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Dyons in non-Abelian Born-Infeld theory
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We analyze a non-Abelian extension of the Born-Infeld action for theSU(2) group. In the class of spheri-
cally symmetric solutions we find that, in addition to the Gal’tsov-Kerner glueballs, only the analytic dyons
have finite energy. The presented analytic and numerical investigation excludes the existence of pure magnetic
monopoles of ’t Hooft–Polyakov type.
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I. INTRODUCTION

Born-Infeld ~BI! electrodynamics@1# was proposed in
1934 as a theory in which the energy of electrically charg
point particles is finite, in contrast with Maxwell electrod
namics. The Born-Infeld action is built similarly to the actio
of a relativistic point particle and it introduces the dime
sional parameterb, the ‘‘maximal field strength.’’ It is usu-
ally written in one of the following forms:

SBI52b2E d4xSA2detS gmn1
1

b
FmnD2A2detgmnD

~1!

52b2E d4xA2g

3SA11
1

2b2 FmnFmn2
1

16b4 ~FmnF* mn!221D , ~2!

where * is the Hodge dual. This action has many interest
properties @2#, among them duality symmetry, physic
propagation, absence of birefringence, etc.

Actions of the BI type arise in string or M theory in tw
main contexts. The BI action represents the nonderiva
part of the effective open string action. As shown in@3#, the
bosonic field partition function for the open string in an e
ternal field reduces to the BI Lagrangian in the string the
limit. On the other hand, the BI action is related to D-bran
This comes from the result that the effective action for
open strings ending on D-branes, after the integration
string degrees of freedom@4,5#, is the Dirac-Born-Infeld
~DBI! action:

SDBI52E dp11xA2det~hmn1Fmn1]myi]nyi !, ~3!
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whereFmn is the field strength andyi ’s are scalar fields. The
BI action is obtained from Eq.~3! for yi50. Conversely, the
DBI action can be related to the BI action in higher dime
sions by dimensional reduction.

The generalization of BI electrodynamics to non-Abeli
gauge theory is not unique. In the general case, ifFmn is the
field strength of the non-Abelian gauge groupG and Fmn

5Fmn
a Ta (Ta are the generators ofG, @Ta ,Tb#5 i f abcTc) the

‘‘determinant’’ form of the action~1! is not equal to the
‘‘square-root’’ form ~2!. Different definitions of non-Abelian
Born-Infeld ~NBI! Lagrangians are possible, regarding t
way of tracing the group indices. The symmetrized trace v
sion of Tseytlin @6–8# is often regarded as the one whic
describes the nonderivative approximation of string theo
however, there are other proposals@9#. Usually NBI
Lagrangians cannot be put in the closed form in the com
nent fieldsFmn

a .
Following Gal’tsov and Kerner@10#, in this paper we will

analyze the simplest version of NBI action in which the tra
over the group indices is done under the square-root s
Gal’tsov and Kerner found particlelike finite-energy sol
tions for the NBI action for theSU(2) gauge group. Moti-
vated by this result and by the fact that the dyonic solutio
are of interest in the brane theory, we analyze a more gen
class of solutions. We also discuss the existence of p
monopole solutions.

II. ACTION AND FIELD EQUATIONS

The initial point of our analysis is the following non
Abelian Born-Infeld action in Minkowski space:

S5
1

4pE d4x~12R!, ~4!

whereR is defined as

R5A11
1

2
Fmn

a Fmna2
1

16
~Fmn

a F* mna!2. ~5!

We put that the maximal field strength equals unity,b51.
Lorentz indicesm, n run from 0 to 3 and we will often split
them into the temporal part 0 and the spatial part,i, j 51, 2,
©2002 The American Physical Society07-1
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3. The signature which we use is (2,1,1,1). Fmn
a are the

field strengths of theSU(2) gauge group,

Fmn
a 5]mAn

a2]nAm
a 1eabcAm

b An
c ~6!

with a, b51, 2, 3. The equations of motion which follow
from the NBI action~4! are

DmPmn50 ~7!

wherePmn are the ‘‘displacements’’ defined by

Pmn
a 5

]L
]Fmna

5
Fmna2GF* mna

R . ~8!

The quantityF* denotes the Hodge dual ofF

F* mn5
1

2
emnrsFrs ~9!

and we use the shorthand notation

G5
1

4
Fmn

a F* mna. ~10!

The equations of motion~7! can be complemented with th
Bianchi identities

DmF* mn50. ~11!

It is important to note that NBI theory has the duality sym
metry as BI:

Fmn→P* mn, Pmn→2F* mn. ~12!

Duality invariance can be seen from the vacuum equati
~7! and ~11!, too. It can be used to generate new vacu
solutions from the given ones.
o

a
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The ansatz for the gauge potentials of@10# was the
‘‘monopole ansatz,’’

A0
a50, Ai

a5eaik

12w~r !

r

xk

r
, ~13!

and it describes the purely magnetic configurations. Elec
and magnetic fields are defined by

Ei
a5Fi0

a , Bi
a5

1

2
e i jkF jk

a . ~14!

We will generalize the ansatz~13! — in fact, we will con-
sider the general spherically symmetric static potential of
SU(2) group~Witten’s ansatz@11#!. It is given via three real
functionsa0(r ), a1(r ), andw(r ) of the radial coordinater.
The components of the gauge potential read

A0
a5a0~r !

xa

r
, ~15!

Ai
a5a1~r !

xaxi

r 2 1eaik

12w~r !

r

xk

r
. ~16!

Herexa, xi , andxk (a, i, k51, 2, 3! are the Cartesian coor
dinates. The field strengths for this ansatz are

Ei
a5a08

xixa

r 2 2
a0w

r

xixa2d iar 2

r 2
, ~17!

Bi
a522d ia

12w

r 2 1
~12w!2

r 2

xixa

r 2 1S 12w

r 2 D 8xixa2d iar 2

r

1
a1w

r 2 e iakxk ~18!

and prime denotes the derivatived/dr. The square rootR
becomes
R5A11
~12w2!2

r 4 12
w82

r 2
12

a1
2w2

r 2 22
a0

2w2

r 2 2a08
22

@a0~12w2!#82

r 4
. ~19!
is
In order to find the equations fora0(r ), a1(r ), andw(r ) we
can consider the condition of extremality of the action
introduce the ansatz~16! into ~7!–~11!. After the integration
of angular variables, the action is proportional to the L
grangianL,

L5E
0

`

r 2~R21! dr. ~20!

Varying the unknown functionsa0 , a1, andw, we obtain the
set of the equations:

w2a150, ~21!
r

-

~12w2!S @a0~12w2!#8

r 2R D 8
5

2w2a0

R 2S r 2a08

R D 8
, ~22!

wa0S @a0~12w2!#8

r 2R D 8
52

2w~12w2!

r 2R 2S 2w8

R D 8
2

wa0
2

R

1
wa1

2

R . ~23!

III. NBI DYONS

The system of equations~21!–~23! is a complicated non-
linear system. We will search for particular solutions of th
7-2
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system with finite energy. The energy of the static config
rations is equal to the negative value of the Lagrangian,

M5E
0

`

r 2~12R! dr. ~24!

The convergence of this integral on both boundaries impo
restrictions on the asymptotic behavior of the functionsa0 ,
a1, andw, which we will discuss later.

Let us first consider the simplest equation~21!; it implies
that eitherw(r )50 or a1(r )50. But one can see rather ea
ily that the configurationw(r )50, a1(r )Þ0 is gauge
equivalent to the configurationw(r )50, a1(r )50. Indeed,
for w(r )50 we obtain that Eqs.~21! and~23! are identically
fulfilled, leavinga1(r ) undetermined. This means thata1(r )
represents the gauge freedom. The value ofa1(r ) does not
influence the values of the field strengths in the casew(r )
50, as can be seen from Eqs.~17!–~18!. Therefore, we will
always assume thata1(r )50 and denotea0(r )5a(r ) in the
following, keeping the indexed notation likea0 , a1 , w0, etc.
for the coefficients in the power-series expansions.

The solutions witha(r )50, w(r )Þ0 were discussed by
Gal’tsov and Kerner in detail. In this case, the equations
motion reduce to

S w8

R D 8
52

w~12w2!

r 2R , ~25!

and the square rootR to the expression

R5A11
~12w2!2

r 4 12
w82

r 2
. ~26!

The simplest solution of Eq.~25!, w(r )561, is the pure
gauge.w(r )50 is also a solution, and it has the form of th
Dirac monopole; this is the embeddedU(1) monopole. Its
energy is finite:

Me5
p3/2

3G~3/4!2
'1.2360. ~27!

There is also an infinite discrete set of finite-energy soluti
wn(r ), nPN, the so-called Gal’tsov-Kerner glueballs. The
solutions can be found numerically using the condition t
function w(r ) with the allowed asymptotic forms atr→0
and r→` is smooth in the intermediate region. Th
asymptotic expansions are

r→0: w~r !512br21O~r 4!,

r→`: w~r !5611
c

r
1OS 1

r 2D . ~28!

Let us note that the solutions behaving at infinity asw(r )
→0 are excluded, thus leaving only the configurations w
no magnetic charge. Solutionswn(r ) behave as magneti
dipoles and have energies which tend to the energyMe of the
embedded monopole asn→` .
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The other simple possibility,w(r )50, a(r )Þ0, is also
nontrivial. The equations of motion in this case reduce to

S a8

r 2RD 8
52S r 2a8

R D 8
, ~29!

where now we have

R5A~11r 4!~12a82!

r 4
. ~30!

This equation can be solved explicitly and its solution is
two-parameter family

a~r ; C, a!5C6E
0

rAa21

a1r 4dr, ~31!

whereC and a are the integration constants anda.1. As
the energy and the field strengths do not depend onC and the
equations are invariant undera(r )→2a(r ), we will take
C50 and the1 sign in front of the square root. The explic
form of the solution is given in terms of the elliptic integr
@12#,

a~r ; a!5
1

2
~a21!1/2a21/4FS arccos

Aa2r 2

Aa1r 2
,
1

2D . ~32!

The functiona(r ;a) is shown in Fig. 1 for different values
of a. The limiting value of the parameter,a51, gives
a(r )5const, a configuration which is gauge equivalent to
embedded monopolew(r )50, a(r )50. The energy of the
solution ~31! is

M ~a!5
p3/2

G~3/4!2

1

2a1/4S 12
a

3 D . ~33!

It is unbounded below with the maximumMe at a51. We
observe that the existence of the electric field decreases
total energy.

FIG. 1. Dyon solution for various values ofa.
7-3
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We call the solution~31! dyon @13#, as in the asymptotic
region,r→`, the behavior of the electric and magnetic fiel
is given by

Ei
a;Aa21

xixa

r 4 , Bi
a;2

xixa

r 4 , ~34!

which describes the field strengths of pointlike sources. T
‘‘electric charge’’ of the source is proportional toAa21,
while the ‘‘magnetic charge’’ is 1.

Let us discuss the duals of the aforementioned solutio
One defines the splitting of the displacement tensor in te
of the vectorsDi

a andHi
a as

Pi0
a 5Di

a , Pi j
a 5e i jkHk

a . ~35!

The duality transformation~12! can then be reexpressed a

Ei
a→2Hi

a52
Bi

a2GEi
a

R , Bi
a→Di

a5
Ei

a1GBi
a

R . ~36!

In the case of Gal’tsov-Kerner glueballs we haveEi
a50, G

5Ei
aBi

a50, so the duality transforms

Ei
a→2

Bi
a

R , Bi
a→

Ei
a

R 50. ~37!

This means that from the magnetic dipole solution we obt
the purely electric solution, which behaves as a dipole si
R→1 asymptotically.

In the case of a dyon we see thatG;r 24 and R;1 at
infinity. The leading behavior of the transformed configu
tion will be

Bi
a;2

xixa

r 4 , Ei
a;Aa21

xixa

r 4 , ~38!

i.e., the electric and magnetic charges interchange.

IV. GENERAL CASE

We now turn to the analysis of the general case,w(r )
Þ0, a(r )Þ0. The first condition that we want to impose o
our solutions is finiteness of the energy. This condition
stricts the possible behavior of the functionsw(r ), a(r ) at
the boundaries of the integral~24!. If we expanda(r ) and
w(r ) in the power series aroundr 50, we conclude that Eq
~24! converges if there are no poles in the series, i.e., if t
are of the form

a~r !5(
0

`

anr n, w~r !5(
0

`

wnr n. ~39!
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When we analyze the other boundary,r→`, we obtain simi-
lar asymptotics:

a~r !5(
0

`

Anr 2n, w~r !5(
0

`

Wnr 2n, ~40!

but now the convergence imposesW0A050.
In order to analyze the relations among the coefficients

Eqs.~39!–~40! further, we will assume that the equations
motion are satisfied order by order inr ~or, respectively, in
1/r ).

Caser→0— From Eq.~22! we obtain thatw0 must be
61 or 0. As the equations are invariant to the transformat
w(r )→2w(r ) and toa(r )→2a(r ), we will discuss only
w050 andw051. A similar situation will repeat in the nex
case.

For w050 Eq. ~22! gives w15w25w35 . . . 50; the
function w(r ) vanishes. At the same time, from Eq.~21! we
get a25a35a450, a55a1(a1

221)/10, a65a75a850, a9

5a1(a1
221)2/24, etc. We also obtain thatua1u,1. Thus,

both expansions show that this case corresponds to the
solution ~31! with a15A(a21)/a .

For w051 we get

a~r !5a1r 1a3r 31O~r 5!,

w~r !511w2r 21w4r 41O~r 5!, ~41!

where

FIG. 2. Solution for the parametersw25210, a150.5 and in-
tegration steph51023. The initial point of integration isr i

510210.
a35
8a1

3w218a1w2
322a1w2

10a1
2220w2

225
,

w45
6w2

21a1
4~2120w2

2!116w2
4~7122w2

2!2a1
2~1142w2

21408w2
4!

20~12a1
214w2

2!~122a1
214w2

2!
,
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FIG. 3. Solutions for param-
eters w25210, a150.5, r i

510210 and integration stepsh
51024 ~left! andh51025 ~right!.
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etc., andua1u,1/A3. We will analyze these asymptotics
the following; let us just note here that fora150 it is the one
obtained in@10#.

Case r→`— We consider separately the possibiliti
W050 and A050. If W050, the assumption that th
equations of motion are satisfied order by order inr
leads toW15W25W35 . . . 50. For coefficients ofa(r )
we get A25A35A450, A552A1(A1

211)/10, A65A7

5A850, A95A1(A1
211)2/24, etc. Again, we obtain the

power-series expansion of the dyon~31!, in this case around
infinity.

For the second possibility,A050, the solutions behave
asymptotically as

a~r !5
A2

r 2 1
A3

r 3 1
A4

r 4 1OS 1

r 5D ,

w~r !511
W1

r
1

W2

r 2 1
W3

r 3 1
W4

r 4 1OS 1

r 5D , ~42!

where the following relations are fulfilled:

A35A2W1 , A45
18A2W1

22A2
3

20
, W25

6W1
22A2

2

8
,

W35
22W1

329A2
2W1

40
, W45

17A2
42540A2

2W1
21772W1

4

1920
.

From this analysis we see that, in order to find new so
tions, we need to join the asymptotics~41! and ~42!
smoothly. Our first attempt was to do the numerical integ
tion from r 50 to the right or fromr 5` to the left, with the
initial conditions defined appropriately. Doing this, we obta
the generic solution of a typical form shown in Fig. 2. T
coupling ofa(r ) andw(r ) induces the oscillations ofw(r )
which reduce its initial value 1 forr 50 to 0 for r 5`. This
solution is interesting, as it has the behavior of the ’t Hoo
Polyakov monopole. However, it is numerically unstable;
we keep the same values ofw2 , a1, and the starting point o
numerical integrationr i but decrease the integration steph,
we obtain the functions given in Fig. 3. The oscillations
w(r ) increase to a larger region ofr, while the asymptotic
value ofa(r ) changes. We conclude that the solutions of t
06500
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f

f

s

type are nonanalytic. Indeed, from the previous discussio
asymptotics we know thatw(r )→0 asr→` is compatible
only with w(r )50. Further numerical analysis of energ
confirms this conclusion: the values of energy differ for o
ders of magnitude for different integration steps and the
fore signal that the energy diverges. We see that in the N
case, as in the pure Yang-Mills theory,w(r )50 and w(r )
51 are separated by an infinite energy barrier and it is
possible to find the solution of finite energy which interp
lates between them.

The second possibility for numerical investigation is
start the integration from both sidesr 50 andr 5` with the
given asymptotics, and try to join smoothly the solution
the intermediate region by varying the parametersw2 , a1 ,
W1, andA2. A numerical program which handles this type
boundary condition@14# was made, and proved to be corre
and very efficient in the simple case of smalla1 , A2 ~glue-
balls!. However, no new solutions were found using this p
gram for a wide range of initial parameters. This might be
consequence of some weaknesses of the implemented v
tional procedure~Newton-Raphson! due to the high dimen-
sionality of the parameter space. We are, however, incli
to interpret this as a strong numerical evidence that there
no further finite-energy solutions of the system~21!–~23!.

V. CONCLUSIONS

The set of Eqs.~21!–~23!, which represent the equation
of motion for the static spherically symmetric configuratio
of SU(2) NBI action~4!, is analyzed. The asymptotic analy
sis shows that, if one imposes finiteness of energy, there
only three possible types of solutions: glueballs, dyons,
solutions of the form~39!–~41!.

Dyon solutions are of importance in the brane theory,
they represent strings ending on three-brane@5#. The name
dyon, introduced after@13#, is used in the generalized sens
there is no Higgs field to determine the unbrokenU(1)
group. As in the case of the Julia-Zee dyon, the elec
charge of this solution is continuous while the magne
charge is 1. However, the hope that the componentsA0

a of the
vector potential@given via the functiona(r )# can, through
the nonlinear interaction, take the role of Higgs and coun
balance the magnetic field to produce the monopole of
’t Hooft–Polyakov type failed. Instead of the exponent
decay,a(r ) induces the oscillations ofw(r ) with infinite
7-5
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energy. This could be expected from the fact that the cha
of the action from Yang-Mills to NBI does not change th
topology of the fields which are included, necessary for
existence of a monopole@15#. The solutions of the NBI mod-
els with Higgs fields were discussed in@16,17#.

Finally, let us add that, although the solutions of t
third mentioned type are allowed by the energy consid
ations, we have a strong numerical indication that they
not exist. This problem might deserve further numeri
analysis.
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