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Self-assembly of magnetic balls: From chains to tubes
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The self-assembly of spherical magnets (magnetic balls) is addressed theoretically. Minimal energy structures
are obtained by optimization procedures as well as Monte Carlo computer simulations. Three typical shapes
are obtained depending on the number of constitutive magnets N . In the regime of small N , chains are stable
as dimers or trimers (i.e., N � 3), then rings become stable for (4 � N � 13) where dipole vectors adopt a
vortexlike arrangement. A major finding concerns the stacking of rings as soon as N is large enough (N � 14).
The number of stacked rings is found to increase as N2/3, leading to a tubular structure at large N . All the relevant
predicted shapes are experimentally reproduced by manipulating millimetric magnets.

DOI: 10.1103/PhysRevE.89.011202 PACS number(s): 41.20.Gz, 64.75.Yz, 05.65.+b

Human beings have always been fascinated with manip-
ulating and assembling magnets [1]. Many valuable appli-
cations of such systems can be found in different areas.
For instance, in nanotechnology, self-assembled mixtures of
magnetic nanoparticles can lead to very strong magnets [2,3].
The interaction between magnetically patterned planar sheets
can yield remarkable three-dimensional (3D) objects with high
potential for the microfabrication of 3D electronic devices [4].
In biology, some bacteria own a permanent magnet and they
are called magnetotactic bacteria [5]. Under an external
magnetic field, the latter form chainlike structures [6]. From a
more physical perspective, elastic interactions of cells can be
mapped onto effective dipolarlike interactions [7].

From a theoretical point of view, understanding magnetic
interactions and in particular the interaction between magnets
is very challenging due to its long range and anisotropy. In this
spirit, the pioneering theoretical work of Jacobs and Beans [8]
and later that of de Gennes and Pincus [9] shed some light
on the microstructure of self-assembled (spherical) magnets.
Clearly, solely the microstructural behavior for a very small
number of magnets (N � 4) is understood at zero temperature.
More recently, microstructures of dipolar fluids have been thor-
oughly studied by computer simulations [10–12], and again
a key feature is the formation of chains at finite temperature.
With all that being said, to date, the self-assembly (at zero tem-
perature) of magnetic balls has yet to be properly addressed.
The goal of the present contribution is to elucidate this fascinat-
ing problem in a physically simple and transparent framework.

In this Rapid Communication, we predict the self-assembly
of spherical magnets (typically in chains, rings, and tubes
or cylinders) possessing a minimal energy for virtually all
N . Besides, commercial millimeter-sized magnets (commonly
called “buckyballs” or “neocubes”—see the inset in Fig. 1) are
employed to reproduce and confirm the calculated ground state
structures.

The length scale of the system is provided by the diameter
d of the magnet (see Fig. 1), and the dipole strength is m.
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The potential energy of interaction U (�r12) between two (ideal)
magnetic balls whose centers are located at �r1 and �r2 (see
Fig. 1) can be written as

U (�r12) = C
1

r3
12

[
�m1 · �m2 − 3

( �m1 · �r12)( �m2 · �r12)

r2
12

]
(1)

for r12 � d or ∞ otherwise, where C represents a constant
that depends on the intervening medium, and r12 = |�r12| =
|�r2 − �r1|. It is convenient to introduce the energy scale
defined by U↑↑ ≡ Cm2

d3 that physically represents the repulsive
potential value for two parallel dipoles at contact, standing
side by side, as clearly suggested by the notation. Thereby the
reduced potential energy of interaction uN (per magnet) of N

magnetic balls reads

uN = 1

N

N−1∑
i=1

N∑
j=i+1

U (�rij )

U↑↑
(rij � d). (2)

It is precisely this function (2) that has to be minimized by
carefully respecting the nonoverlapping conditions. Note that
upon searching the minimal energy, five variables per magnet
are involved (see also Fig. 1): three Cartesian coordinates
(x,y,z) for the center, and two angular parameters (θ,φ) for
the unit vector defining the direction of the dipole. Two fully
different numerical routes were employed to calculate the
energy minimum of the system: (i) standard minimization
routines (e.g., penalty method [13]) and (ii) Monte Carlo
(MC) simulations [14]. In the latter case, a gentle quench from
finite to zero temperature is applied so as to avoid an early
trapping in local minima. When zero temperature is reached,
only trial moves leading to lower energies are accepted as
long as possible. In order to increase the chance of finding
the ground state, typically 1000–10 000 starting configurations
were considered. The winning structure is then that possessing
the lowest final energy. By doing so in both methods (standard
minimization and MC techniques), a quantitative agreement is
achieved, giving us confidence in our results.

An overview of our results is provided in Fig. 2, where
typical stable structures as a function of N are depicted.
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FIG. 1. (Color online) Scheme of two interacting spherical mag-
nets. For convenience, one magnet is placed at the origin so that
�r1 = 0. The polar and azimuthal angles (θ,φ) are explicitly shown for
�m1. The inset (top left corner) of a 1 ruler centimeter exemplifies the
millimeter-sized magnets utilized in our experiments.

Upon increasing N , one-dimensional structures are found
(chains with N = 2,3), then two-dimensional ones (single
rings with 4 � N � 13), and finally three-dimensional ones
(multiple rings with N � 14) (see Fig. 2). Interestingly and
strikingly, as shown in Fig. 2, all the predicted minimal energy
structures are reproduced experimentally with magnetic balls.
More specifically, at N = 2,3 the well-known arrangement of
a single file of the dipoles is found (see Fig. 2). As also shown
in Fig. 2, for 4 � N � 13, regular polygons with touching
consecutive spheres are obtained and are also referred to as
rings. The dipole vectors are tangential to the inscribed circular
loop (see, e.g., N = 13 in Fig. 2), reminiscent of a vortex. As
we show in Fig. 2, for N = 14, a remarkable transition from
a single-ring to a double-ring structure occurs. The projected
structure along the axis symmetry corresponds to a regular
tetradecagon (14 sides). Thereby each constitutive ring is
identical to the single-ring ground state at N = 7. By analogy,
with crystalline solids this double heptagon ordering can be
seen as an AB stacking. The first irregular structure appears
when N = 15 due to some incommensurability between the
two constitutive rings that are now made up of eight and
seven magnets. Typically, in this scenario where a perfect
AB stacking is prohibited, the dipole vectors are still curling
around a nearly planar circular loop, except a dimer of magnets
that is (slightly) vertically shifted (see Fig. 2).

We now would like to provide a more quantitative analysis
by addressing the energy behavior for different shapes, namely,
chains, rings, and stacks of rings. Certainly the most simple
and intuitive situation concerns a straight chain of dipoles in a
row. Thereby, for N aligned magnets (i.e., →→ · · · →), the
reduced energy per magnet u

(chain)
N is simply given by

u
(chain)
N = − 2

N

N−1∑
i=1

N∑
j=i+1

1

(j − i)3
. (3)

For an infinite chain (N = ∞), the reduced energy per magnet
u

(chain)
∞ is then given by

u(chain)
∞ = −2

∞∑
k=1

1

k3
= −2ζ (3) � −2.404, (4)

with ζ (n) = ∑∞
k=1

1
kn standing for the Riemann zeta function.

Since the single-ring structure is the crucial finding in the
regime of small N , it is handy to have an analytical expression

FIG. 2. (Color online) Minimal energy configurations for 2 �
N � 15. The left column shows configurations (including the
dipole vectors) stemming from the minimization calculations. The
right column shows stable experimental configurations obtained by
manipulating millimetric magnets. The spatial dimension (1D, 2D,
3D) transitions are also indicated.
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FIG. 3. (Color online) Reduced energy profiles uN as a function
of the number of magnets N for different shapes: chain (♦), ring
(•), and double ring (�). The lines only serve as guides to the eye.
Stable irregular double-ring structures obtained at N = 15,17,19 are
denoted by �.

for the corresponding energy u
(ring)
N . Taking into account the

symmetry of the annular states, one arrives at the (exact)
following expression:

u
(ring)
N = −1

4
sin3

(
π

N

) N−1∑
k=1

3 + cos
(

2πk
N

)
sin3

(
πk
N

) . (5)

Note that u
(ring)
∞ = u

(chain)
∞ , reflecting the fact that at vanishing

curvature one recovers the energy per magnet corresponding
to an infinite chain. A similar expression as (5) is provided in
Ref. [15] for a double ring with AB stacking.

Energy profiles for chains, rings, and double rings are
depicted in Fig. 3. The energy profile for the chain structure
stems from Eq. (3), whereas that for the ring shape was
generated using Eq. (5). The energy profile for double-ring
structures was obtained by considering an even number of
constitutive magnets allowing a perfect AB stacking. As
already mentioned in the the ground state structure analysis
(see Fig. 2), for N � 14 all the stable states (i.e., possessing
the smallest energy among all possible states at prescribed N )
correspond to ideal structures (i.e., chain, ring, double AB

ring) as obtained by independent minimization procedures
(e.g., penalty method and MC technique). At the chain-ring
transition occurring at N = 4, in agreement with the earlier
work of Jacobs and Bean [8], we have u

(chain)
4 = − 710

432 �
−1.644 and u

(ring)
4 � −1.677 (see Fig. 3). Then, as shown in

Fig. 3, at larger N , the single- to double-ring transition takes
place for N = 14 with u

(ring)
14 � −2.336 whereas u

(2-ring)
14 �

−2.362. Interestingly, with N = 14 one already reaches the
asymptotic value u

(chain)
∞ � −2.404 within 3%. The energy

values for the first irregular structures (N = 15,17,19) lie
between the single- and double-ring energy curves (see Fig. 3),
reflecting the fact that defects promote energy penalties.
Although not shown here, we were able to locate the double
AB ring to triple ABA ring transition at N = 27 by means of
MC simulations [16].

FIG. 4. (Color online) Radius of gyration R and height h of the
tubular structure as a function of N . The lines correspond to best
fits. Microstructures (top and side view) are shown for N = 230,
1200, 2500, and 6300 to scale. A magnification of the microstructure
at N = 230 is also drawn to illustrate the geometrical tube features
(h,R,z axis).

Having now a good understanding of the self-assembly
behavior and especially of the crucial role of ring stacking at
small N , it is possible to predict analytically the ground state
for a vast variety of tubular configurations at large N . Clearly,
to compute the energy for large N , one only considers ideal
defect-free stacked rings. This approach is sufficient to capture
the main properties of the geometrical properties of the tube
as a function of N . More specifically, we consider the height
h of the tube (parallel to the z axis—see Fig. 4) and its radius
of gyration R in the xy plane defined as

R =
√√√√ 1

N

N∑
k=1

[(xk − xc.m.)2 + (yk − yc.m.)2], (6)

with xc.m. and yc.m. being the x and y coordinates of the center
of mass, respectively. The profiles of R and h as a function of N

are sketched in Fig. 4. Interestingly, the height (h/d ∼ N2/3)
grows faster than the radius (R/d ∼ N1/3) [17], leading to the
following scaling law for large N :

h/R ∼ N1/3. (7)

Note that another interesting scaling law concerning the
energy is reported in Ref. [15]. More specifically, by denoting
u

(tube)
N the reduced energy per magnet for the tubular structure,

it is found that u
(tube)
N − u

(plane)
∞ ∼ N−2/3. Concerning the

crystallization feature at N → ∞, one has to merely deal
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with an infinite cylinder (in height and radius), meaning
that a planar triangular lattice is recovered. In this case the
reduced energy per magnet u

(plane)
∞ is again given by an exact

expression [18], namely, a fast converging double sum,

u(plane)
∞ = 16π2

∞∑
k=1

∞∑
l=1

l2 cos(klπ )K0(kl
√

3π )

� −2.759, (8)

with K0 being the modified Bessel function of the second
kind with zero order. This value, u

(plane)
∞ � −2.759, has to be

compared with that of an infinite ring (or chain), u
(chain)
∞ �

−2.404, proving an enhanced stability upon stacking.
In summary, we have demystified the intriguing self-

assembly of magnetic balls. The essential finding is the
stacking of rings with curling dipole vectors (i.e., vortex ar-
rangement) as minimal energy configurations. These structures
correspond either to zero magnetization M [19] for stacking
of identical rings, or finite but very weak magnetization (i.e.,

M/m 
 1) otherwise. In the regime of a small number of mag-
nets, 4 � N � 13, the single ring (regular polygon) is the most
stable structure. At higher N , stacking of rings leads to stable
tubular structures made up of either (i) slightly deformed rings
(with defects) or (ii) perfect (defect-free) identical rings. The
latter states correspond to some magic numbers for N that
are quite abundant. All these predicted structure classes are
reproduced experimentally with millimetric magnetic balls,
as demonstrated in this Rapid Communication. Note that a
system very similar to ours was recently studied [20] where
the macroscopic mechanical properties were emphasized [21].
An interesting future study will deal with the effect of an
external applied magnetic field where a rich phase behavior is
expected [22].
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