
Black Holes Without Singularities

A. Bogojević
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Abstract

We study the properties of a completely integrable deformation of the CGHS

dilaton gravity model in two dimensions. The solution is shown to represent a

singularity free black hole that at large distances asymptoticaly joins to the CGHS

solution.

One of the fundamental unsolved problems in theoretical physics is the unification of

quantum theory and gravity. One of the reason why this is so difficult stems from the

complicated nonlinear structure of the equations of general relativity. These equations

are much simpler in lower dimensions. For this reason there has recently been much

activity related to the quantization of gravity in two and three dimensions. One of the

most important results in 2d was the exactly solvable dilaton gravity model constructed

by Callan, Giddings, Harvey and Strominger [1]. The CGHS model has 2d black hole

solutions that are remarkably similar to the Schwarzschild solution of general relativity.

Of the four fundamental interactions in nature, gravity is by far the weakest. For this

reason, we can hope to see quantum effects only in the vicinity of classical singularities.

Penrose and Hawking have shown that these singularities are endemic in general relativity.

The general belief is that quantization will rid gravitation of singularities, just as in

atomic physics it got rid of the singularity of the Coulomb potential. If this is indeed the

case, then there must exist a non-singular gravitational effective action whose classical

equations encode the full quantum theory. This effective action must have the Planck

length LPlanck in it as an input parameter. For L � LPlanck the effective model must

be indistinguishable from the classical gravity action. The search for such an effective

model parallels Landau’s treatment of phase transitions in ferromagnets. Landau chose

(the simplest) effective action (Gibbs potential in statistical mechanics parlance) that led

to a qualitatively correct discription of phase transitions.
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An important result in dilaton gravity has been the work of Louis-Martinez and Kun-

statter [2], who reduced the solution of the general dilaton gravity model to the solution

of two ordinary integrals, i.e. to two quadratures. In a previous paper [3] we used their

proceedure to construct a dilaton model that yields a black hole without a singularity.

In this paper we will review the central results of this derivation, construct the deformed

CGHS model and show that it leads to a maximal curvature proportional to L−1
Planck.

The action of all dilaton gravity models can be put into the general form

S =

∫

d2x
√
−g

[

1

2
gαβ∂αφ∂βφ − V (φ) + D(φ)R

]

. (1)

The potentials V (φ) and D(φ) classify all the possible models. Performing a conformal

scaling of the metric g̃αβ = e−2F (φ)gαβ, where the scaling factor F (φ) satisfies F ′ =

−1/4(D′)−1 we can put the action into the simplified form

S =

∫

d2x
√

−g̃
[

φ̃R̃ − Ṽ (φ̃)
]

, (2)

where R̃ is the scalar curvature corresponding to g̃αβ, and we have introduced the new

dilaton field and potential according to φ̃ = D(φ) and Ṽ (φ̃) = e2F (φ)V (φ). This form of

the dilaton gravity action is obviously much easier to work with since we have lost the

kinetic term for the dilaton field.

A well known property of two dimensional manifolds allows us to localy, i.e. patch by

patch, choose conformally flat coordinates for which g̃αβ = e2ρ ηαβ. Louis-Martinez and

Kunstatter [2] have shown that we can choose a coordinate system in which the solution

of the general dilaton model is static and given by

x = −2

∫

dφ̃

W (φ̃) + C
(3)

e2ρ = − C + W (φ̃)

4
, (4)

where the pre-potential W (φ̃) is given by dW

dφ̃
= Ṽ (φ̃), and C is an invariant. It is easy to

show that C < 0, and that without loss of generality we can choose C = −1. As we can

see, the above solution is given in terms of two quadratures: the first connecting F and

D, and second one given in (3). A given model is completely integrable only if we can

calculate both quadratures in closed form.

The CGHS model is an example of a completely integrable dilaton gravity model. The

standard form of the CGHS action is

S =

∫

d2x
√
−g e−2ϕ (R + 4gαβ∂αϕ∂βϕ + 4λ2) . (5)
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The simple field redefinition φ =
√

8 e−ϕ puts this into the general form for dilaton

gravity actions given in (1). Further, a conformal scaling with F (φ) = − ln φ gives us the

simplified form of the CGHS action

S =

∫

d2x
√

−g̃

(

φ̃R̃ +
1

2
λ2

)

. (6)

The CGHS model is completely integrable. A simple application of the Louis-Martinez

and Kunstatter proceedure gives us the general solution. For the scalar curvature we

find R = −32 A−1, where we have introduced A = 8/λ2
(

e
λ
2

4
x − 1

)

. The metric for the

general dilaton model, given in terms of F and ρ, is simply ds2 = e2(F+ρ)(−dt2 + dx2). In

the case of CGHS we get

e2(F+ρ) =
λ2

64

e
λ
2

4
x

e
λ2

4
x − 1

, (7)

which vanishes for x = −∞. For stationary metrics the equation g00 = 0 determines the

horizon. Therefore, in these coordinates the CGHS black hole has a horizon at x = −∞.

The curvature, on the other hand, is well behaved at this point. As with the Schwartzschild

black hole one can now find coordinates which are well behaved at the horizon. In this

way one finally obtains information about the global character of the manifold.

We now proceed to construct a new dilaton gravity model that satisfies the following

requirements: it is completely integrable, for x → ∞ it goes over into the CGHS model

and is singularity free. As we have seen, dilaton gravity models are specified by giving

the two potentials D(φ) and V (φ). It is very difficult to see how one should deform these

potentials from their CGHS form in order to satisfy the above criteria. Note, however, that

the models are also uniquely determined by giving F (φ) and Ṽ (φ̃). This is much better

for us since we have now untangled the two integrability requirements: F (φ) determines

the first quadrature and Ṽ (φ̃) the second. Deformations of a given model correspond to

changes of both of these functions. In this paper we will look at a simpler problem. We

shall keep Ṽ (φ̃) fixed, i.e. it will have the same value as in the CGHS model. We will

only deform F (φ). By doing this we are guaranteed that the second (and more difficult)

quadrature is automatically solved. From our second requirement we see that for large x

the dilaton field φ(x) must be near to its CGHS form. Specifically, x → ∞ corresponds to

φ → ∞. Thus, our second requirement imposes that for φ → ∞ we have F (φ) → − ln φ.

F (φ) must also be such that the first quadrature is exactly solvable. To do this we choose

F (φ) = − 1

α
ln

(

1 + βφα

β

)

, (8)

with α > 0. The α and β values parametrize our class of deformations. The first quadra-
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ture gives

D(φ) =

{

1
8
φ2 + 1

4β
ln φ for α = 2

1
8
φ2 + 1

4β(2−α)
φ2−α for α 6= 2 .

(9)

On the other hand, the potential V (φ) is now simply

V (φ) = −1

2
λ2

(

1 + βφα

β

)
2

α

. (10)

The choice of α corresponds to a choice of explicit model, while β just sets a scale for

the dilaton field. Rather than work here with the general deformed model we will now

concentrate on the simplest model in this class; the one corresponding to the choice α = 4.

The action for this model is

S =

∫

d2x
√
−g

(

1

2
gαβ∂αφ∂βφ +

1

2
λ2

(

1 + βφ4

β

)
1

2

+
1

8

(

φ2 − 1

βφ2

)

R

)

. (11)

Note that for β → ∞ this goes over into the action of the CGHS model. As we have seen,

β is just a scale for φ, hence, this is just a re-statement of our second requirement. From

our construction we see that (11) corresponds, for each finite value of β, to a model that

satisfies our first two requirements. All that is left is to check that the theory is indeed free

of singularities. Being in two dimensions all that we need to check is the scalar curvature.

A simple but tedious calculation now gives

R =
√

2 λ2

(

1

β
+ A2

)

−
7

4

(

A +

√

1

β
+ A2

)

1

2

·

·
{

16

βλ2
+

3

β
A − 8

λ2
A2 +

(

1

β
− 8

λ2
A

)
√

1

β
+ A2

}

. (12)

For β → ∞ we indeed find that R goes over into the CGHS result. From (12) we see that

the curvature of the deformed CGHS model is indeed not singular. As may be seen in

Figure 1, the deformed model has maximal curvature at x = 0. Its value is

Rmax =
√

2
(

16β
1

2 + λ2
)

. (13)

At right infinity the deformed model tends to the CGHS result. On the other hand, at

left infinity both the CGHS model and its deformation tend to a de Sitter space R = Λ.

However, for CGHS we have Λ = 4λ2, while for the deformed model the constant is a

complicated function of β and λ. Rather than writing it out let us only give the result

for large β when we have Λ = 2−10λ8β−
3

2 . We have just determined that the x → −∞
and β → ∞ limits do not commute. Therefore, imposing that our model joins to CGHS

at right infinity doesn’t automaticaly guarantee a similar joininig at left infinity.
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Figure 1: R(x) for the CGHS model (thick line) and deformations with β = 1, 3 and 5.

As β increases the deformations for x > 0 join CGHS. The plot is for λ2 = 1

We are now in the position of trying to interpret the meaning of our deformed CGHS

model. Obviously, one possibility is to think of (11) as the classical action of a model

with scale 1
β
. However, it seems more natural to interpret our model as an effective

action. 1
β

then naturaly comes about from quantization, while β → ∞ corresponds to the

semi classical limit. Our model should thus be the effective action corresponding to the

quantization of the CGHS model. Quantization gives S ∼ ~, and essentialy dimensional

analysis (in units G = c = 1) gives φ2 ∼ ~, as well as 1
β
∼ ~

2. Therefore, if we are to

interpret our model as an effective action then β = κ~
−2, where κ is a constant of the

order of unity. We see then that the maximal curvature (13) is proportional to 1
~
, i.e.

represents a non-perturbative effect. Expanding our model in ~ we find

Seff = Scghs −
1

8κ
~

2

∫

d2x
√
−g

(

R − 2λ2
)

φ−2 + o(~4) . (14)

The leading correction to CGHS is of the form of the Jackiw-Teitelboim action for 2d

gravity. It would be very interesting to get this result by quantizing some fundamental

2d theory. To do this we would need to start from the CGHS model coupled to some

matter fields. We would then have to integrate out the matter. The last step would be

to calculate the effective action. It is probably impossible to do this exactly, however, we

could hope to do this perturbatively and compare with (14).
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