Light-To-Charge Conversion In Organic Photovoltaics: Mechanisms And Timescales

Veljko Janković^{ab} and Nenad Vukmirović^b

^aFaculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ–121 16 Prague 2, Czech Republic

^bScientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Republic of Serbia

Abstract. Recent years have seen an intense debate on the physical mechanisms and time scales of free-charge generation following photoexcitation of donor/acceptor organic solar cells, which initially produces strongly bound excitons in the donor material. The interpretation of ultrafast spectroscopic signatures suggests that free carriers are predominantly generated on a subpicosecond time scale following the excitation, the key role in this process being played by high-energy ("hot") delocalized interfacial charge transfer (CT) states [1]. However, other experimental studies indicate that the main precursor towards free charges is the strongly bound and localized ("cold") CT state, so that free-charge generation occurs on time scales ranging from tens to hundreds of picoseconds [2, 3].

We investigate charge separation in a one-dimensional model of an interface between two organic semiconductors, both on ultrashort and on much longer time scales. We conclude that free carriers present on a subpicosecond time scale following a pulsed photoexcitation are mainly directly optically generated from the ground state thanks to the resonant mixing between states of donor excitons and free charges [4]. However, on the same time scale, we find that the majority of photogenerated charges still remain bound in form of donor or CT excitons [5]. We obtain that their further separation on longer time scales is weakly electric field- and temperature-dependent and is enabled by the synergy between carrier delocalization and moderate disorder [6].

REFERENCES

- 1. Grancini, G. et al., Nat. Mater. 12, 29-33 (2013).
- 2. Vandewal, K. et al., Nat. Mater. 13, 63-68 (2014).
- 3. Grupp, A. et al., J. Phys. Chem. Lett. 8, 4858–4864 (2017).
- 4. Janković, V., and Vukmirović, N., Phys. Rev. B 95, 075308 (2017).
- 5. Janković, V., and Vukmirović, N., J. Phys. Chem. C 121, 19602–19618 (2017).
- 6. Janković, V., and Vukmirović, N., J. Phys. Chem. C 122, 10343–10359 (2018).