexpressed as

When we analyze the other boundary; o, we obtain simi-
In the case of Gal'tsov-Kerner glueballs we h&&#=0, G lar asymptotics:
=E®B{=0, so the duality transforms

o

a a(n) =2 Ar=", w(r)=2>, Wyr ", (40)
B3~ —=0. (37) 0 0

This means that from the magnetic dipole solution we obtairPut now the convergence imposégA,=

the purely electric solution, which behaves as a dipole since In order to analyze the relations among the coefficients in

R—1 asymptotically. Egs.(39)—(40) further, we will assume that the equations of
In the case of a dyon we see tfat-r 4 andR~1 at  Mmotion are satisfied order by order in(or, respectively, in

infinity. The leading behavior of the transformed conﬂgura-llr)

tion will be Caser —0— From Eq.(22) we obtain thatw, must be
XX XX +1 or 0. As the equations are invariant to the transformation
Bi~— —32, E~\a—1—7", (38 w(r)——w(r) and toa(r)— —a(r), we will discuss only
r r Wo=0 andw,=1. A similar situation will repeat in the next
i.e., the electric and magnetic charges interchange. case.
g 9 9 For wo=0 Eq. (22) gives wy;=w,=w3=...=0; the

functionw(r) vanishes. At the same time, from EQ1) we
geta,=az=a,=0, a5=a1(al 1)/10, ag=a;=ag=0, ag

We now turn to the analysis of the general casér) =a1(a§—1)2/24, etc. We also obtain thah;|<1. Thus,
#0, a(r)#0. The first condition that we want to impose on both expansions show that this case corresponds to the dyon
our solutions is finiteness of the energy. This condition re-solution (31) with a;=(a— 1)/ .

IV. GENERAL CASE

stricts the possible behavior of the functiongr), a(r) at Forwy=1 we get
the boundaries of the integré24). If we expanda(r) and
w(r) in the power series around=0, we conclude that Eq. a(r)=a r+asr3+0(r®),

(24) converges if there are no poles in the series, i.e., if they

are of the form
W(r)=1+w,r2+w,r4+0(rd), (41)

a(r)=% a,r", w(r)=; W, (39)

where

8adw,+8a,wi—2a,w,

%= T lmi—2002—5
6W2+a%(2+ 2002) + 16w4(7+ 2202) — a2( 1+ 42w2+ 408w?)
Wa= 20(1— a2+ 4w2)(1— 22+ 4w?) !
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FIG. 3. Solutions for param-
eters w,=—-10, a;=0.5, r;
=10"1° and integration steph
=104 (left) andh=10"5 (right).

10 T T T 10
w(r) w(r)

g | am -~ ] g | am

6 6

4 4l

2 2

5 . . 5 .

10 5 0 5 10 10 5 0 5 10

log r

logr

etc., and|a;|<1/y/3. We will analyze these asymptotics in type are nonanalytic. Indeed, from the previous discussion of

the following; let us just note here that faf=0 it is the one
obtained in[10].

asymptotics we know thaw(r)—0 asr—o is compatible
only with w(r)=0. Further numerical analysis of energy

Caser—»— We consider separately the possibilities confirms this conclusion: the values of energy differ for or-

W():O and AO:0

If Wy=0, the assumption that the ders of magnitude for different integration steps and there-

equations of motion are satisfied order by order im 1/ fore signal that the energy diverges. We see that in the NBI

leads toW,;=W,=W3= ...=0. For coefficients ofa(r)
we get Ay=A;=A,=0, As=—A;(A2+1)/10, Ag=A,
=Ag=0, Ag=A,(A?+1)%24, etc. Again, we obtain the
power-series expansion of the dy81), in this case around
infinity.

For the second possibilityp,=0, the solutions behave
asymptotically as

A, Az Ay 1
a(r)=r—2+r—3+r—4+0(r—5>,

W, W; W,

W,
W(I’)=1+T+r—2+r—3+r—4+o (42

1
ro)’
where the following relations are fulfilled:

18A,W3— A3 6W2— A3
20 - T

A=A Wy, Ay=

_ 22W3— 9A3W,

17A5—540A5W3+ 77207
We=—7%5 + Wa

1920

case, as in the pure Yang-Mills theory(r)=0 andw(r)

=1 are separated by an infinite energy barrier and it is im-
possible to find the solution of finite energy which interpo-
lates between them.

The second possibility for numerical investigation is to
start the integration from both sides-0 andr =<« with the
given asymptotics, and try to join smoothly the solution in
the intermediate region by varying the parametess a,

W, andA,. A numerical program which handles this type of
boundary conditioi14] was made, and proved to be correct
and very efficient in the simple case of smaljl, A, (glue-
balls). However, no new solutions were found using this pro-
gram for a wide range of initial parameters. This might be a
consequence of some weaknesses of the implemented varia-
tional procedurgNewton-Raphsondue to the high dimen-
sionality of the parameter space. We are, however, inclined
to interpret this as a strong numerical evidence that there are
no further finite-energy solutions of the systéai)—(23).

V. CONCLUSIONS

The set of Eqs(21)—(23), which represent the equations
of motion for the static spherically symmetric configurations
of SU(2) NBI action(4), is analyzed. The asymptotic analy-

From this analysis we see that, in order to find new solusis shows that, if one imposes finiteness of energy, there are

tions, we need to join the asymptotiogll) and (42)

only three possible types of solutions: glueballs, dyons, and

smoothly. Our first attempt was to do the numerical integrasolutions of the form(39)—(41).

tion fromr =0 to the right or front = to the left, with the

Dyon solutions are of importance in the brane theory, as

initial conditions defined appropriately. Doing this, we obtainthey represent strings ending on three-brgile The name
the generic solution of a typical form shown in Fig. 2. The dyon, introduced afterl3], is used in the generalized sense;

coupling ofa(r) andw(r) induces the oscillations of/(r)
which reduce its initial value 1 for=0 to O forr=«. This

there is no Higgs field to determine the unbrokeifl)
group. As in the case of the Julia-Zee dyon, the electric

solution is interesting, as it has the behavior of the 't Hooft—charge of this solution is continuous while the magnetic
Polyakov monopole. However, it is numerically unstable; if charge is 1. However, the hope that the componaptsf the

we keep the same valuesw}, a;, and the starting point of
numerical integratiom; but decrease the integration step

vector potentialgiven via the functiora(r)] can, through
the nonlinear interaction, take the role of Higgs and counter-

we obtain the functions given in Fig. 3. The oscillations of balance the magnetic field to produce the monopole of the

w(r) increase to a larger region of while the asymptotic

't Hooft—Polyakov type failed. Instead of the exponential

value ofa(r) changes. We conclude that the solutions of thisdecay, a(r) induces the oscillations ofv(r) with infinite
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energy. This could be expected from the fact that the change ACKNOWLEDGMENTS

of the action from Yang-Mills to NBI does not change the

topology of the fields which are included, necessary for the M.B. wishes to thank Professor F. W. Hehl for his hospi-

existence of a monopo[d5]. The solutions of the NBI mod- tality during the stay at the Institute of Theoretical Physics of

els with Higgs fields were discussed|[ib6,17). the University of Cologne, when this work was initiated. We
Finally, let us add that, although the solutions of thealso want to thank Professor A. Beliand Professor D.

third mentioned type are allowed by the energy considerGal’tsov for the useful comments concerning the numerical

ations, we have a strong numerical indication that they dantegration. The work was supported in part by the DAAD

not exist. This problem might deserve further numericalGrant No. A/00/17208. The numerics was done at the IPCF

analysis. of the Institute of Physics, Belgrade.

[1] M. Born and L. Infeld, Proc. R. Soc. LondoA144, 425 504 (2000.

(1934. [9] N. Grandi, E.F. Moreno and F.A. Schaposnik, Phys. ReS9D

[2] I. Bialynicki-Birula, in Quantum Theory of Fields and Par- 125014(1999; J.H. Park, Phys. Lett. B58 471(1999.
ticles edited by B. Jancewicz and J. Lukiergkiorld Scien- [10] D. Gal'tsov and R. Kerner, Phys. Rev. Le#4, 5955(2000.
tific, Singapore, 1983 [11] M.S. Volkov and D.V. Gal'tsov, Phys. Rep19 1 (1999.

[3] E.S. Fradkin and A.A. Tseytlin, Phys. Left63B, 123(1985; [12] M. Abramowitz and I. A. StegunHandbook of Mathematical
A.A. Tseytlin, “Born-Infeld action, supersymmetry and string Functions(Dover, New York, 1972
theory,” hep-th/9908105. [13] B. Julia and A. Zee, Phys. Rev. 11, 2227(1975.

[4] R.G. Leigh, Mod. Phys. Lett. &, 2767(1989; J. Polchinski,  [14] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetter-
Phys. Rev. Lett.75, 4724 (1999; C.G. Callan and J. Mal- ling, Numerical Recipes in @nd ed.(Cambridge University,
dacena, Nucl. Phy®8513 198(1998. Cambridge, England, 1992

[5] G.W. Gibbons, “Aspects of Born-Infeld Theory and String/M [15] G. 't Hooft, Nucl. Phys.B79, 276 (1974.

Theory,” hep-th/0106059. [16] N. Grandi, R.L. Pakman, F.A. Schaposnik, and G. Silva, Phys.

[6] A.A. Tseytlin, Nucl. PhysB501, 41 (1997. Rev. D60, 125002(1999.

[7] D. Brecher, Phys. Lett. B42 117(1998. [17] Y. Brihaye and B. Hartmann, “The Born-Infeld Sphaleron,”

[8] V.V. Dyadichev and D.V. Gal'tsov, Nucl. PhysB590, hep-th/0110053.

065007-6



