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Zusammenfassung

Wir benutzen ein einfaches Embedded-Atom-Potential, um das mechanische Verhalten,
den Verschleiß und strukturelle Veränderungen an Grenzflächen von Modell-Metallen
zu untersuchen. Die Embedded-Atom-Methode wird ,,EAM” bezeichnet, und hier ver-
wendete generische Modell mit ,,GEAM”. Die Zustandsgrößen realer Metalle - wie
etwa Bindungsenergie, Elastizitätskonstanten und Lösungswärme - werden durch einige
wenige Modellparameter wiedergegeben. Das Modellmetall wird mit Molekulardynamik-
Computer-Simulationen (MD) untersucht und in Nichtgleichgewichts-Molekulardynamik-
Computer-Simulationen (NEMD) einer Scherdeformation ausgesetzt. Voraussagen für
mechanische und strukturelle Eigenschaften werden mit Resultaten für spezifische Met-
alle verglichen. Dieser Vergleich lässt Rückschlüsse über den Einfluss der Modellparam-
eter auf die beobachtete Größen zu. Die Mechanismen, die zu mechanischer Legierung
führen, werden beobachtet und diskutiert. Informationen über die Kristallstruktur in-
nerhalb der NEMD-Konfigurationen erhalten wir mittels Durchführung einer Analyse
der gemeinsamen Nachbarn, die auf ebenen Graphen basiert. Die Methode für nicht vol-
umeneingeschränkte Metalle wird dahingehend verändert, dass mit ihr auch Strukturen
in porösen Metallen untersucht werden können. Diese Veränderung besteht in einem
kontrollierten Versatz zwischen allgemeiner Teilchenzahldichte und der bevorzugten Ein-
bettungsdichte. Der Phasenübergang der EAM-Teilchen von einer homogenen Konfig-
uration zur porösen Struktur wird mithilfe von MD Simulationen nachvollzogen. Die
zeitliche Entwicklung dieser Strukturen wird mithilfe von Schnappschüssen der Konfig-
uration sowie von Volumen- und Oberflächenanalysen untersucht. Die EAM-Strukturen
werden benutzt, um die Diffusion eines Gases aus kurzreichweitig attraktiven bzw. re-
pulsiven Teilchen in einem porösen Medium zu simulieren. Des weiteren präsentieren
wir Simulationen zu Zeitentwicklung und Materialfluss von EAM-Teilchen in einer freis-
tehenden Wand.
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Chapter 1

Introduction

Atoms in solids at room temperature are almost completely lacking mobility. Their
thermal motion is reduced to the vibrations about an equilibrium position and individual
atoms can move from their positions only with great difficulty. This gives solids their
most characteristic property - they maintain shape they are given. Yet under strong
shear forces even solids flow. In the present work, the flow behavior and the structural
changes in metals are studied.

There are two main types of solids: crystalline and amorphous. The main character-
istics of crystalline solids is existence of long range order: an ideal crystal is composed
of atoms belonging to a basic cell identically positioned at a lattice defined by three fun-
damental translation vectors. In the case of a large single crystal, the lattice can extend
over an enormous number of atoms and molecules. The choice of translation vectors
and basic cell determines the type of crystal structure. The face centered cubic (fcc)
structure is the common structure of most metals such as aluminium, nickel, copper,
gold and silver and most of the inert gases. The hexagonal close packed (hcp) structure,
as realized in cadmium and zinc, is very similar to the face centered cubic structure.
Both structures have 12 nearest neighbors and a packing density of 74%. The difference
between the two structures is the stacking order of the densely packed hexagonal layers.
A slightly less densely packed crystal structure, is the body centered structure (bcc).
The packing density in this structure is 68% and each atom has 8 nearest neighbors
plus 6 almost nearest neighbors. The alkali metals, α-iron, and number of transition
metals are examples for this structure. Further, there are tetragonally expanded types
of these structures. Alloys and chemical elements with directed bonds build other types
of crystal structures, such as diamond or simple cubic.

In metals valence electrons are not localized around nuclei. The dislocation of elec-
trons from nuclei yields the strong decrease of kinetic energy and subsequently the
increase of the binding energy in the metals. The interaction between atoms in metals
is strong but depends little or not at all on the direction. Thus, metals tend to form
one of the three above mentioned densely packed structures (fcc, bcc or hcp).

In the amorphous solids the atoms are ordered over a short length scales, i.e., over two
to three interparticle distances, but there is no long-range order. The short-range order
present in glasses is at the boundary between perfect order in crystals and total disorder
in gases: the positions are neither fixed by some precise periodic rule, nor random as
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2 CHAPTER 1. INTRODUCTION

in gases. Solids can also exist in the amorphous (glassy) state if they are quenched fast
enough from the the liquid state or parts of the system can go through intermediate
amorphous phase during transformation of the system during steady shear. In metallic
glasses, the number of the nearest neighbors is around 12 and the nearest neighbor
distance is similar to the case of densely packed structures (fcc and hcp). Even more
interesting is the observation, that in average two neighboring atoms have five common
neighbors. It is not possible to fill the three dimensional space with five-fold pattern
without leaving gaps nor to form a periodic pattern. In the icosahedral (ico) structure
the five fold symmetry is partially fulfilled, but the distances between atoms are not
regular and it is not possible to propagate it in a periodic fashion.

Solid materials, crystalline or amorphous, deform when subjected to stress. Me-
chanical response of the system to a deformation is described by the elastic modulus
and pressure (stress) tensors. If the applied deformation reaches a yield point, the ma-
terial will not return in its original shape when relieving external forces. The plastic
effects which give rise to a yield are due to the structural rearrangements. The extent
of structural changes following yield will depend on the magnitude of deformation. For
small and slow deformations the cooperative motion of atoms, by relative displacement
of full layers, is expected. If a high steady shear rate is applied the system will undergo
significant structural transformations.

1.1 Motivation

The dry sliding friction between atomically flat commensurate or incommensurate sur-
faces is a fundamental type of friction in tribology. When two unpolished solid surfaces
touch or are pressed together with not too excessive forces, they actually touch only
over a small fraction, typically 0.1% of the visible area of the contact. This load-bearing
area consists of a number of asperities since microscopic roughness is unavoidable. The
asperities are the spots, in which friction forces are thought to build up [1, 2, 3] and
where everything of interest in dry solid friction and adhesive wear happens. Low en-
ergy electron diffraction experiments proved the existence of crystal structures at the
sliding surfaces that are aligned with the shear direction in abraded material [4]. The
observed structural changes, originated by large relative speeds in the surface layers
– at a moderate overall speed – may propagate over several thousand crystal lattice
constants [4, 5, 6, 7]. Thus, the frictional force – the shear stress integrated over the
volume of the asperities – must be considered as inhomogeneous with respect to density,
velocity, and temperature fields. An understanding of the physical mechanisms in the
mentioned strong non-equilibrium situations is relevant for several phenomena including
the processes inside the earth’s crust [8], high velocity deformations, and breaking of
metals at high velocities and impacts [9, 10]. Yet, a variety of processes taking place at
friction surfaces (such as inhomogeneous plastic deformation of subsurface layer, phase
transformations, material transfer, mechanical alloying, etc.) makes it difficult to de-
velop a general approach for describing the microscopic structure, dynamics and wear
in the course of rubbing [5, 11, 12, 13].

One of the important results of experiments and non-equilibrium molecular dynamics
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(NEMD) studies on colloidal crystals is that polycrystalline samples become aligned
when subjected to shear [14, 15], and two-dimensional hexagonal closed packed layers
are formed – oriented to minimize resistance against flow. The sizes of the colloidal
particles and their separations are of the order of microns, yielding elastic moduli 1012

times weaker when compared with those of the ordinary solids. Colloidal systems behave
much like atomic matter, while exhibiting a range of phases, e.g., face centered cubic
(fcc), base centered cubic (bcc) and fluid phases [16], but many body interactions,
which play an important role in solids, are not considered in these studies. Also, phase
transitions in solid part of the nonequilibrium phase diagram are assumed to exist in
colloidal crystals [15, 16]. In metals, changes of temperature, pressure or density can
trigger structural changes. Ab initio calculations of solid phases in transition metals
[17, 18, 19] suggest that the observed high temperature bcc structure might be stabilized
by a lattice vibrational entropy contribution to the free energy. Molecular dynamics
simulations were recently used [20, 21, 22] to determine the vibrational entropy.

With atomic force microscopy (AFM) tribology has approached the friction in metals
at the microscopic level [23, 24, 25, 26, 27], but AFM does not operate at the high
speeds needed to investigate a strong flow regime which will be also investigated in this
work. Also, AFM is restricted to very sharp tips. Along with its bulk properties, metals
reveal still incompletely resolved surface phenomena, e.g., during dry solid friction, wear,
and abrasion [5, 6, 7]. This explains the interest for numerical simulations of friction.
Recent theoretical studies using atomistic models and molecular dynamics simulations
have provided a better insight into friction on the nano-scale. Such studies offer detailed
information about the influence of solid and fluid thin films on static friction, phonon
dynamics and the transition from stick slip to smooth sliding [27, 28, 29, 30]. A rather
complete picture about dynamical dissipation during slip-stick motion and the solid
sliding regime emerged [26, 27, 31]. On the other hand, the relationship between material
properties, long range elastic deformations, intermediate structure and material transfer
at the interface between identical and different metals is less well understood [32].

The present study focuses on the effect of the choice of interfacial parameters on the
microscopic dynamics and structure in order to characterize a simple embedded atoms
model for metals, and to explore its range of applicability. To this end a stationary
shear deformation between metals sliding past each other with large relative speeds is
considered. This study is restricted to the study of metal-metal contacts, where the
effect of the interfacial parameter is most transparent although the choice of parameters
does not reflect any particular chosen “real” situation (we will come back to this point in
Sec. 2.3). The results help to predict the microscopic behaviors when two blocks of metal
with similar lattice constants but different structural and mechanical properties come in
direct solid contact. The present study focuses on the role of dislocations, created under
steady shear deformation, for the flow profile, local structure, and pressure tensor. It
is thus complementary to recent large-scale simulations of nanocrystalline metals where
for small strains (small time windows) the generation and dynamics of dislocations had
been studied in detail, see Ref. [33, 34, 35, 36].

Recent work [37, 38, 39] on friction between a rolling wheel and a rail combines plas-
tic deformation, friction, and heat generation effects with Hertzian calculations of stress
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distribution. Two also recently developed grid-free computer simulation techniques,
smooth particle applied mechanics [40, 41, 42] and dissipative particle dynamics [43],
offer the potential for modelling metals on a micrometer scale (“mesoscale”). These
methods allow us to study the impacts, high velocity deformations, formation of con-
tact zones, and processes inside contact zones during dry friction of two metal blocks.
However, they rely on expressions for thermomechanical properties of model metals as
input. One of the goals of this work is to provide these expressions based on a generic,
yet ab initio motivated model.

In this work it is further demonstrated that and how the proposed model for a bulk
metal can be used to study metal sponges and porous metal structures. Metal sponges
and foams show some potential for being produced with controlled spatial variations in
their density [44, 45, 46, 47, 48, 49]. This suggests employing them as graded materi-
als in space filling lightweight structures in analogy to cortical bone, a natural cellular
material in space filling lightweight structures in analogy to cortical bone, a natural
cellular materia that displays increased density in regions of high load [50]. Most me-
chanical and physical properties are affected by the size of the pores and at the same
time by the thickness of the cell walls of metal foams. The past few years have seen
increasing interest in porous metallic materials, especially in foams made of aluminium
and aluminium alloys. The stimulus for this lies in recent process developments which
promise materials with better quality and lower costs. The foam evolution is accompa-
nied by a film rupture process which leads to coalescence of bubbles in the foam [51, 52].
Analogies between aqueous and metal foams are frequently made. Indeed, in both cases
drainage leads to a steady removal of liquid from the foam walls even in microgravity
experiments. The drainage leads to spontaneous rupture of films separating bubbles.
Opposite to aqueous foams, in liquid metals there are no surfactants acting via electro-
static force to stabilize foam walls. Responsible for stability of metal foams are finely
dispersed non-metallic particles in the melted metal. There were several attempts made
until now to explain the mechanism of their action [51, 52].

The porous structures created with the proposed model are used to study the dif-
fusion of gases of short range attractive and repulsive particles in confined geometries.
The model for bulk metals introduced in this work, turns out also to be able to re-
produce the structure of natural heterogeneous porous media. If there is a mismatch
between overall number and from model desired density in initial configuration, the
surface tension will try to reduce the surface of the sponge keeping at the same time
the sponge walls connected. In this way, a set of sponges with continuously chang-
ing structural properties (surface, volume, connectivity) is created. The model porous
structures introduced here, provide an ideal matrix to be filled with a gas, and to study,
how transport and diffusion coefficients depend on the structure of porous materials.
The prediction of effective transport properties of heterogeneous systems such as porous
media is of considerable interest [53, 54, 55, 56, 57]. In many cases, classical theories
of transport valid for homogeneous systems, do not apply if heterogeneities are strong
and broad enough. The classical laws of transport, such as Fick’s law of diffusion with a
constant diffusion coefficient might not be valid in this case [57, 58]. Instead one needs
time dependent transport coefficients. The studies of colloidal particle diffusion through



1.2. OUTLINE OF THE THESIS 5

porous silica glasses provided an insight into a diffusion through heterogenous media.
Still recent numerical studies of transport through porous media have been primely con-
cerned with transport through highly idealized geometries (i.e., the fluids confined in
slit, cylindrical and spherical pores). However, little attention has been given to studies
of molecules and colloidal particle transport through complex microstructures such as
silica gels, pore glasses, or in biological systems [57].

1.2 Outline of the thesis

This work is organized as follows:
Chapter 2 deals with the embedded-atom method [9, 59, 60, 61], adopted to model

metals and used to investigate microscopic origins of the observed macroscopic behavior
via non-equilibrium molecular dynamics computer simulations (NEMD). This method
takes into account that the energy of atoms in metals depends on the local electron
density, resulting in forces that are many body in character. Simulation provides us with
the time-dependent positions and momenta of atoms in the system and thus allows for
a detailed structure-pressure tensor relationship analysis (for example, by using planar
graphs). A particularly simple choice of model, the “generic embedded-atom model”
(GEAM), will be shown to reproduce the main zero-temperature constitutive properties
of real metal by varying a set of basic model parameters. The model is characterized by
a few parameters, the strength of the embedding function, the position of the minimum,
and the cutoff radius of an interatomic binary potential, thus allowing for a systematic
analysis of the influence of constitutive properties on the structure and mechanical
behavior of metals. The parameters independently affect several constitutive properties
(elastic coefficients, vacancy formation, and cohesive energy) such that the constitutive
properties can be adjusted through analyzing corresponding properties of real metals.
In particular, only the “quadratic term” in the embedding functional contributes to
the components of elastic modulus tensor, which include response to volume changing
deformation (i.e., C11 and C12) since they depend on the second derivative of the cohesive
energy.

Chapter 3 provides the details of implementation of the simulation method. The
equations of motion are integrated with a velocity-Verlet algorithm. A cubic simulation
box with constant volume and Lees-Edwards periodic boundary conditions are used
to simulate shear deformation. The profile unbiased thermostat with rescaling of the
velocities (which corresponds to Gaussian constraint) is used to control the temperature.

Chapter 4 introduces a method for obtaining information about the ideal and non-
ideal local order existing in mono-atomic model solids or real materials from their atom-
istic configurations. An efficient algorithmic implementation is provided. The shape of
the polyhedra formed by ‘relevant’ neighbors of each atom enter a pattern recognition
method to resolve information about the type of the (usually non-ideal) crystal structure
to which atoms surrounded by their relevant neighbors belong: hexagonal close-packed,
face-centered cubic or body-centered cubic. Further, this approach allows the analysis of
icosahedral structure which preferably occurs in amorphous solids. Results of a molecu-
lar dynamics computer simulation illustrate how this method can be applied to improve
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the understanding of the mechanical and structural properties of solids i) undergoing a
steady shear stress and ii) upon increasing temperature.

Chapter 5 presents simulations of the shear flow of the model metal within a single
asperity, at a length scale where local properties, e.g., temperature and density of the
macroscopic body can be considered gradient-free. For the case of sliding friction a
contact zone at a relative motion in x direction, with a load and shear gradient in y
direction is studied. The value of the penetration hardness is a good estimate for the
typical pressure in the contact area, for the case of rough surfaces and moderate loads.
The evolution of isotropic pressure is described, as well as the bulk and the shear mod-
uli with temperature for different densities. A simple approximate expression for the
isotropic pressure is obtained. The study reveals information about the feedback effects
of temperature on shear stress and shear on structure, neither of which are included
in the aforementioned work on rolling friction. The simulation allows to measure the
influence of the initial crystal orientation on transient flow behaviors, the formation of
shear bands and dislocations, and the general rate dependence of metal flow behavior
in its viscoplastic (strong) flow regime. The dependence of the type of crystal struc-
ture on the temperature and density is observed. The semianalytic calculations of the
phase diagram are presented. Further, the shear stress of the systems with fcc, bcc, and
fluid (molten state) stationary configurations is studied and related with the effect of
temperature on the structural behavior. A natural extension of GEAM is proposed and
applied to characterize the microscopic structure, dynamics and wear at clean commen-
surate metalA-metalA and metalA-metalB sliding contacts (interfaces). The simulations,
reveal that the dynamics of dislocations, crystalline domains, and related flow behaviors
(stress tensor, shear moduli) are coupled. The rotation of crystal domains is detected
as a source of the material mixing at the interface in early stages of sliding. In inhomo-
geneous metal interfaces the dependence of structural changes on model parameters is
studied. A relation is established between shear moduli, effective shear rate and shear
stress across the interface.

Chapter 6 investigates drainage and rupture in GEAM metal wall in an attempt
to characterize effects of the material properties. The evolution of the model metal wall
with time is described for different values of temperature, surface and cohesive energy.
Also, the influence of the wall thickness and presence of the additional particles on
the slowing of the wall rupture is explored. In this chapter it is further demonstrated
that a modification of the embedded atom model can be used to create heterogenous
porous structures (sponges) with continuously changing pore geometry. The modifica-
tion concerns controlled mismatch between preferred global and local number density.
The volume and surface of the GEAM porous structures are calculated by Monte Carlo
integration. Further, the pores are filled with gases of short range attractive (SHRAT)
and repulsive (SHREP) particles in order to study the diffusion. For SHRAT particles
pore condensation which led to deviation from the Fick’s law of diffusion is observed.
The diffusion coefficient is found depending on both the pore’s size and density of gas
particles.



Chapter 2

The embedded-atom method

In this work, a model metal composed of N atoms is considered. Atoms are at thermal
equilibrium at temperature T located at positions ri, i = 1, 2, . . . , N contained in a
volume V . The potential is the sum of two contributions to the total potential energy
E: a conventional binary interaction term through a two-body interaction potential U
and a term stemming from an embedding functional F , which models the effect of the
electronic “glue” between atoms [59, 60, 61]:

E =
N∑

i=1

(F(ρi) +
N∑

j>i

U(rij)), (2.1)

where rij denotes the norm of the relative vector rij = ri − rj between atoms i and j.
The embedding functional F has to be a nonlinear function of the (local) embedding
densities ρi of atoms i = 1, .., N . The local embedding density ρi is constructed from the
radial coordinates of surrounding atoms and requires the choice of a weighting function
w(r),

ρi =
∑

j 6=i

w(rij) + w(0). (2.2)

Here, w(0) is the local embedding density of a solitary atom. The (effectively many-
body) model potentials introduced above serve to model a variety of metal properties.
The potential contributions to the pressure tensor and the elastic moduli can be obtained
from the terms of first and second-order in the expansion of the configurational free en-
ergy with respect to the Lagrangian strain tensor sµν , defined through particle displace-
ment written as riν → riν + riµsµν . The Greek subscripts µ, ν stand for Cartesian compo-
nents associated with the x, y, z directions. This expansion is obtained from the standard
expression for the configurational Helmholtz free energy βF pot = − ln

∫
exp(−βE) drN

with β ≡ 1/(kBT ).

7



8 CHAPTER 2. THE EMBEDDED-ATOM METHOD

2.1 Pressure and elastic modulus tensors

The total pressure tensor is a sum of kinetic and potential contributions. The potential
part of the pressure is evaluated as a N -particle average according to [62]:

V ppotµν = 〈Φµν〉, Φµν =
∑

i6=j

φiµν(r
ij). (2.3)

The symbol
∑

i6=j denotes a double summation over pairs ij of (different) particles,
the angular brackets indicate an ensemble or time average, and the second rank tensor
φi (i ∈ 1, . . . , N) is given by

φiµν(r
ij) = rijµ

(1
2
∇ν U(rij) +

∂F(ρ)
∂ρ

∣∣∣
i
∇νw(r

ij)
)
, (2.4)

where ∇νw(r) = r−1 rν ∂w(r)/∂r as for any function with spherical symmetry, i.e., when
w(r) = w(r).

The kinetic part of the pressure pkin is obtained from peculiar velocity of particles,
ci = ṙi−v(ri), where v(ri) denotes the (macroscopic) flow velocity on position of particle
i,

V pkinµν =
〈∑

i

mciµc
i
ν

〉
. (2.5)

The scalar (isotropic) pressure piso is the trace of the total pressure tensor divided by
the spatial dimension, piso = pµµ/3. The symmetric traceless part of pµν is associated
with the shear stress and normal stress differences. The antisymmetric part of the
pressure tensor vanishes for structure-less particles with spherical interaction.

The response of the material to deformation sµν is characterized by the elastic mod-

ulus tensor Gλκ,µν , defined by linear relation σλκ = Gλκ,µνsµν , where σλκ = −(ppot,defλκ −
ppot,0λκ ) is the negative difference between the potential contribution to the pressure ten-

sor in the deformed state ppot,defλκ and its corresponding value ppot,0λκ in the undeformed
state. The elastic modulus tensor can be decomposed into Born-Green and fluctuation
contributions, Gλκ,µν = GBG

λκ,µν +Gflct
λκ,µν [62, 63], with

V GBG
λκ,µν =

〈∑

i6=j

φiλκ,µν(r
ij)
〉
0
+

1

3
〈Φµµ〉0δλκδµν , (2.6)

V Gflct
λκ,µν = −β[〈ΦλκΦµν〉0 − 〈Φλκ〉0〈Φµν〉0]. (2.7)

In Eq. (2.6) the abbreviation is used, φi
λκ,µν(r) = rλ∇κφ

i
µν(r). The subscript “0”

in 〈· · · 〉0 indicates a configurational average to be evaluated in the unstrained state.
Later, these expressions are evaluated for ideal fcc and bcc lattices. In the conventional
“Voigt notation” the four indices (range 1-3) are replaced by two indices (range 1-6).
In this notation one denotes elastic moduli of cubic crystals and of the model with
central interactions: C11 ≡ Gxx,xx, C12 ≡ Gxx,yy, and C44 ≡ Gxy,xy. The conventional
symmetrization according to C44 ≡ (Gyx,yx +Gyx,xy +Gxy,yx +Gxy,xy)/4 is not essential
in this case. In this work, the axes x, y, z correspond to the directions [100], [010], [001]
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in the cubic crystal, i.e., to the deformation direction, its gradient direction and the
direction normal to the shear deformation plane, respectively. In systems with cubic
symmetry, spatial anisotropy is reflected by the existence of a minimum and a maximum
of the shear modulus. The modulus C44 is associated with a displacement in the [100]
direction and a (010) shear plane in a cubic crystal. This modulus stands for a maximum
resistance the system with fcc or bcc structure can offer to shear. The same systems,
with a displacement applied along the [110] direction and the (111) shear plane of the

crystal, have minimum shear modulus associated with the modulus C̃44 = (C11−C12)/2.
For an isotropic system, C44 equals the orientationally averaged shear modulus G. As
a component of the elastic modulus tensor, the shear modulus can be written as a sum
of a Born-Green (usually positive) and a fluctuation (usually negative) contribution,
G = GBG+Gflct. The Born-Green contribution is written as a linear combination of the
extremal contributions to the shear modulus, precisely,

GBG ≡ 3C44 + 2C̃44

5
. (2.8)

The fluctuation contribution to the average shear modulus becomes

V Gflct = − β

10
[6〈Φ2

xy〉0 + 〈(Φxx − Φyy)
2〉0]. (2.9)

The response to a volume changing deformation of an isotropic solid can be inferred
from the (isothermal) bulk modulus or compression modulus B ≡ n(∂piso,pot/∂n)T ,
where n = N/V is number density. The Born-Green components of the bulk and shear
moduli are related in cubic crystals [64, 65] via a modified Cauchy relation valid for the
embedded-atom method of the form Eq.(2.1) through

BBG =
5

3
GBG + 2 ppot +

1

9V

〈∑

i

∂2F
∂ρ2

∣∣∣
i

(∑

j 6=i

rij
∂w

∂r

∣∣∣
ij

)2〉
0
. (2.10)

The fluctuation contribution to the bulk modulus is

V Bflct = −β
9

[
〈ΦµµΦµµ〉0 − 〈Φµµ〉20

]
, (2.11)

and the total bulk modulus is B = BBG +Bflct.

2.2 The “GEAM” model potentials

For the binary potential function U a radially symmetric short ranged attractive (SHRAT)
potential is used [66]:

U(r) = φ0r
−4
0

[
3(rcut − r)4 − 4(rcut − rmin)(rcut − r)3

]
, (2.12)

for r ≤ rcut, and U(r) = 0 otherwise, with an energy scale φ0, a length scale r0, an
interaction range rmin, and a cutoff radius rcut. The well depth of the two-particle (binary
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interaction) potential U is −U(rmin) = φ0r
−4
0 (rcut − rmin)

4. This format of the potential
has been recently used as the effective two-particle interaction in the embedded-atom
model metal [67, 68], and to model thermophysical properties of fluids and solids [66].
The SHRAT potential has a finite value at r = 0, i.e., U(0) = φ0r

−4
0 r3cut(4rmin − rcut).

For temperatures below 0.1φ0/kB – due to the Boltzmann factor exp[−U(0)/kBT ] –
the fraction of particles that reach zero distance is smaller than 10−51 for the choice
rcut = 1.6 r0, rmin = 21/6r0. The normalized Lucy’s weight function in the definition of
the embedding density is chosen for reasons discussed in Ref. [67], i.e.,

w(r) = w0

(
1 + 3

r

rcut

)(
1− r

rcut

)3

, (2.13)

for r ≤ rcut, and w = 0 otherwise, with a prefactor obtained by normalizing the weight
function, w0 = w(0) = 105/(16πr3cut). The embedding potential in polynomial form is

F(ρ) = φ0
∑

k=2,4,...

Fk

(
(ρ− ρdes)

k − (w0 − ρdes)
k
)
r3k0 , (2.14)

where ρdes is the desired embedding number density and Fk are embedding strengths,
being part of the model. Odd terms in the sum are excluded since their contribution
would be always repulsive in nature, the linear term (k = 1) could be adsorbed in a
modified pair potential U . The desired density in this model equals roughly ρdes = r−30
the embedding density and particle number density n ≡ N/V = r−30 . Polynomial
format of embedding functional is computationally less expensive than standard loga-
rithmic form [9, 59, 60]. Also, the ratio between cohesive energy Ecoh (or energy per
particle) and B can be systematically changed without influence on values of other
constitutive properties of the system, see Table 2.1. In following section (Sec. 2.2.1) a
property of polynomial format, to give simple analytical expressions for many constitu-
tive properties, will be used to explain origins of well know properties of embedded-atom
potential [60].

A generic embedded-atom model metal is investigated, with a minimum of the binary
potential located at the distance r = rmin = 21/6 r0 ≈ 1.12 r0 as for the Lennard-Jones
potential, with a cutoff distance rcut = 1.6 r0, and F2 = 1, and Fk = 0 for k > 2. The
hereby specified metal will be denoted as GEAM. For GEAM, the well depth of the
two-particle potential U is therefore −U(rmin) ≈ 0.05φ0. Model parameters for Cu, Ni,
Ag, Au, Fe, and the GEAM model metal are given in Table 2.1; parameters for the
real metals are obtained by linear optimization using experimental data (ratios of the
constitutive properties) also given in the table.
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Metal F2 F4 rcut
rmin

21/6
n Ecoh B G nEcoh

B
Ev1

Ecoh

G
B

A

Cu 85.9nm−3 3.50eV 142GPa 59.3GPa 0.339 0.366 0.418 3.19
(fcc) 0.42 0. 1.010 1.00 0.997 0.419 2.889 1.158 0.145 0.897 0.401 3.35

0.42 8.5 1.010 1.00 0.997 0.972 2.909 1.158 0.333 0.412 0.398 3.35
Ni 84.6nm−3 4.45eV 183GPa 94.3GPa 0.329 0.360 0.513 2.45
(fcc) 0.2 0. 1.017 1.02 0.957 0.366 2.408 1.202 0.145 1.034 0.499 2.95

0.2 6.5 1.017 1.02 0.957 0.839 2.468 1.203 0.325 0.838 0.487 2.96
Ag 58.0nm−3 2.95eV 101GPa 33.5GPa 0.271 0.373 0.331 2.88
(fcc) 0.7 0. 1.006 1.00 0.994 0.486 3.609 1.214 0.134 0.793 0.336 2.85

0.7 8. 1.006 1.00 0.994 0.982 3.621 1.214 0.270 0.415 0.335 2.85
Au 58.1nm−3 3.81eV 174GPa 30.7GPa 0.204 0.236 0.177 2.85
(fcc) 1.3 0. 0.988 0.94 1.052 0.281 4.890 0.842 0.125 0.514 0.172 2.92

1.3 10.2 0.988 0.94 1.052 1.083 5.562 0.841 0.204 0.295 0.151 2.83
Fe 84.6nm−3 4.29eV 169GPa 86.8GPa 0.344 0.417 0.515 2.70

(bcc) 0.2 0. 1.17 1.08 0.868 0.417 1.572 0.772 0.252 1.091 0.491 2.97
0.2 1.1 1.17 1.08 0.868 0.417 1.667 0.768 0.342 0.724 0.491 2.97

GEAM 72.0nm−3 1.91eV 179GPa 52.7GPa
(fcc) 1.0 0. 1.00 1.00 0.993 0.552 4.442 1.309 0.123 0.718 0.295 2.34

Table 2.1: The values of constitutive properties and their ratios for Cu, Ni, Ag, Au, Fe, and the model metal GEAM (ρdes, F2
are equal to unity and all other parameters are zero). The top values are experimental data from Refs. [69, 70, 71, 72], and
the two lower values are calculated for input parameters in the first four columns. The model parameters for the metals are
obtained by linear optimization of ratios of constitutive properties using experimental data.
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2.2.1 Basic properties

For a system made of particles occupying ideal lattice sites (or any other configuration)
the cohesive energy, or energy per particle, Ec = E/N is calculated from Eq. (2.1). The
resulting curves are displayed in Fig. 2.1 for GEAM with (F2 = 1) and also without
(F2 = 0) the embedding contribution. The dependence of energy per particle from
density is presented, the dashed curves show results for particles placed on body centered
cubic lattice (bcc) sites and solid curves show results for particles placed on face centered
cubic lattice (fcc) sites.
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BCC, F2=0

Figure 2.1: Cohesive energy or energy per particle vs density (both in LJ units) at
rcut = 1.6r0, rmin = 21/6r0 (generic embedded-atom model GEAM) for ideal fcc and bcc
lattices with (F2 = 1) and also without (F2 = 0) the embedding functional.

The variation of this energy subject to a uniaxial volume conserving deformation
referred to as Bain deformation [17, 73], parameterized by the ratio a[100]/a[010] between
sides of a conventional bcc cubic cell [74], is presented in Fig. 2.2. Under Bain transfor-
mation the system transforms from a bcc structure a[100]/a[010] = 1 into an fcc structure
at a[100]/a[010] ≈ 1.414. Both fcc and bcc structures correspond to local minima of the
cohesive energy with respect to this ratio. During Bain transformation the bcc struc-
ture contracts along [010] and [001] directions by ≈ −11% and expands along the [100]
direction by about 21%, so that these axes transform to [011], [011], and [100] axes of
the fcc structure. Burgers [75] suggested a mechanism for the bcc to hcp transformation
that can be also applied to the transformation of bcc into fcc structure. For this trans-
formation mechanism the original bcc structure is deformed along the [011], [011], and
[100] directions for ≈ 9%, 3%, and −11%, respectively, and subsequently sheared (with
γ = 1/3) in shear direction [011]/gradient direction [011], see Fig. 2.3. Unexpected
at first glance, the energy barrier between fcc and bcc structures is similar for both
structure transformation mechanisms, cf. Figs. 2.2 and 2.3. Yet the Bain deformation
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induces a relative shift of layers of atoms in the crystal, similar to the shear in the
Burgers mechanism and therefore the degrees involved in transformation of structure
are very similar for these two mechanisms, as further discussed in [76].
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E
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n=1.00
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c
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c

Figure 2.2: Cohesive energy vs. ratio a[100]/a[010] during volume conserving tetragonal
Bain transformation. The transformation of the ideal GEAM metal lattice is presented
for global number densities n = 0.98, . . . , 1.06. The bcc structure occurs at a[100]/a[010] ≈
1 and the fcc at a[100]/a[010] = 1.414. The insert shows the effect of density n on the
cohesive energy for ideal fcc and bcc structures. All quantities are given in dimensionless
reduced units, cf. Sec. 2.3 and Tab. 2.2.

For GEAM, both fcc and hcp structures are ground state structures, i.e., structures
with minimum energy per particle for n1/3rcut < 1.83. This results in a zero stacking
fault energy γsf and energy difference between fcc and hcp structure. For this reason,
one might expect pronounced defects – stacking faults and twins – in a GEAM metal
under shear ‘flow’, i.e., shear deformation at constant deformation rate. This need not
to be the case in the strong flow regime: (i) Stacking fault is created when two semi-
infinite blocks of fcc crystal are sheared on (111) plane along a [110] direction. Along
this path, the system has to first pass through an energy barrier referred here as the
unstable stacking fault energy γusf . The stacking fault results in the formation of a hcp
plane inside the fcc structure. Recent studies suggest that the dislocation activity is
not determined by the value of the stacking fault energy alone. The difference between
stacking fault energy and unstable stacking fault energy |γusf − γsf | has been included
into the description [33, 34, 35, 78]. For the case of GEAM, the difference |γusf − γsf |
is comparable in magnitude with the value observed in metals with low γsf values, see
Tab. 2.2. (ii) In the strong shear flow regime the thermal energy of the particles is
comparable, but smaller than the magnitude of the potential barrier γusf . Therefore,
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Figure 2.3: Cohesive energy contours in the vicinity of the Burgers transformation
path. The system is simultaneously deformed (a[011]) in [011] direction and sheared by
an amount γ along the [011] direction/gradient direction [011]. For a Burgers transfor-
mation [75] the original bcc structure is transformed into the fcc structure after being
deformed by ≈ 9%, 3%, and −11% along the [011], [011], and [100] directions, respec-
tively, and subsequently sheared with γ = 1/3.

atoms in fcc single crystals subjected to strong shear deformation easily slide into their
nearest potential minima, creating stacking faults.

For densities close to n = r
−1/3
0 (or n = 1 in reduced units, cf. Sec. 2.3) the

minimum energy is lower in fcc solids. In order to describe the influence of model
parameters on some constitutive properties of ideal fcc and bcc structures a state point
with vanishing (total) isotropic pressure, piso = Pµµ/3, and fix the binary potential well
depth to the above GEAM value is considered. The shape of the binary potential is
controlled by changing the values rmin and rcut. The size of rcut changes the strength
of contributions to the embedding density. Smaller rcut means smaller contribution of
neighbors,

∑
i6=j w(r

ij), in Eq. (2.2). The corresponding parameter in other embedded-
atom models, cf. Refs. [60, 61], is the nearest neighbor equilibrium distance.
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Parameter dependence of constitutive properties

The pressure and the elastic modulus tensor is to be obtained using the virial expres-
sions in Eq. 2.3-2.6 from analytical calculations and also from nonequilibrium molecular
dynamics (NEMD), by which the GEAM model is solved numerically (cf. Sec. 3). In
the following, elastic coefficients, pressure tensor and related quantities are evaluated
from the expressions given in the preceding section in the limit of low temperatures,
where particles occupy ideal lattice sites.

The cohesive energy Ecoh depends strongly on the embedding part of the model
potential, see Fig. 2.4(a) and 2.4(b) for a quantitative analysis. The main contribution
of the two-particle interaction to Ecoh stems form the first neighbors. At zero-pressure,
the first neighbors are near the minimum of the binary potential; the resulting density
depends only on the position of the minimum of the potential [Fig. 2.4(d)]. Since the
well depth of the two-particle potential is held constant, the cohesive energy does not
depend on the position of the potential minimum. The vacancy formation energy E1v

is the minimum energy needed to move an atom from the bulk onto the surface of the
crystal [9, 60], see Fig. 2.9(a). In order to perform a systematic analysis of E1v parameter
dependence, relaxation of structure around vacancy is not considered. The dominant
contribution in EAM to the unrelaxed vacancy formation energy stems from the binary
interaction potential. The unrelaxed vacancy formation energy depends weakly on the
embedding part of the potential and the position of the cutoff radius, cf. Table 2.1. It
depends indirectly – through zero-pressure density – on the position of the potential
minimum. The vacancy formation energy depends loosely on the embedding part of the
potential and the position of the cutoff radius, cf. Fig. 2.1 and 2.5(a). This enables
us to fit experimental values for the cohesive energy and vacancy formation energy
independently by varying the strengths of the embedding term F2, F4, . . .. Compared
to other constitutive properties of EAM metals, the vacancy formation energy changes
slowly with change of all model parameters.

The surface energy is determined by dividing the total energy increase in separating
bulk material on the crystallographic plane [Fig. 2.9(b)] by the total new surface area
created [60]. For case of the GEAM (rmin = 21/6, rcut = 1.6, F2 = 1, and Fk = 0 for
k > 2), the unrelaxed surface energies for three low index planes are

Γ111,fcc = 0.083, Γ100,fcc = 0.101, Γ110,fcc = 0.109 (2.15)

and
Γ100,bcc = 0.113. (2.16)

The order from lowest to highest surface energy is for (111), (100), (110) planes
as expected for fcc structure. Plane (110) in fcc structure transforms under volume
conserving Bain transformation into (100) plane of bcc structure; thus values of these two
surface energies are close. Note in Fig. 2.4(a) and Fig. 2.5(b) that surface energy depends
stronger on strength of the first therm in embedding functional F2 while cohesive energy
depends stronger on higher order terms (F4, F6, . . . ). Other ground state defect energies
of the model metal, e.g., the surface formation energy, can be also calculated from
Eq. (2.1).
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Figure 2.4: Cohesive energy Ecoh, shear G and bulk B moduli, anisotropy ratio A, and
density n for the case of vanishing pressure tensor. All quantities are in standard LJ
units. Values for fcc (solid curves) and bcc (dashed curves) structure are presented. (a)
Effect of cutoff radius rcut, position of the potential minimum rmin for F2 = 1 (GEAM).
(b) Effect of cutoff radius rcut and embedding strength F2 for rmin = 21/6r0 (GEAM)
(c) Effect of rcut, rmin (F2 = 1) on the anisotropy ratio A. Areas (bold line) where fcc
and bcc structures are energetically favored are also shown. For cubic structures one
has A = 2 if interactions with the first nearest neighbor shell only are present; “II shell”
denotes the separation line. The line C11 > |C12| separates the regimes where bcc and
fcc structures are mechanically unstable. (d) Effect of rcut, F2 (for rmin = 21/6r0) on the
bulk modulus B and zero-pressure density n.

Recent studies, Refs. [79, 80], indicate that there is no straightforward comparison
between vacancy formation and surface formation energies calculated with EAM and
experimental data. Difference between electronic structure at a surface level and in bulk
is not considered by EAM, thus EAM should give in case of metal with high electronic
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Figure 2.5: Vacancy formation energy Ev1 and cohesive energy Ecoh for the case of
vanishing pressure tensor. All quantities are in standard LJ units. Values for fcc
(solid curves) and bcc (dashed curves) structure are presented. (a) Effect of embed-
ding strength term components F2, F4 for rmin = 21/6, rcut = 1.6 and Fk = 0 for k > 2
(GEAM). (b) Effect of F2, F4 (rmin = 21/6, rcut = 1.6 and Fk = 0 for k > 4) on the bulk
modulus B and surface energies in fcc Γ110,fcc and bcc Γ100,bcc structure.

density (Pt,Pd) noticeably lower vacancy formation energies from experiment.
The elastic coefficients – bulk modulus B, (average) shear modulus G, C44, and the

Cauchy pressure C̃44 = (C11−C12)/2 depend on the second derivative of the free energy
for a nearest neighbor model, cf. Eq. (2.6). The second-order term [k = 2, Eq. (2.14)] in
the embedding functional is most important for the values of the elasticity coefficients
which include response of material on volume changes (B, C11, C12) since the embedding
density is usually very close to the desired embedding density, see Fig. 2.4(d). Shear

moduli, C44 and C̃44 in cubic crystals include only response to volume conserving shear
deformation that do not change embedding density and consequently contribution of
embedding functional to free energy. For this reason shear moduli depend only on
two-body interaction parameters (rcut, rmin), see Fig. 2.4(a) and 2.4(b). The same
conclusion can be obtained from symmetry analysis of Eq. (2.6) for cubic crystals.
This enables us to fit experimental values for the shear moduli G and bulk moduli
B independently by varying strength of F2 term. Other order terms of embedding
functional may be considered to obtain an improved quantitative agreement between
model behaviors and experimentally observed behaviors, in particular with respect to
the ratios between elastic coefficients and the cohesive energy, cf. Table 2.1. Due to
Eq. (2.10), the difference between bulk and shear modulus is approximately

(3B − 5G) ≈ nF2
3

(∑

j 6=i

rij
∂w

∂r
|ij
)2

(2.17)

near the zero-pressure density in an ideal cubic crystal. The ratio G/B ≤ 3/5 decreases
with increasing second-order term in the embedding functional.
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Figure 2.6: Shearing of the ideal fcc crystal in the limit of low temperatures. The change
of the cohesive energy (Ecoh) with the increasing shear deformation (γ) is presented for
shear direction [100]/gradient direction [010] (thick curves, upper insert) and shear
direction [110]/gradient direction [111] (thin curves, lower insert). In the latter case,
sinusoidal trajectories with amplitude za = 0, 0.137, and 0.321 in vorticity direction
[221] and possessing a wave length equivalent with the distance between two successive
potential minima are assumed.

The so-called “anisotropy ratio” A = C44/C̃44 of a cubic material is the ratio of the
extremal values of the shear modulus, maximum C44 and minimum Cauchy pressure
C̃44. It depends on the shape of weighting function and the two-particle potential. It
does not depend on the embedding strength (F2). The anisotropy ratio is A = 2 in
cubic crystals, when only interactions with nearest neighbors are present, according to
Cauchy relations. In bcc structure the Cauchy pressure falls with increasing cutoff ra-
dius and the anisotropy ratio rises. If the Cauchy pressure becomes negative, the system
is mechanically unstable for zero applied stress, see Fig. 2.4(c). For the mechanical sta-
bility analysis in case of non-zero stresses one should use modified stability criteria, see
Ref. [81]. Even when disregarding the higher order terms, the embedded-atom potential
Eq.(2.14), predicts well the anisotropy ratios of both fcc and bcc metals. Higher order
terms (F4, F6, . . .) can be considered to obtain a quantitatively improved description
(Table 2.1) predominantly concerning the cohesive energy. Other constitutive proper-
ties stay mostly unchanged upon considering these higher order terms.



2.2. THE “GEAM” MODEL POTENTIALS 19

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2

-p
+

γ

za=0.      
za=0.137
za=0.321

Figure 2.7: Shear stress (−p+) vs. shear deformation (γ) for shear direc-
tion [100]/gradient direction [010] (ticker curve, upper insert) and shear direction
[110]/gradient direction [111] (thinner curves, lower insert). In the latter case, par-
ticles follow sinusoidal trajectories with amplitude za in vorticity direction [221] and a
wave length equivalent to the distance between two potential minima. At γ = 0 particles
occupy ideal fcc lattice sites.

Shear deformation in the limit of low temperatures

The symmetric traceless (anisotropic) pressure tensor has 5 independent compo-
nents. In the special case of simple shear flow with velocity in x-direction and velocity
gradient in y-direction only 3 independent components have to be considered (as long
as symmetry is not broken in an average sense). Let us denote them conveniently as
p+,−,0, where p+ ≡ (Pyx + Pxy)/2 corresponds to a shear pressure, two normal pres-
sure differences are p− ≡ (Pxx − Pyy)/2, and p0 ≡ (2Pzz − (Pxx + Pyy))/4, respectively.
The scalar (isotropic) pressure piso is the trace of the total pressure tensor divided by
the spatial dimension, piso = Pµµ/3. Note that the ‘stress tensor’ is identical with the
pressure tensor except for its sign, i.e., −p+ is the shear stress.

First, the changes of pressure tensor components and the cohesive energy are calcu-
lated in the limit of low temperatures in two cases: (i) shear direction [100]/gradient
direction [010] and (ii) shear direction [110]/gradient direction [111]. In the former case
the distance between the two minima corresponds to a shear deformation γ = 2, in
the latter case the same distance corresponds to γ =

√
3/2. In the undeformed state

(γ = 0) particles occupy ideal lattice sites, i.e., are located in a position of minimum
potential energy. The cohesive energy Ec increases with shear deformation until an
unstable equilibrium is reached, cf. Fig. 2.6. The corresponding shear stresses are given
in Fig. 2.7. A system with bcc or fcc structure produces maximum shear stress and
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Figure 2.8: Normal pressure differences p− (ticker curves) and p0 (thinner curves) vs.
shear deformation (γ) for shear direction [110]/gradient direction [111] in the low-
temperature limit, cf. Sec. 5.6.1. Particles follow sinusoidal trajectories with amplitudes
za = 0., 0.137, and 0.321 in vorticity direction [221] and a wave length equivalent to
the distance between two potential minima. Prior to the onset of shear particles occupy
ideal fcc lattice sites.

maximum resistance to shear in shear direction [100]/gradient direction [010], where
particles have to cross the highest potential barrier. The fcc system, when sheared
along the [110] direction/gradient direction [111] of the crystal, has minimal resistance.
Particles are then stacked within densely packed hexagonal layers corresponding to the
(111) plane of the fcc crystal structure. The shear stress and the height of the potential
barrier are further reduced through collective zig-zag movements of hexagonal layers
within the plane, see Fig. 2.7.

2.2.2 Characteristics of doped GEAM

In order to study interactions between two (or more) metal species in contact, the
standard equations of embedded-atom model are adapted, Eqs. (2.1) and (2.2):

E =
N∑

i=1

(F(ρi) +
N∑

j>i

eij U(rij)), (2.18)

ρi =
N∑

j 6=i

wij w(r
ij) + w(0), (2.19)

the coefficients eij and wij are introduced to model the properties at the interface be-
tween two (or more) metal species in contact. They allow to specify the strength of
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(c) impurity, w <1.

(a) vacancy formation

(d)  impurity, w >1.AB AB

(b) surface formation

Figure 2.9: Vacancy is crated when an atom is moved from the bulk onto the surface
of the crystal (a). Surface formation energy is defined as total energy increase in sep-
arating bulk material on the crystallographic plane per surface unit (b). To calculate
approximately heat of solution in limit of low temperatures, an atom from the bulk
material is replaced with impurity, relaxation of the crystal structure around impurity
is partially included with adjusting of the distance to the next neighbors so that (total)
isotropic pressure vanishes. Local density around impurity increases for wAB < 1 (c),
and decreases in case wAB > 1 (d).

interaction between atoms belonging to the same and to different materials. Since
throughout the work is death with two metals (type A and B) in contact, the coeffi-
cients eij can take one of the three values eAA, eBB, or eAB = eBA, depending on the
species to which atoms i and j belong (either A or B). By default, and if not otherwise
mentioned, all interaction strength parameters are set to unity. Thus, the default is a
(bulk) system without marked interface.

The heat of solution ∆E for a host bulk material of type A and an inclusion of type B
is defined as the change of the total system’s energy when an atom of the host material A
is replaced by an impurity atom of type B. To estimate the effect of model parameters on
the heat of solution in an approximate fashion, this quantity is calculated in the limit of
low temperatures using the following procedure: an atom from the bulk is replaced by an
impurity; the radial distance to its next neighbors is adjusted so that the (total) isotropic
pressure vanishes; the heat of solution is calculated as the difference between total
energies between start- and final configurations. For metals with similar crystal lattice
constants, within focus of this work (see Tab. 2.2 and Ref. [61]), the true amount of
relaxation is small. For that reason also corrections to the approximate values calculated
here must be small. Resulting curves are displayed in Fig. 2.10, where the effect of the
strengths eAB and wAB on the heat of solution is presented. For eAB = eAA = 1, and
wAB = wAA = 1 there is no difference between impurity and material, thus ∆E vanishes
in that limit. The heat of solution increases linearly with eAB as the binary interaction
potential does. From Fig. 2.11 one can observe that the density corresponding to zero
pressure increases with eAB as a result of the mismatch between zero pressure densities
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Figure 2.10: Alloy heats of solution for a single substitutional impurities in fcc crystal
lattice for different eAB and wAB in reduced units.
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Figure 2.11: Zero-pressure number density n=N/V for a single substitutional impurities
in fcc crystal lattice for different eAB and wAB. All quantities are given in reduced units.

for systems interacting solely via binary and embedding interactions, respectively. The
size of wAB influences the value of the embedding density (ρ) at the impurity location in
such a way that it is decreasing with decreasing wAB. As result, the number density (n)
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a0 n Ecoh B G γsf γusf ∆E (host-

metal [nm] [nm−3] [eV] [GPa] [GPa] [eV/nm2] [eV] impurity)
Cu 0.362 85.9 3.50 142 59.3 0.4 1.25 0.03 (Cu-Ni)
Ni 0.352 84.6 4.45 183 94.3 1.14 1.48 0.11 (Ni-Cu)
Ag 0.409 58.0 2.95 101 33.5 0.11 0.58 −0.19 (Ag-Au)
Au 0.408 58.5 3.81 174 30.7 0.23 0.69 −0.16 (Au-Ag)
Pd 0.389 68.0 3.91 195 54.3 1.06 1.95 −0.04 (Pd-Pt)
Pt 0.392 66.4 5.77 283 65.1 1.68 2.45 −0.21 (Pt-Pd)
GEAM 0.271 72.5 1.91 179 52.7 0 1.00 (dimensional)

1.12 0.993 0.552 4.442 1.309 0 0.021 (adimensional)

Table 2.2: Experimental values [69, 70, 71, 72, 82] for Cu, Ni, Ag, Au, Pd, and Pt:
lattice constant a0, particle number density n, energy per particle (cohesive energy)
Ecoh, bulk B and shear G moduli, along with heats of solution ∆E for given host-
impurity pairs. The stacking fault energy γsf and unstable stacking fault energy γsf
are obtained with tight-binding and first-principles calculations in Refs. [77, 78]. For
GEAM metal constitutive properties are given in both in “real” (dimensional), and
reduced (adimensional) units (bottom row).

around an impurity increases with increasing difference |wAB−wAA| in order to achieve
the desired vanishing isotropic pressure, cf. Fig. 2.11. The heat of solution increases
with the absolute distance |wAB − wAA| due to the parabolic form of the embedding
functional, see Fig. 2.11. For the reasons described in Sec. 2.2.1, the shear moduli (G,

C44, C̃44) scale with the two body interaction parameters eAA and eBB linearly, i.e., in
case of average shear modulus one has G(eX) = eXG(eX = 1.) for X ∈ {AA,BB}.

2.3 Reference values

To compare nonequilibrium molecular dynamics (NEMD) simulation results with exper-
imental data, constitutive properties of present model are related to experimental data
for real metals in Table 2.1. The last four columns of this table give the characteristic
ratios of constitutive properties for four fcc metals (Cu,Ni,Ag,Au) and one bcc metal
Fe, together with the same ratios for corresponding model metals obtained by linear
optimization of model parameters; values for GEAM are also listed. The reference val-
ues for dimensionless model quantities Qdimless can be computed from experimental (top
number) and calculated values listed in middle section of Table 2.1. The determined
model parameters and reference values are not unique in the sense that it is possible
to find similar sets which would as well resemble the properties of real materials. In
following, reference values used to translate between dimensionless simulation quanti-
ties and experimental values, will be discuss shortly. Any measurable quantity Q with
a dimension [Q] specified in SI units kg, m, and s is made dimensionless by a reference
quantity
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Qref = mα+γ/2rβ+γ
0 φ

−γ/2
0 for [Q] = kgαmβsγ, (2.20)

such that Q = QdimlessQref ; quantitiesm, r0, and φ0 provide the scales via the interaction
potential Eq. (2.12) and the equations of motion. The reference values for length r,
number density n, energy kBT (and defect energies), temperature T , time t, shear
rate γ̇, pressure P , and the elastic moduli in terms of the simulation parameters are
therefore rref = r0, nref = r−30 , eb,ref = φ0 = kBTref , tref = r0 (m/eb,ref)

1/2, γ̇ref = t−1ref , and
Pref = φ0r

−3
0 = nrefeb,ref . For Cu, e.g., one obtains reference values φ0 = 3.61eV and

Pref ≡ 38GPa, r0 = 2.26 Å and nref = 86.2 nm−3 from Table 2.1. Atomic mass of copper
is mCu = 1.06× 10−25 kg and the reference time is estimated as tref = 0.97× 10−13 s. By
choosing Tref = φ0/kB = 40 kK, Pref = 40 GPa one obtains φ0 = 3.45 eV, nref = 72.5
nm−3 and r0 = 2.4 Å for GEAM. For 0.8 < eAB < 1.2 and 0.4 < eAB < 1.5 the alloy
heats of solution of GEAM metal are within the range expected for real metals, cf.
Table 2.2. Atomic masses of most metals are within the range m = (0.8− 3.5)× 10−25

kg, thus an estimated reference time for GEAM metal is in range 0.9− 2.0× 10−13 s.
The predicted values of the vacancy formation energy, elastic anisotropy and the

bulk modulus are within the expected ranges for fcc and bcc metals. Since both density
and vacancy formation energy depend strongly on the position of the potential mini-
mum, there is no unique way to choose model parameters such that both density and
vacancy formation energy precisely match values for a given real metal, cf. Table 2.1
and Figs. 2.4(a) and 2.4(b) for possible choices.



Chapter 3

Simulation method

The equations of motion in the conducted NEMD simulation are integrated by a velocity-
Verlet algorithm. A cubic simulation box with constant volume and Lees-Edwards
periodic boundary conditions are used to simulate shear deformation. The components
of force acting on particle i, directly obtained from Eq. (2.1), read

F i
ν = −

∑

j 6=i

(
∇νU(r)

∣∣∣
ij
+
(∂F(ρ)

∂ρ

∣∣∣
i
+
∂F(ρ)
∂ρ

∣∣∣
j

)
∇νw(r)

∣∣∣
ij

)
. (3.1)

The Greek subscript ν stands for Cartesian components associated with the x, y, z di-
rections.

A suitable integration time step is 4t/tref = 0.01 for the chosen range of tempera-
tures and densities. The temperature is kept constant by rescaling the magnitudes of
the peculiar particle velocities which corresponds to a Gaussian constraint of constant
kinetic energy in the limit 4t→ 0.

For the case of a model metal under steady shear deformation (or flow), a relative
motion of periodic images in the flow (x) direction is performed, with a shear gradient
in y direction. The flow simulation introduces the shear rate γ̇, given by γ̇ = ∂vx/∂y,
as a further independent variable. While a linear flow profile is observed at moderate
rates, at higher shear rates and during the transition towards a steady state, parts of
system to move as blocks. To allow simulations of plug-like flow it is essential to use a
“profile unbiased thermostat” (PUT, Refs. [83, 84]) which calculates the mean streaming
(peculiar) velocities self-consistently. Alternatively, shear flow can also be generated by
modifying the equations of motion with a Sllod algorithm [85, 86].

The simple model metal is explicitly determined by the set of model potentials and
solved without approximations with computational effort of order N .

3.1 The Verlet algorithm

For numerical solving of the equations of motion exist a large number of algorithms with
computational speed and precision. In molecular dynamics, the most commonly used
time integration algorithm is probably the so-called Verlet algorithm [87, 88]. The basic
idea is to write two third-order Taylor expansions for the positions , one forward and
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one backward in time. For position vector of the particle i, ri, and its time-derivatives,
one has

ri(t+∆t) = ri(t) +
∂ri
∂t

∣∣∣
t
∆t+

1

2

∂2ri
∂t2

∣∣∣
t
∆t2 +

1

6

∂3ri
∂t3

∣∣∣
t
∆t3 +O(∆t4) (3.2)

and

ri(t−∆t) = ri(t)−
∂ri
∂t

∣∣∣
t
∆t+

1

2

∂2ri
∂t2

∣∣∣
t
∆t2 − 1

6

∂3ri
∂t3

∣∣∣
t
∆t3 +O(∆t4). (3.3)

Adding the expressions (3.2) and (3.3) gives

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
∂2ri
∂t2

∣∣∣
t
∆t2 +O(∆t4). (3.4)

This is the basic form of the Verlet algorithm. Since Newton’s equations are inte-
grated, acceleration (second derivative of position in time) is just the force (Eq. 3.1)
divided by the mass:

∂2ri
∂t2

=
1

m
Fi. (3.5)

As one can immediately see, the truncation error of the algorithm when evolving the
system by ∆t is of the order of ∆t4, even if third derivatives do not appear explicitly.
This algorithm is at the same time simple to implement, accurate and stable. It is
exactly reversible in time and, given conservative forces, conserves linear momentum.
A problem with this version of the Verlet algorithm is that velocities are not directly
generated, while they are not needed for the time evolution. Still in order to calculate
kinetic energy (sometimes important test, if MD simulation is runs correctly) and for
temperature control in NEMD simulations it is necessary to have the information about
velocities in the system. One could calculate velocities from position vectors, however,
the error in that case would be of order ∆t2 rather than ∆t4.

To obtain more accurate values of velocities, they have to be stored in memory. Mod-
ifications of Verlet algorithm give exactly the same trajectory like the basic algorithm,
but store different variables (coordinates, velocities, accelerations) in the memory at dif-
ferent times. One of improved implementations of the Verlet algorithm is the so-called
velocity Verlet algorithm [87], where positions, velocities and accelerations at time t+∆t
are obtained from the same quantities at time t in the following way:

vi(t+
∆t

2
) = vi(t) +

1

2
ai(t)∆t, (3.6)

ri(t+∆t) = ri(t) + vi(t+
1

2
∆t)∆t, (3.7)

ai(t+∆t) =
1

m
Fi, (3.8)

vi(t+∆t) = vi(t+
∆t

2
) +

1

2
ai(t+∆t)∆t (3.9)

where v stands for velocity and a for acceleration. Note that 9N memory locations are
needed to save the 3N positions, velocities and accelerations, but different quantities are
never simultaneously stored or called from memory.
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Figure 3.1: Lees-Edwards boundary conditions for homogenous shear flow.

3.2 Lees-Edwards periodic boundary conditions

In order to simulate bulk properties of the solids periodic boundary conditions are used.
In periodic boundary conditions, the cubic (simulation) cell is copied throughout space
to form a lattice. Particles interact with the closest image particle according tominimum
image convention. The minimum image convention gives through cut-off radius rcut of
the potential minimal dimension of the simulation cell; if Lx, Ly, Lz are three dimensions
of the cubic cell, the condition is Lx, Ly, Lz > 2rcut. Choice of the dimensions of the
simulation cell is usually determined by the characteristic correlation length of the
studied system; dimensions of the simulation cell should be larger then characteristic
correlation length of the system. Crystalline systems due to their periodicity have
very long correlation lengths, and strictly taking, one should use very large systems
with several crystal grains inside. However, smaller cubic cells that can be efficiently
calculated on currently available computers, sill can be used. One should take care that
crystal structure inside simulation cell continues periodicly in the images and in shear
systems, the system should be sufficiently large to accommodate shear-induced structure
(system tends to form integer number of crystal unit cells between two boundaries).

From very beginning simulations were used for studding shear properties of the ma-
terials. One of the common techniques was proposed by Lees and Edwards [89]. The in
this thesis infinite periodic system is subjected to shear in xz plane. The simulation box
and its images in the same xz plane (images between −Ly/2 and Ly/2) are stationary.
The image cells in layer above Ly/2 are moving in positive x direction with speed γ̇Ly

and image cells under −Ly/2 with speed −γ̇Ly (Fig. 3.1).

The Lees-Edwards periodic boundary conditions can be used alone to set up a steady
linearly velocity profile, with gradient γ̇. However, in a driven system heat is generated
and the total energy of the system is not anymore constant. A mechanism which allows
homogeneous removal of the heat will be discussed in the next chapter.
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3.3 Profile unbiased thermostat with velocity scal-

ing

In equilibrium MD simulation equations of motion of particles are integrated numerically
to reproduce the particle trajectories (see 3.1). The number of particles, shape of cell
and total energy can be easily fixed on begin of the simulation and held latter constant.
Therefore, macroscopic quantities can be obtained in molecular dynamics simulation
at a constant (E, V,N) condition; where E stands for total energy of the system, V
volume and N number of particles. This corresponds to mico-canonical ensemble, where
temperature T is related to kinetic energy averaged in time

〈∑

i

p2i
2mi

〉
=

3

2
NkT. (3.10)

where pi is momentum and mi mass of particle. However, the temperature becomes
known first after simulation is carried out and simulations cannot be carried at exactly
defined temperature.

In experiments temperature is usually one of the input parameters. The properties of
system at constant temperature are studied in the canonical ensemble. Studied system
is surrounded by a very large external system, heath bath, with constant temperature
T . Change of temperature in heath bath because of exchange of heat with the studied
system is assumed to be neglectful. The exchange of heath is only interaction between
system and surrounding heath bath. The temperature inside of the system is kept
constant through interaction with heath bath. In contrast to micro-canonical ensemble
total energy fluctuates and one can obtain canonical distribution [90]:

fc(r,p) =
e−H(r,p)

∫
e−H(r,p)drdp

. (3.11)

The interaction between heath bath and the system is very complex and cannot be
studied in detail. There exists variety of methods for control of temperature, the main
difference between these methods arises from the way how the interaction between heat
bath and studied system is modelled. One way is to impose a constrain on the velocities
in the equation of motion

∑

i

p2i
2mi

− 3

2
kT = 0. (3.12)

By inserting this condition into Liouville equation [90, 91] one obtains

fc(r,p) = δ
(∑

i

p2i
2mi

− 3

2
NkT

)
e−U(r,p). (3.13)

The distribution in space has canonical form but distribution of momenta is δ function
because of the imposed constrain in Eq. (3.12). In this way, the exact canonical ensem-
ble average is obtained in simulations only for those quantities which are functions of
coordinates.
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The first attempt to carry out a simulation in controlled conditions was velocity
scaling algorithm proposed by Woodcock [92]. It was shown that it yields canonical
distribution (see Ref. [93]), if after each integration step, velocities are scaled to satisfy
the constant kinetic energy condition. The procedure is very fast and simple.

In order to study planar Couette flows (along x-axis, with gradient in y direction) a
modification to kinetic temperature is introduced

m

2

∑

i

[ṙi − v(ri)]2 =
3

2
NkT (3.14)

where v(ri) is mean streaming (peculiar) velocity at position ri. Deviations from the
mean streaming velocity are interpreted here as thermal fluctuations and suppressed by
thermostat. In systems with planar Couette a linear velocity profile can be assumed
for peculiar velocities v(ri) = γ̇yiex [94]. In this way constructed temperature control
is profile biased, and it will suppress other possible forms of flow, such as, plug like or
two phase flow.

Profile unbiased thermostat (PUT) [83, 84, 95, 96] first calculates average streaming
velocities in discrete layers, by averaging over the velocities of the particles in the layers.
The average streaming velocities inside of layers are used in Eq. (3.14) for evaluation of
temperature. Two criteria for the choice of the thickness of the layers should be met:

• the layer thickness ∆ should be small compared with lengthscale given by the
velocity gradient and temperature: (γ̇∆)2 ¿ kBT/m;

• the number of particles in each layer should be large enough to give a reasonable
statistics.

In this work both, thermostats with the linear velocity profile and profile unbiased
thermostat, are used. The differences are observed only in intermediate regime, after
yield stress is reached and before steady shear flow is reached. As it was expected,
profile biased thermostat suppresses plug like flow of two blocks separated with melted
model metal at higher shear rates. Also gradual rearrangement of the system at lower
shear is visible only with profile unbiased thermostat (see Section 5.4). Steady shear
flow was reached faster in case of profile biased thermostat, in intermediate state system
is melted and no significant amount of periodic crystal structure is observed.

3.4 Calculation details

The values of the shear stress components are obtained from NEMD simulations by
extracting their averages once the system has reached the stationary state. This corre-
sponds to the statistical average typically over a period 4t/tref = 800 in system of 2000
particles, the configurations are sampled after every 10 time units. The temperature was
increased stepwise every 4t/tref = 2000. The results for pressure tensor components for
a number of parameters are compared with data extracted from NEMD simulations of
larger systems (N=43200) and runs 4t/tref = 4000 to test convergence to steady state.
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The stick-slip motion is observed only in intermediate state and it is not observed after
first 1000 time units of the simulation. System size effects on total energy, pressure
tensor components, and their fluctuations are not observed. Yield stress and frequency
of defects formed in steady state shear regime depend through energy needed to form
a defect on the system size, see Ref. [97]. Thus, it is important to use a large number
of particles (N > 5000) to obtain relevant information about value of yield stress and
stationary state structure of system.

The dry solid friction process is characterized by large relative velocities at the in-
terface. In simulations presented here the relative velocity is about 0.01cT (the shear
rate is γ̇ = 0.001), where cT is the transverse sound speed. Thus for the GEAM medal,
the relative velocity is of the order of 30m/s. Such high velocities are expected for
example in case of thread breaking [98, 99, 100]. The time scale of a solid friction pro-
cess is estimated by the size of an average asperity and velocity, leading to a value of
approximately 100 ns. The typical length of a simulation run is 104 time units which
corresponds to a total simulation time of about 2 ns. Concerning both lengths and times
scales, the simulated systems may represent only a fragment of an asperity. For this
reason, the properties of the system such as overall density, pressure, and temperature
are taken to be constant within the simulation cell. However, as shown in Sec. 5.6.1
the stationary state structure is reached soon after onset of the shear flow and enables
to obtain a picture about interplay between the microstructure, dislocation dynamics,
material mixing and flow properties (stress tensor, effective shear rate). The MD sim-
ulations with simulation times up to 2.5 × 104 and with different initial configurations
(e.g. amorphous, with parallel slip ([110]) and shear directions, and extended in gradient
directions) are performed to ensure that processes that might dominate shear deforma-
tion are recognized properly during the limited time window of the MD simulations to
be discussed.



Chapter 4

Common neighbor analysis

Recent computer simulations of structural phase transitions and plastic flow of model
solids [32, 68, 101] prove a need for an analysis which offers a detailed picture about
local- and nanostructures on a scale from single to several atoms. The method to be
outlined provides the amount and spatial distribution of different structures at every
time step, recognizes the amorphous regions and yields information about orientation
and shape of crystal domains. Distinct measures of structural information such as
structure factors, two-particle correlation functions, order parameters (e.g., Q446 via
“shape spectroscopy”) are not able to provide competitively detailed information [102,
103, 104], since the spatial resolution of proposed method is at an atomic level and
neither restricted to mono-crystalline nor to ideal structures.

This method addresses the problem of structure analysis using pattern recognition
of the shape of the polyhedron formed by “relevant” neighbors of any individual atom.
The meaning of “relevant” will be clarified below and is different from “closest” and
“within first coordination shell”. The algorithm implements criteria for recognition of
the two close packed crystal structures: hexagonal close-packed (hcp) and face-centered
cubic (fcc), the almost close packed body-centered cubic (bcc), and the icosahedral (ico)
structure. The latter is expected to appear in case of amorphous solids or nanoclusters
which tend to be close packed and as an intermediate phase during the transformation
of structure, e.g., in the presence of external fields [105]. These four structures are
considered for convenience and should be the most relevant for the study of dense
fluids and metals modeled by radially symmetric potentials. The algorithm can also
be adapted to recognize other structures such as simple cubic structure along the lines
indicated in the following sections.

Concerning physical applications of this algorithm, the computer simulation of a
homogeneous shear flow has shown the existence of shear-induced changes even in a
fluid-like colloidal dispersions subjected to high shear rates [106]. The colloids (or
“atoms”) formed strings parallel to the stream lines which were sometimes ordered in
a perfect hexagonal pattern when projected onto a plane orthogonal to the streaming
direction. Similarly, for colloidal crystals it was also observed from snapshots and pair
correlation functions that they undergo a structural transition in which two-dimensional
hcp (2d-hcp) layers are formed which are oriented to minimize the resistance against flow
[107, 108, 109, 110, 111, 112, 113]. This ordering influences the rheological properties,
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type I II(bcc) rcutoff II(fcc/hcp) III

fcc 1 (12)
√
2 ' 1.41 (6)

√
3 ' 1.73 (24)

hcp 1 (12) ∼ 1.32
√
2 ' 1.41 (6)

√
8
3
' 1.63 (2)

bcc 1 (8)
√

4
3
' 1.16 (6)

√
8
3
' 1.63 (12)

Table 4.1: Positions of the coordination shells I-III, the cutoff radius - for clarity placed
between shells II(bcc) and II(fcc/hcp) - and the number of the neighbours in coordina-
tion shell (in brackets), for three analysed crystal structures.

e.g., enhance shear thinning, since the layered structure complies easily with the flow.

4.1 Relevant neighbors

Usually, as closest neighbors of an atom confined inside an ideal structure, atoms in its
first coordination shell should be considered.

i) Taking into account physical reality, namely fluctuations, phonons and non-ideal
lattices, it is relevant to note that for the body-centered structure the difference between
radial coordinates of atoms within the first and second coordination shells may become
very small. In fact, the diameter of the second coordination shell for ideal bcc is just
15.47% larger than the one for its first coordination shell. In contrary, for both, the
ideal fcc and hcp structures, this difference is about 41.4%.

ii) Both the fcc and hcp lattice contain regular tetrahedra composed of four atoms.
If this lowest level is considered, on which tendency of a material to be close packed
can be satisfied, the similar conclusion can be made. The bcc crystal lattice is not
composed of regular tetrahedra. The ratio of the edges in tetrahedra consisting only of
atoms in the first coordination shell, 1:1:1:1.15:1.15:1.63 (cf. Table 4.1) shows that the
local tendency to form regular tetrahedra is not even partially fulfilled on the level of
the first coordination shell. On the contrary, tetrahedra consisting of atoms from both
first and second coordination shells resemble the regular tetrahedron (1:1:1:1:1.15:1.15).

For these reasons, one should include atoms of the second coordination shell for
bcc structures into the analysis of structure. Due to thermal motion of particles atoms
from the second shell easily become nearest neighbors in case of a bcc lattice, the first
two shells in bcc structure are going to be mixed and they cannot be separated by the
Voronoi analysis. This is demonstrated in Fig. 4.1, where already at low temperatures
(T = 0.0152 in reduced units) the first and second maximum of the bcc structure are
overlapping, qualitatively different from the case of fcc structure. The expected number
of neighbors will therefore be 14 in the case of a bcc structure. The expected number
of (the closest) neighbors for fcc and hcp structures is 12. The ico structure consists of
atoms surrounded with 12 neighbors, which form 20 irregular tetrahedra. It is assumed
that the first maximum in the pair correlation function of ico structure is at the same
position as the first maximum of the other close-packed structures.

Let us call these particles “relevant neighbors” of an atom.
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Figure 4.1: The changes of pair correlation function with temperature for a) bcc and b)
fcc structure at three temperatures T/Tref = 0.0152, 0.0470, 0.0554.

The code RLSCODE (see Appendix A) makes use of the standard Voronoi construc-
tion [87] to determine relevant neighbors. The Voronoi method yields a polyhedron,
defined as that region of space closer to the chosen atom than to any other. Neighbor-
ing polyhedra, sharing at least a single point, define neighboring atoms. The minimum
image convention and a cutoff, the distance beyond which atoms are assumed not to
be neighbors are used. These measures can cause unreliable results for small and/or
random systems, if the cutoff is chosen without care. To avoid that atoms from second
coordination shell of fcc and hcp structures enter the analysis, and to ensure that atoms
from the (overlapping) first and second coordination shells of bcc structures enter, a
preselection is made by taking cutoff radius to be minimum of the global pair correla-
tion function between the shell containing “relevant neighbors” and the subsequent one,
cf. Table 4.1. As shown below, for the purpose of current analysis of non-ideal lattices,
this leads to stable results.

4.2 Criteria based on planar graphs

The first step of the analysis is therefore to extract the pair correlation function, the
position of its first maximum, as well as the first relevant minimum, (procedure CUT-

OFFRAD, Table A.2), and to extract from the list of potential neighbors a set of
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relevant neighbors by the Voronoi analysis (NEIGHBLST, Table A.2). Next, by using
the above mentioned cutoff a planar graph for each atom is established based on this set
of relevant neighbors (STRUCTLST). The neighbors are represented by nodes - the
central atom is not included in the graph, and the nodes are connected with an edge if
two neighbors of an atom are also neighbors of each other. The graph does only contain
information about connections. Note that atoms in set of neighbors of an atom do not
have to be neighbors of each other.

a b c

d e f g

Figure 4.2: The disposition of neighbors around atom in case of ideal crystal structures
and the planar graphs defined on members of set of neighbors of one atom in bcc (a,d),
fcc (b,e), hcp (c,f) and ico (g) structure. The nodes represent the neighbors and they
are connected with a branch (edge) in case if they are also neighbors.

The planar graphs are topologically different for each of the four structures of interest
(cf. Fig. 4.2). A change of the orientation of a certain crystal structure does not result
in topologically different planar graphs. The criteria to determine if the graph of a
single atom is topologically equivalent with the planar graph of one of the structures is
discussed next. The Euler theorem for planar graphs and further relations connecting
the total number of the edges and the number of different surfaces – with three, four
and more edges – into which the plane is divided by a planar graph, are used. The Euler
theorem states that a connected and planar graph with n nodes and m edges divides
the (infinite) plane into f = m − n + 2 surfaces. The theorem is derived by induction
over the number of edges for any number of nodes [114]. In following, the usefulness of
the approach will be illustrated on an example of the bcc structure.

From the Euler theorem, the number of surfaces in case of bcc is 24 since the number
of neighbors (nodes) is 14 and the number of edges is 36. Let us assume that there
are surfaces also surrounded with more than three edges, e.g., with four edges. The
number of these surfaces is denoted by 4 and ♦ for surfaces with three and four edges,
respectively. The equations for surfaces and edges of the planar graph in this case read,
respectively,
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♦+4 = 24,

4♦+ 34 = 2× 36. (4.1)

There is a single solution, 4 = 24 and ♦ = 0. Similar relations can be written for
the planar graph with same number of nodes and edges, which divides the plane into
surfaces with arbitrary number of edges: Inserting

∑∞

x=3©x = 24 (with ©3 ≡ 4, ©4 ≡ ♦
etc.) into

∑
x=3 x©x = 2 × 36 yields

∑∞

x=4(x − 3)©x = 0. Since all ©x’s are positive
numbers, one has ∀x≥4©x = 0. It is therefore proved that just the planar graph with 24
triangular surfaces does exist (©3 = 24). Trying to combine 24 triangular surfaces in a
planar graph, it is found that only one configuration is possible, the one characteristic
for the bcc structure (Fig. 4.2). There are eight nodes with four edges and six nodes
with six edges.

In bcc structure eight neighbors of the atom have four neighbors and the remaining
six neighbors have six neighbors within the set of neighbors of the central atom. The
minimum and sufficient criterion for bcc structure is: an atom is surrounded with bcc
structure if it has 14 neighbors and eight of them have four neighbors and six of them
six neighbors within the set of neighbors of the central atom.

In ico structure the atom should have 12 neighbors and each neighbor should have
five neighbors (Fig. 4.2g). Both in the fcc and hcp structure the atom has 12 neighbors
which form eight triangular and six square surfaces. While hcp structure has three pairs
of triangular surfaces with the same edge, fcc structure has none and this fact is now
used to distinguish between hcp and fcc, see Figs. 4.2e-f.

The ratio between all atoms which are found to belong to that structure (central
atoms plus their neighbors, no double counting) and total number of atoms in the system
is taken as a measure of the amount of certain crystal structure in the material.

4.3 Test run: MD computer simulation of melting

The test run is concerned with the melting of the generic model metal GEAM described
in the preceding section by means of a NVT molecular dynamic method for N = 10978
particles, starting from an ideal fcc and bcc lattice, respectively. Basic details on the im-
plementation of computer simulation method can be found in the Sec. 3. Simulation with
constant density n/nref = 1 have been performed. The temperature is increased step-
wise by δT/Tref = 0.0006 every 800th time unit in the range T/Tref = 0.005, . . . , 0.065.
Before the temperature is increased configurations were saved to a file, which is provided
here as test examples. The temperature is kept constant by rescaling the magnitude
of the particle velocity which corresponds to the Gaussian constraint of constant ki-
netic energy (Sec. 3.3). A cubic simulation box with volume V , and periodic boundary
conditions are used. The axes x, y, z correspond to the initial crystal directions [100],
[010], [001], respectively. The angles, in angular distribution plots, are introduced as
the angle, φ, between projection of vector in xz-plane and z axis taking the values in
range [−π,π] and the angle, θ, between y-axis and vector, its values are in range [0,π].
Cutoff radius is calculated only once for the configuration with the lowest temperature.
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Figure 4.3: Molecular dynamics simulation of melting, starting configuration is (a) bcc
and (b) fcc. The relative number of atoms (×) surrounded with crystalline structure, rel-
ative volume (+) occupied by atoms and their neighbors, and potential part of pressure
(•) are presented.

In Figure 4.3, relative number of atoms found to be surrounded by neighbors, which
resume (a) bcc and (b) fcc structure pattern, and relative volume occupied by atoms
and their neighbors in these structures are presented. The evolution of potential part of
pressure with the increase of temperature is given for comparison. The relative volume
is larger than the relative number of atoms in fcc structure, since the crystalline parts
of the sample are fragmented (Fig. 4.4). That results in fact that less that 4% atoms
whose neighbors have fcc pattern, fill with their neighbors almost 30% of box volume.
Occasional increases of observed crystalline structure after the increase of temperature
can be explained as consequence of fluctuations.

The changes in the fcc lattice with the temperature are illustrated in Fig. 4.4
with the cross section in plane y=0 (the crystal plane [100]) and angular distribu-
tion of directions to the closest neighbors of atoms for three different temperatures
T/Tref = 0.0152, 0.0470, 0.0554, the number of atoms and relative volume are given for
comparison. The slice is δy = 1 wide.

At temperature T/Tref = 0.0470, a greater dispersion of atoms around these maxi-
mums is visible. In the melted state, the angular distribution of neighbors is uniform,
and on cross section of the system absence of the any order is visible.

The mixing of atoms of first and second coordination shells can be observed - as
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Figure 4.4: The angular distribution of directions to the closest neighbors and cross
section of the system in plane y=0 (the slice is δy = 1 wide). Dimensions of the system
are Lx, Ly, Lz = 22.2. The plane of cross section corresponds to [100] plane of the
crystal. The atoms and their neighbors whose spatial distribution corresponds to fcc
structure are represented with ©, others are represented with •. The evolution of the
system with increase of the temperature is illustrated T/Tref = 0.0152, 0.0470, 0.0554.

the points between angular distribution function maximums of original structure at
temperature T/Tref = 0.0470. This can be also observed in the pair correlation function
of the same system given in Fig. 4.1.
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Chapter 5

Structure in the steady shear flow

regime

5.1 Mechanical properties of bulk GEAM metal

When a material is subjected to deformation or an increase of temperature, it responds
with changes of its free energy and pressure. At low temperatures the particles are near
to their positions in an ideal crystal. The isotropic “cold” pressure pcold(n) is calculated
by inserting distances of nearest neighbors (for an ideal lattice) into Eq. (2.3). A
modification of the known expression for the “cold” pressure has been recently used to
model the isotropic pressure at finite temperatures for the case of the SHRAT potential
used here, see Ref. [66]. The adapted formula for the pressure takes into account that
with increasing temperature particles approach each other more closely, and reads:

psolid(n, T ) = nkBT +
1

2
[pcold(n+ sF(n, T )) + pcold(n− sF(n, T ))]. (5.1)

It is observed that the factor sF(n, T ) depends on the strength of the embedding
functional F (here only F2 is considered) and also on the type of crystal structure as
follows:

sfccF (n, T ) ≈
√

(5.25− 1.25F2)
kBT

e2
,

sbccF (n, T ) ≈
√

(4.5 + 0.5F2)
kBT

e2
. (5.2)

Coefficients sfccF (n, 0) = sbccF (n, 0) = 0 and e2 = ∂2Ecoh/∂n
2. Equation (5.2) improve

the corresponding expression given in Ref. [66]. Though one could discuss further cor-
rections to the expression for sF(n, T ), the proposed Eq. (5.2) shows good agreement
with simulation results as demonstrated by Fig. 5.1. This figure presents equilibrium
molecular dynamics (MD) results for the heating of the EAM metal (at n = 1.00) for
different model parameters. The temperature is increased stepwise between T = 0.006
and 0.04 (4T = 0.002 each 1000 time units). In Fig. 5.1, MD results for piso are de-
noted by symbols, and lines stem from the analysis based on the above expressions

39
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Figure 5.1: Pressure as function of temperature (in standard LJ units) for different
model parameters, cutoff rmin and minimum of the potential rmin. Molecular dynamics
(MD) simulation results for piso are denoted with + (bcc configuration) and × (fcc).
The curves represent the approximate expression for the pressure, Eqs. (5.1) and (5.2).
Global density in the system is n = 1.00.

(5.1) and (5.2). The system can withstand tension due to internal attraction, when the
pressure is negative. This is a consequence of the presence of boundary conditions at
fixed volume. For the large negative pressures (model parameters: rmin = 0.975× 21/6,
rcut = 1.56, F2 = 1) holes in the system are created, and the system does not reach a
stable state within the simulation time. For the same system, melting is observed near
the temperature T = 0.035.

The isothermal bulk modulus and shear modulus determine the elastic properties
of an isotropic solid. Using the approximate expression for the isotropic pressure [Eqs.
(5.1) and (5.2)], an approximate expression for the bulk modulus is obtained directly. It
is shown in Fig. 5.2 for a range of temperatures and densities where the system is solid.
The elastic moduli decrease with increasing temperature. At higher temperatures the
fluctuation contribution to the shear modulus is of the same order of magnitude as the
Born-Green contribution. In the molten state the shear modulus vanishes.

5.2 Plastic yield

Representative results of the NEMD simulation concerning elastic response and plastic
yielding of the solid GEAM are presented in Fig. 5.3. The system responds with growing
shear stress (−Pxy) to an increasing shear deformation γ = γ̇t (constant shear rate γ̇)
switched on at t = 0. In this figure, shear stress is plotted as function of shear defor-
mation for an initially prepared fcc GEAM metal at temperatures T = 0.01, 0.04 and
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Figure 5.2: Shear modulus (G), bulk modulus (B) and their Born-Green contributions vs
temperature for densities n = 1.00, 1.02 for GEAM in dimensionless LJ units, obtained
via nonequilibrium molecular dynamics (NEMD). The curve for bulk modulus (Bapp) is
calculated inserting the approximate expression for pressure, Eqs. (5.1) and (5.2), into
the definition of bulk modulus.

three different shear rates γ̇ = 0.001, 0.005, and 0.01 (reduced units). The axes x, y, z
correspond to the directions [100], [010], [001] in the initial crystal structure. It is seen
that the yield deformation does not depend on the shear rate for T = 0.01. This may be
expected in view of Lindemann’s criterion which says that a crystal will melt when the
amplitude of vibration (x0) of atoms exceeds about one-tenth of the lattice constants.
The smaller values of the yield deformation at high temperature T = 0.04 and γ̇ = 0.001
can be also explained by this criterion. By assuming a harmonically oscillating motion
of atoms, one obtains the relation kT = fx20/2 between temperature and the amplitude
of vibrations, where f stands for an effective spring coefficient between an atom and
its neighborhood. The coefficient f can be related to elastic moduli, see Ref. [115], and
it falls with temperature. High temperatures and a small spring coefficient result in a
large amplitude of oscillations and a small yield deformation.

The plastic behavior following the yield point, however, depends on shear rate.
At high rates (and high temperatures) defects are formed immediately after a yield
stress is reached. This results in a slowdown of the relaxation of accumulated stress at
high shear rates. Under these conditions, soon after the yield point has been reached
(here at γ = 0.1), shear-induced melting is observed. During this intermediate state
(inhomogeneous melting), a layer of liquid metal is formed between two blocks of the
solid metal, and the blocks are moving at constant speed, see upper left cross section
in Fig. 5.8. Actually, the periodic simulation cell contains 34 layers of particles and an
effective shear rate at the position of the layer is ∼ 34γ̇ – just at startup of flow. For
this reason, for systems at temperatures near the melting point (T = 0.04) and at high
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Figure 5.3: Shear stress as function of deformation for three shear rates γ̇ = 0.001, 0.005,
and 0.01 at two temperatures T = 0.01 (thicker curve) and T = 0.04 (thinner curve)
of GEAM, obtained via NEMD. The starting configuration is the ideal fcc structure at
density n = 1.00 with N = 43000 particles. The shear started at t = 0. Shear direction
is the [100] direction in crystal, and shear plane coincides with the (010) crystal plane.
The coefficient C44 is obtained via MD simulation. All quantities are given in LJ units.

shear rates γ̇ = 0.005, 0.01 the system partially melts soon after the shear commenced.
In Ref. [30], a similar behavior is observed during sliding of a tetrahedral tip (Cu) over
substrate (Ni) via simulation. The stick-slip motion is observed, with abrupt structural
transition of the tip layer closest to the substrate between two slips in which Cu (110)
surface transformed into (111) surface to match (111) surface structure of Ni substrate.
Two comparisons with inhomogeneous melting in current system can be made: (i)
regions in intermediate shear regime exist (before stationary state structure is formed,
Fig. 5.3), where motion is converted to the strain energy. A part of the strain energy is
spent on the structure change (melting) of the structure between the blocks and the rest
is dissipated though the system. (ii) The structure of the fluid at the interface tends
to match the interface surface structure [30, 116]. The observed melting is a result of
two opposed mechanisms, blocks have fcc (100) surface structure but the system tends
to form fcc (111) structure in this plane (see Sec. 5.4).

The measured yield stress decreases considerably with temperature, since particles
at comparatively high temperatures can cross the potential barrier and enter the next
potential minimum faster.
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5.3 Rheological properties for stationary shear flow

For a planar Couette flow the symmetric traceless pressure tensor (which equals the
negative stress tensor) has only three independent components p+,−,0, a shear pressure
p+ ≡ Pxy or shear stress −Pxy, and two normal pressure differences: p− ≡ (Pxx−Pyy)/2,
p0 ≡ [2Pzz− (Pxx+Pyy)]/4. The pressure tensor is calculated via NEMD over the range
of temperatures T = 0.008, . . . , 0.06, for densities n = 0.98, . . . , 1.08, and for two shear
rates γ̇ = 0.001, 0.01. These simulations are performed with 1000, 2000, and 43000
particles.
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Figure 5.4: Shear stress vs temperature. Symbols denote averages from the NEMD
simulation of GEAM with different densities for two shear rates γ̇ = 0.001, 0.01 (F2 = 1)
and for F2 = 0 (γ̇ = 0.001). All quantities are expressed in LJ units. Curves are obtained
by linear regression analysis of the simulation results. Estimated error ranges (standard
deviation) have similar size for all data points, for this reason they are plotted only at
T/Tref = 0.08.

In order to discuss the relationship between shear stress and temperature for two
shear rates a simple linear relationship between them is tested, where the coefficients
are obtained via regression. Within statistical errors and for the range of chosen densi-
ties, no effect of density on the friction pressure is detected. The resulting approximate
expressions are given in Table 5.1. The regression curves of shear stress (−p+ or −Pxy)
together with the simulation data are presented in Fig. 5.4. Data are plotted for two
shear rates γ̇ = 0.001 (solid curve), γ̇ = 0.010 (dashed curve) and γ̇ = 0.001, F0 = 0.
(dotted curve). The shear stress decreases with increasing temperature. This is so,
because atoms have large kinetic energies and can move uncorrelated and far from their
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rmin

21/6

rcut

1.6
F2 γ̇ aT c

1. 1. 0. 0.001 -0.34(6) 0.037(1)
1. 1. 0.5 0.001 -0.47(6) 0.039(2)
1. 1. 1. 0.001 -0.44(5) 0.045(1)
1. 1. 1. 0.010 -0.37(5) 0.040(1)
1.025 0.95 1. 0.001 -0.5(2) 0.092(5)
1.025 1.05 1. 0.001 -0.64(7) 0.055(2)

Table 5.1: Coefficients in approximate expressions for shear stress, −pxy = aTT + c, in
Figs. 5.4 and 5.5 for different values of model parameters rcut, rmin and F2 (all other
parameters are zero).

equilibrium positions as compared to atoms in a layer plane. For the same reason, the
observed shear stress decreases with increasing shear rate. At a higher shear rate more
defects are produced and the ordering of atoms into hexagonal layers is weakened, see
the insets of Fig. 5.8. The embedding contribution reduces density fluctuations, making
atoms more bounded into layer structure, thus the shear stress decreases with decreasing
influence of the embedding contribution, cf. Table 5.1 and Fig. 5.4. From simulations,
the kinetic and potential contribution to the pressure tensor can be computed sepa-
rately. The kinetic part of the isotropic pressure is given by pisokin = kT and of the order
of the potential contribution to the pressure. The kinetic contributions of the shear
stress (−p+) and normal pressure differences (p−,0) is only about 10−3 of the potential
contribution. This is expected for dense fluids and solids. The simulated values of the
two normal pressure differences p−,0 are found to vanish both within the precision of
data presented in this work.

In Fig. 5.5, the data are presented for three systems: GEAM (with fcc ground
state structure and shear moduli G = 1.31), for model parameters rmin = 1.025× 21/6,
rcut = 1.68, F2 = 1 (bcc, G = 1.33) and rmin = 1.025 × 21/6, rcut = 1.52, F2 = 1
(fcc, G = 2.39). Since the shear stress and moduli have the same origin in shape of
two-body interaction potential, the observed shear stress increases linearly with increase
of the shear moduli. The dependencies of the shear stress on the temperature and the
shear rate are particularly important when the metal is subject to severe stresses or
non-uniform heating, e.g., as result of thread-breaking [98, 99, 100].

In a liquid metal, atoms are quite free to move and the system exhibits a comparable
small resistance to the shear flow, cf. the enclosed points in Fig. 5.6(a) and 5.6(b). This
means that if the model metal stays crystalline (during shear) it mostly reduces energy
per particle rather than reducing resistance to shear. Thus, the observed reordering of
the crystal structure under shear has little in common with the mechanism responsible
for an ordering transition – accompanied by shear thinning – observed in fluids [14].
The present transition is similar to an ordering phenomenon observed experimentally
and predicted theoretically for colloidal crystals in solid state [16]. However, in colloidal
crystals the shear stress rises at the melting transition [14, 15, 16]. The structure in
a colloid is formed to reduce the resistance to shear. Only if the shear rate and the
temperature are sufficiently low, the system can reduce the potential energy by forming
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Figure 5.5: Shear stress as function of temperature (in standard LJ units) for different
model parameters, minimum rmin and cutoff radius of the potential rcut. Symbols denote
averages from the NEMD simulation at shear rates γ̇ = 0.001. Curves are obtained by
linear regression analysis of the simulation results.

periodic crystal structures. In metals the interaction between atoms is stronger than
in colloids and the mechanism which tries to reduce the potential energy of the system
is dominant. The data points in Fig. 5.6 stem from NEMD simulations at different
densities, shear rates, and temperatures.

The equilibrium and nonequilibrium values for the isotropic pressure are shown in
Fig. 5.7 as function of temperature T and density n. The symbols mark the computed
pressure for the system under shear. The curves represent the evolution of the isotropic
pressure during melting of a bcc system (dashed curve) and a fcc system (solid curve)
without shear. The increase of pressure at high temperatures indicates the onset of
a shear-induced melting [118]. For the high densities (n = 1.02, 1.04), the observed
structure in the system is mainly of bcc type, resulting in an isotropic pressure smaller
than the one for the corresponding fcc structure.

In case of dry solid friction between two blocks made of the same material, the load
is related to the isotropic pressure inside the interface (asperity). Except in the case
of polished surfaces, all asperities will be in state of incipient flow, see Ref.[1]. The
simulation cell can be regarded as containing a typical part of such an interface. The
typical value of the isotropic pressure should be therefore estimated from the penetration
hardness, which is defined as the ratio between load N and contact area A at the onset
of plastic flow. For most metals, the penetration hardness lies in the range 0.005-
0.025 (reduced Lennard-Jones (LJ) units) [1, 2]. From simulation data in Fig. 5.7 it
is visible that with and also without shear one can consider the penetration hardness
as a good estimate for the average isotropic pressure within an asperity. The friction
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Figure 5.6: Shear stress −pxy vs the isotropic part of the pressure, for two shear rates:
(a) γ̇ = 0.001 and (b) γ̇ = 0.01. Symbols indicate results from NEMD simulations of
GEAM for different densities and temperatures. All quantities are given in LJ units.
Data points where the system is molten are encircled with a line.

coefficient is defined as the ratio between shear stress (integrated over the volume of
an asperity) and the load. Under the assumption for sufficiently high loads, e.g., large
surfaces of asperities that the isotropic pressure and the shear stress are homogeneous
inside the asperity, a “macroscopic” friction coefficient µ is obtain via NEMD in the
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range between 0.2 and 3, defined as µ ≡ −pxy/piso. These values are comparable to the
ones for real materials. With the available mesoscale methods, such as smooth particle
hydrodynamics, which allow to simulate a surface containing several asperities it would
be possible to obtain improved values for the analog to the experimentally measured,
macroscopic, friction coefficient. Such an investigation is outside the scope of the present
work.

The shear stress does not change as much as the isotropic pressure does during the
variation of temperature and density. Even at large isotropic pressures above piso = 0.4,
which is realized in shock waves and impact experiments, the shear stress stays near
its value at zero-pressure. Strings of the data points, visible in the Fig. 5.6(b), can be
understood resulting from partial melting of the system at high temperatures. Partial
melting is observed at the (larger) shear rate γ̇ = 0.010, at temperatures below T = 0.04.
Shear-induced melting is observed at temperatures above T = 0.04, see Fig. 5.10. This
figure will be further commented in the following section.
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5.4 Stationary state structure

In the preceding section, it is demonstrated that shear stress rises before reaching the
yield stress for a system subject to shear deformation. After reaching this stress, atoms
tend to move into the next potential minima while the system relaxes, as is also reflected
by oscillations in Fig. 5.3. If the shear continues, significant structural changes appear
in the system. Shear-induced structural local (re)ordering is followed by changes in the
streaming profile and by a buildup of long-range order.

Figure 5.8 shows a time series for a subsystem of a cubic cell with N = 43200
particles undergoing shear at two different densities n = 1 and n = 1.02 and small
and intermediate rates γ̇ = 0.001 and γ̇ = 0.01, respectively. The snapshots (including
structure analysis) show a cut of width 4r = 1 of the full system, and the direction of
shear is depicted in the top right snapshot.

Another quantitative analysis of the evolution of the crystal morphology for the same
system with time is presented in Fig. 5.9. The common neighbor analysis method based
on planar graphs is used to extract information about structure from the NEMD data,
see Sec. 4. The list of the neighbors is used as an input for a pattern recognition which
resolves fcc, bcc, hcp, as well as icosahedral structure (ico). The icosahedral structure
preferably occurs in amorphous solids. The ratio between all atoms which are found to
belong to a structure (central atom plus its neighbors, no double counting) and total
number of atoms in the system is taken as measure of the amount of certain crystal
structure. In current model all three crystal structures are observed. At high shear
rates (γ̇ = 0.01), the icosahedral structure is observed in an intermediate state, see
Fig. 5.9.

At the shear rate γ̇ = 0.001, after the yield stress had been reached, a sudden
increase in the amount of hcp structure is observed from Fig. 5.9, the crystal planes
shear oblique to the shear direction and form a defect. The defect is visible in the cross
section shown in this figure for t = 500 as the area where both hcp and fcc structures
are present. The generated defect blocks flow and induces a further increasing shear
stress. Particles gain kinetic energy by randomly moving away from the defect. As a
result, the system melts locally. This causes the appearance of gradual rearranged areas
around the defects in the system. To make this better visible the angular distribution
of directions to next neighbors is also provided in the insets in Fig. 5.8. The shear
direction is marked with two crosses (×) in the insets, and the plane normal to flow
gradient projects on a line (not drawn) connecting the crosses. During this structural
transition closest neighbors of an atom change their disposition and local structure,
on level of an atom and its neighbors “rotates”, see insets for γ̇ = 0.001, n = 1.00
in Fig. 5.8. In this transformation two dimensional densely packed layers are formed
where the shear direction is in parallel with the nearest neighbor direction at t = 4000
in Fig. 5.8, visible as strings of particles. In the stationary state the distance which the
particles cross between two minima is the smallest possible in the system. This reduces
the probability for creating new defects. The densely packed layers are stacked along
the gradient direction to maximize the distances between particles as they shear past
each other and reduce resistance to shear. For the fcc structure the most densely packed
planes correspond to the (111) plane and the shear direction to the [110] direction. The
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Figure 5.8: Snapshots (via NEMD) visualizing the evolution of the GEAM crystal
subject to steady shear deformation at different times. All quantities are expressed in
LJ units. The number of particles is N = 43000, temperature T = 0.02. Each slice
is one length unit wide. Snapshots for two different shear rates γ̇ = 0.001, 0.01 and
densities n = 1.00, 1.02 are presented. The type of local structure is indicated. The
start configuration is the ideal fcc structure, shearing started at t = 0. The directions
of shear and gradient directions are indicated in upper right picture. The insets contain
the angular distribution of closest neighbors, where the representation is such that the
shear direction projects at points denoted with × and the plane normal to flow gradient
direction projects on a line (of length 2π) connecting the ×-points.

corresponding plane and direction in a bcc structure are (110) and [111], respectively.

Shear deformation inherently generates defects since atoms can move oblique to
the shear direction to reach some close-by energetically preferred states and therefore
prevent the shear stress from relaxing. Even when stationary flow is reached, shear
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(ICO), obtained via NEMD, for GEAM at two shear rates γ̇ = 0.001, 0.01 and densities
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crystalline structures together. Domains with different crystal structures can overlap,
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by fcc, bcc and hcp structure. Time is given in standard LJ units and the number of
particles is N = 43000, temperature T = 0.02. Starting configuration is the ideal fcc
structure, shearing started at t = 0.

in the the direction oblique to the shear flow is observed leading to deviations from a
stationary shear flow profile. The influence of the defects formed in stationary flow on
structure, pressure tensor and self diffusion will be further discussed in Sec. 5.6.

The boundary condition imposes a further constraint on the newly formed crystal
structure. Crystal planes tend to contain a multiple of unit crystal cells between the
boundaries of the system. This results in a small deviation between densely packed
planes and plane normal to the flow gradient, which may increase the probability for
the appearance of defects. Several system sizes are studied to make sure that the
presented results are not artificially caused by finite size effects.

For γ̇ = 0.01 the structure of the system changes between randomly close packed
(fcc and hcp) and bcc, Fig. 5.9. The total amount of crystallinity is almost constant.
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The bcc structure is produced by a volume conserving Bain transformation [17] of parts
of the fcc structure. This process is reversible. The reason for such a behavior should be
larger amount of energy introduced into the system at the higher shear rates. The fcc
and hcp structures have the same energy per particle in the limit of low temperatures
and occur always together as randomly close packed structures. Though one could
expect to observe an identical amount of fcc and hcp structures, in current simulations
the fcc structure shows up to be dominant. The explanation should be that the hcp
structure allows shearing only in a single plane and that it is less resistant to defects,
as compared to fcc. At higher densities and temperatures the bcc structure becomes
dominant. This structural transformation between fcc and bcc structure under shear
and in equilibrium will be further analyzed in the following section.

5.5 Phase diagram

The condition psolid = 0 is used in Eq. (5.1) to estimate the area of mechanical instability
n(T ) due to internal attraction of the GEAM metal under shear in a nonequilibrium
phase diagram, see Fig. 5.10. Cracks – several crystal constants wide – are observed
for small densities and low temperatures, see Sec. 5.6.3. The constant volume condition
prevents their growth. The upper three (solid) curves in the nonequilibrium phase
diagram for GEAM, show melting temperatures with and without shear. Shear-induced
melting is observed at temperatures above T ≈ 0.04. In equilibrium, the system melts
at temperatures above T ≈ 0.045.

In Figure 5.10 the bold dashed curve separates the densities and temperatures where
at low shear rates (γ̇ = 0.001) bcc or fcc structures are found to be dominant. In
the limit of low temperatures the preferred structure can be calculated directly from
Eq. (2.1). At high temperatures the bcc structure is observed at densities and pressures,
where the fcc structure dominates at lower temperatures. The crystal structure formed
under the influence of shear exhibits a large shear stress compared to the one in the
liquid metal. It appears that under the steady shear flow the structure with minimal
free energy replaces the initial crystal configuration. The shear deformation determines
the orientation of the structure: the stationary state crystal structure is oriented to
minimize the resistance to the shear flow (cf. Sec. 5.3 and 5.4). The shear deformation
in this picture weakens the influence of the boundary conditions. The fcc-bcc transition
happens at pressures of the order of yield stress that are unaccessible for unconfined
metals (see Fig. 5.11). The thermal quench of crystal structure formed under combined
effect of high pressure and temperature could be reason for formation of the hardened
layers in rail.

Transformations of crystal structure from one solid phase into the other solid phase
are usually triggered in nature by temperature, volume or pressure changes. These
structural transformations usually result from the competition between internal energy
(or total energy of the system) and entropy. In order to estimate the effect of the
given structure (fcc, bcc) on the stability of systems for which the temperature and the
volume are fixed at prescribed values, one has to consider the Helmholtz free energy
F (T, V ) = U − TS [20]. The internal energy U of the system is defined as a sum of
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potential and kinetic energies, cf. Sec. 3, and thus directly available from the molecular
dynamics (MD) simulations. Concerning the absolute entropy S, however, there is
no such basic recipe. A simple route to estimate the entropy for this system is by
considering the vibrational entropy of a one harmonic oscillator [22]. The crystal lattice
with N atoms is represented through 3N independent one dimensional oscillators with
frequency ω, massm, momenta pi and amplitudes of oscillations qi analog to the Einstein
model for heat vibrations in crystal, cf. Ref. [74]. The Hamiltonian of this system is

H =
3N∑

i=1

( p2i
2m

+
1

2
mωq2i

)
+ E0, (5.3)

where E0 is the potential energy of the system in the limit of low temperatures, calcu-
lated from Eq. 2.1. By inserting this Hamiltonian into the expression for the partition
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function Z, one obtains

Z =
1

h3N

∫
d3Nqd3Npe−H/kBT =

(kBT
~ω

)3N
e−E0/kBT , (5.4)

F = −kBT lnZ = −3kBT ln
kBT

~ω
+ E0/N (5.5)

for the values of partition function and free energy, respectively. The vibrational entropy
is then calculated from the free energy as

S = −
(∂F
∂T

)
V
= 3kB

(
1 + ln

kBT

~ω

)
. (5.6)

The frequency ω is related to the heat capacity by

Cv =
(∂U
∂T

)
V
= T

(∂S
∂T

)
V
= 3~ω. (5.7)

Using the above relationships, the frequency ω is obtained from MD simulation data
presented in Fig. 5.12. Generally one expects a larger vibrational entropy for the bcc
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structure compared to the fcc structure, since it is less densely packed. With increase
of density the heat capacities of both structures decrease, see Table 5.2. At very high
number densities (n > 1.044), where the bcc structure is the preferred structure at all
temperatures, the heat capacities of the bcc and fcc structure are approaching the same
value.
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Figure 5.12: Internal energy of the system as function of temperature for different den-
sities n = 1., . . . , 1.03 (all in reduced units). To increase readability of figure the values
of energy for successive densities are increased for ∆E = 0.01. Molecular dynamics
(MD) simulation results for E are denoted with + (bcc configuration) and × (fcc). The
curves are interpolated through NEMD data; their slope represents heat capacity.

A crystal structure possessing the lower frequency ω (softer lattice) will have the
larger vibrational entropy. As a result, its free energy decreases faster with the increase
of temperature. For this reason the bcc structure becomes stabilized due to the higher
value of its entropy. In the limit of low temperatures, according to Eq. (5.5), the struc-
ture with larger energy per particle (E0/N) is the thermodynamically stable structure.
Though simple, this model is able to qualitatively represent the dependence of the free
energy on the temperature, cf. Fig 5.13. It also predicts that the fcc-bcc structure
transformation is a first order phase transition. Still, the assumption that all atoms in
the crystal lattice oscillate with the same frequency is a very crude approximation. The

n 0.98 0.99 1. 1.01 1.02 1.03 1.04 1.05 1.06 1.07
fcc 2.30 2.28 2.22 2.21 2.20 2.19 2.18 2.17 2.17 2.15
bcc 2.26 2.23 2.17 2.16 2.16 2.15 2.15 2.15 2.15 2.14

Table 5.2: Heat capacities Cv of bcc and fcc crystal structure obtained form MD data
(cf. Fig. 5.12) for different values of density n = 0.98, . . . , 1.07 in reduced units.
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GEAM metal does not consist of harmonic oscillators and cannot be fully represented
using a single frequency.

From positional correlation matrices obtained from MD simulation instead of a single
frequency [21] it is possible to obtain a better estimate of the vibrational entropy. The
diagonalization of the correlation matrix gives inverse quadratic eigenfrequencies of the
system which can be used to calculate entropy. With this method the vibrational entropy
can be calculated from a single simulation run. The disadvantage is that determinants
of the large correlation matrices have to be calculated. So for example, for a system
with N = 10976 atoms one should calculate the determinant of a 32928×32928 matrix.
This would require large amount of memory and computational time. For this reason,
another method is applied here, which the gives change of the free energy during the
the Bain transformation from MD simulation data [22, 101].

The ‘thermodynamic integration’ technique provides a work-around and estimates
the difference between free energies of two phases. The Gibbs relation

dF = −PdV − SdT (5.8)

quantifies how changes in volume and temperature affect the Helmholtz free energy.
The basic idea is to transform, via MD, the fcc solid into a bcc solid along the Bain
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transformation path at constant temperature [22, 101]. Then, the change of the free
energy dF is

dF = −PxxAxdx− PyyAydy − PzzAzdz, (5.9)

where Pi are diagonal, cartesian components of the pressure tensor (i = xx, yy, zz) and
Aλ denote surface areas orthogonal to these directions. Figure 5.14 shows the change of
the specific free energy ∆F/N along the Bain transformation path at number density
n = 1 and temperatures T = 0, . . . , 0.04, calculated via MD.

In the limit of low temperatures, the structure with the larger internal energy is the
thermodynamically stable one. Here the bcc structure (a[100]/a[010] = 1) corresponds to
a local, the fcc structure to global minimum. A larger entropy for the bcc structure
compared to the fcc structure is expected, since bcc is less densely packed. Accordingly,
the free energy of a bcc structure should decrease faster with increasing temperature.
At sufficiently high temperature the local minimum at a[100]/a[010] = 1 can evolve into
a global one. This is indeed observed for the GEAM metal, cf. Fig. 5.14, for temper-
atures T > 0.03. In Fig. 5.15, thermodynamical integration is applied to calculate the
structural phase diagram for GEAM in the temperature-density plane. The diagram
shows regions where bcc and fcc structures are energetically favored, and data for two
values of the two body interaction parameter eAA = 0.5, 1.0. The thermodynamical
integration also provides the size of the potential barrier between two structures along
the transformation path. This barrier is small in magnitude (∆ ≈ 4× 10−4) compared
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with thermal fluctuations at room temperature. Nevertheless the bulk material stays
in the bcc structure after rapid cooling since the structural transformation away from
this state would involve collective motions of atoms. The bulk material, free of defects,
cannot cross this barrier due to the thermal fluctuations even at high temperatures.
Under shear flow, however, the material can sufficiently accumulate strain energy and
cross this barrier, while relaxing to an energetically more preferred state as soon as the
external field is released.

5.6 Wear and alloying at metal contacts

In this section the results are presented for three different types of metal-metal contacts
subjected to shear. While the two materials are characterized by eAA, wAA and eBB, wBB,
respectively, the interface is characterized by the strength of the binary interaction
parameters eAB and wAB. First the “homogeneous” case of a clean, and dry, metal-
metal contact is studied, where all the six interaction strengths are equal and set to unity
(Sec. 5.6.1). Here, the interface arises due to initial conditions. In order to understand
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Figure 5.16: Relative volumes occupied by fcc, bcc and hcp structure vs. time. The
bold curve CRY represents relative volume occupied by all three crystalline structures
together obtained via non-equilibrium molecular dynamics simulation for homogenous
GEAM metal subjected to steady shear. In starting configurations particles are placed
at the ideal fcc lattice sites with the axes x, y, z corresponding to [100],[010],[001] (ticker
curves, ©1) and [111], [111], [110] (tinner curves, ©2) directions in fcc lattice.

the effect of the interaction strengths on the dynamical behavior, two inhomogeneous
cases are studied upon varying a single interaction strength in both cases. In Sec. 5.6.3,
atoms of different model metals feel an extra attraction due to the embedding term
and wAB 6= 1 is chosen. In Sec. 5.6.4 two materials with different shear moduli are in
contact, i.e., eBB 6= 1 is set (while keeping eAB = eAA).

For all three cases, a contact zone at relative motion in x-direction, with a load and
shear gradient in y-direction is simulated. The temperature T = 0.01 and density n = 1.
are held constant. The initial positions of the particles are fcc lattice sites, where axes
x, y, z correspond to the directions in starting crystal configuration: [100],[010],[001]
and [111], [221], [110], denoted with ©1 and ©2, respectively. Simulations are performed
with N©1 = 43200 and N©2 = 48668 particles. In the latter case, the shear direction is
orthogonal to the slip plane. The shear rate is γ̇ = 0.001. The shear deformation is
switched on at t = 0. In the simulations of shear at the interface between two blocks of
different metals, homogeneous GEAM configurations are used, presheared for 4000 time
steps, as start-up. Each particles’ type is set according to the side of the interface where
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it resides at t = 0; type A is assigned to particles with negative y-coordinates. At the
boundary in y-direction there is an artificial interface. Particles crossing this interface
change type.
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Figure 5.17: Average square displacements of particles in velocity gradient direction
(y) and direction orthogonal to shear plane (z). In starting configurations particles are
placed at the ideal fcc lattice sites with the axes x, y, z corresponding to [100],[010],[001]
(ticker curves, ©1) and [111], [111], [110] (tinner curves, ©2) directions in fcc lattice. All
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5.6.1 Clean crystalline metalA-metalA contact

First, dry solid friction between two blocks made of identical GEAM material is con-
sidered, i.e., wij = eij = 1 for all i, j ∈ {A,B}. After the shear deformation is switched
on, the system responds with growing shear stress. After reaching a yield stress at
t©1 = 180, t©2 = 110 (reduced units), a sudden increase of the amount of hcp structure is
observed, as demonstrated in Fig. 5.16. Atoms move into the nearest potential minima,
causing shear of the crystal planes in oblique to the shear flow direction. Layers of hcp
structure are formed, and tend to block the flow. During continued shear significant
structural changes start to appear. The rearrangement of the crystal structure is fol-
lowed by an increase of self diffusion, or self mixing, of atoms. In Fig. 5.17, the average
squared displacement of particles with respect to the shear gradient (y) direction and
(vorticity, z) direction normal the shear x-y-plane is plotted. These quantities do not
only define the diffusion coefficient, but also monitor the amount of interpenetration of
particles across the interface.

After approximately 1000 time units a stationary structure is formed. The particles
are packed in hexagonal layers stacked along the gradient direction to maximize the
distances between particles as they shear past each other, and to reduce resistance
to shear, cf. Sec. 2.2.1 and 5.4. For the chosen set of simulation parameters, fcc
and hcp structures are stationary state structures (Sec. 2.2.1). In the course of the
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Figure 5.18: Insert of longer simulation showing stick-slip motion. Values for shear
stress (−p+) and average square deviation of velocities from linear esults are obtained
via NEMD with 48668 particles at density n = 1., temperature T = 0.01 and shear
rate γ̇ = 0.001. Non-equilibrium molecular dynamics simulation results for homogenous
GEAM metal subjected to steady shear. In starting configurations particles are placed
at the ideal fcc lattice sites with the axes x, y, z corresponding to [100],[010],[001].

structural rearrangement particles move in average for ≈ 1.3 reduced lengths units in
shear direction, what is equivalent to ≈ 1.5 hexagonal layer distances. For the fcc
structure the most densely packed planes correspond to the (111) plane, and slip occurs
in [110] direction. The corresponding plane and direction in a bcc structure is (011) and
[111], respectively. The shear direction is closely parallel, but definitely non-parallel,
to the nearest neighbor (slip) direction of the newly formed structure, cf. Fig. 5.20 at
t = 6500 for system©1. The shear direction projects onto the point (ϕ, θ) = (±π/2, π/2).
A deviation between the steady state shear direction and the fixed flow direction results
in a small increase of the average square displacement with time. If the particles are
moving back in direction of their starting position (in y or z-direction), the average
square displacement can also decrease. The long time self diffusion behavior, however,
still remains unresolved within the actual simulation times.

Shear deformation inherently generates defects since atoms can move oblique to
the shear direction to reach some close-by energetically preferred states. Even when
a stationary flow situation is reached, defects blocking the flow are observed. These
defects should be responsible for the difference between the observed amounts of hcp
and fcc structures. Though they possess the same energy per particle in the limit
of low temperatures, and occur together as randomly close packed structures, in our
simulations the fcc structure shows up to be dominant. The explanation should be that
the hcp structure allows shearing only in a single plane and that it is less resistant to
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Figure 5.19: Evolution of the isotropic pressure piso and the three components of the
anisotropic pressure tensor p+,−,0 with time, cf. Sec.2.2.1 for definitions. Results are ob-
tained via NEMD with 43200, and 48668 particles at number density n = 1, temperature
T = 0.01 and shear rate γ̇ = 0.001 for a homogeneous GEAM metal subjected to steady
shear. Initially, particles are placed at ideal fcc lattice sites with the axes x, y, z corre-
sponding to [100],[010],[001] (thicker curves, system ©1) and [111], [221], [110] (thinner
curves, system ©2) directions in the fcc lattice.

defects, as compared to fcc. After a defect, partially or completely blocking the flow,
is formed, parts of the system move as blocks. Shear stress is then released locally,
yielding very high effective shear rates. The effective shear rates up to 10 γ̇ are observed
around t = 5000 in both systems, cf. Fig. 5.18. The material between blocks is moving
fast in densely packed layers, and blocks are carried with the flow. Thus, the increase of



62 CHAPTER 5. STRUCTURE IN THE STEADY SHEAR FLOW REGIME

ϕ

θ

θ HCP

FCC, HCP

ϕ

ϕ

θ

ϕ

3.14

0
-3.14 3.140

θ

t/t     =6500ref

t/t     =7000ref

t/t     =7500ref

t/t     =8000ref

Figure 5.20: Angular distribution of directions to closest neighbors during the trans-
formation between fcc and bcc crystal structures. Snapshots are obtained via NEMD
with 43200 particles (system ©1). Simulation parameters are: T = 0.01, γ̇ = 0.001 and
n = 1. Starting configuration is the ideal fcc structure, the flow, gradient and vorticity
directions correspond to [111], [221], [110] crystal directions, respectively. The nodes
represent neighbors and they are connected with an edge if they are neighbors with
themselves. Atoms in slip planes are marked by bold lines. In this representation, the
shear direction projects at points (ϕ, θ) = (±π/2, π/2).

the effective shear rate alone does not result in larger average square displacements of
particles. The quasi-periodic spikes of the shear stress and square deviation of the flow
velocity from a linear profile indicate the existence of stick-slip motion in the system
©1, cf. Fig. 5.18. The period between two spikes is ≈ 100 time units. During this
process, in a first step the shear stress accumulates inside the blocks and the velocity
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in dimensionless LJ units.
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profile is mostly linear. In a second step, after slip starts, the accumulated shear stress
is released in a thin layer between blocks. Earlier simulations of dry sliding friction
between a single Ni asperity and a Cu surface show similar behavior: kinetic energy
is converted into potential energy and stored as “strain energy” [30]. Energy stored
during stick is released to generate local phonons and later dissipated in the system.
The stick-slip motion observed here is the property of those thin layers which interact
strongly with the substrate [31].

The kinetic and potential contributions to the pressure tensor can be computed
separately via NEMD. The kinetic part of the scalar pressure is, due to temperature
control, given by pisokin = nkBT and of the order of the potential contribution to the
scalar pressure. The kinetic contributions to the shear stress (−p+) and normal pressure
differences (p−,0), however, are negligible compared with the potential counterparts (of
the order of 0.1%), as for dense fluids [117]. At t = 6000 an effective shear rate ≈ 2γ̇ are
observed for both systems. Simultaneously, the shear stress and its fluctuations decrease.
The explanation should be that different modes of collective motion of densely packed
hexagonal layers yield different average shear stresses, see Sec. 2.2.1. Also, the existence
of different shear modes should be responsible for slow changes of the shear stress in
time. Normal pressure differences, however, are close to zero, and their behavior shows
little connection with the intermediate flow properties. A change of the normal pressure
differences is observed only if the system cannot globally adjust itself to accommodate
shear deformation.

The normal pressure difference p− increases sharply in Fig. 5.19 (thinner curve),
after a defect is formed at t = 6600 in the system ©2. Increase of p− is followed by a
structural transformation of parts of the fcc structure into bcc structure and a decrease
of isotropic pressure. The isotropic pressure decreases since at the same temperature and
density the bcc structure has negative isotropic pressure (cf. Figs. 5.16 and 5.19). Under
structural transformation the original slip (111) plane/[110] direction of the fcc structure
transform into (011) plane/[111] direction, of the bcc structure, see Fig. 5.20. This
structure transformation could not be simply classify into one of the basic mechanisms
described in Sec. 2.2.1. The available results suggest, that both mechanisms are locally
present. During the transformation of bcc structure back into fcc structure, parts of the
system transform along several different directions. Snapshots of the system ©2 during
the transformation (around t = 7000) are presented in Fig. 5.21 where domains with
different structures can be observed. At t = 7500 the fcc structure is recovered, a number
domains with different orientations are visible and the large-scale structure is oriented
to block the flow, see Fig 5.21. These domains rotate with the flow (vorticity). After
t ≈ 8000, the system is again partially aligned with the flow but different domains are
still visible, see Fig. 5.20. The rotation of domains is characterized by a steep increase of
the average square displacement in flow gradient (y) direction, while the displacement in
the neutral (z) direction is small. During 2500 time units domains move in y direction
for ≈ 2.5 layer distances (〈∆y2〉 ≈ 5.4). In Ref. [32], a similar behavior was observed
for a two-dimensional embedded atom model metal-metal interface. The mixing of the
material at the interface was closely related with the fine-grained microstructure, which
is created during the shear.
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Figure 5.22: The evolution of average square displacement in shear gradient direction
for temeratures T = 0.01, 0.02, 0.03, 0.04. Results are obtained via NEMD with 43200
particles at density n = 1. and shear rate γ̇ = 0.001. Shear deformation is switched on at
t=0. Starting configuration was ideal fcc crystal lattice with [111], [111], [110] directions
corresponding to shear flow direction, gradient direction and direction of normal to the
shear plane, respectively. All quantities are expressed in LJ units.

Average square displacement does not show dependence on temperature for simu-
lated time scale, see Fig. 5.22. Even when system is close to melting point (T/Tref =
0.04) atoms are strongly bounded to their positions in hexagonal layers and average
square displacement is fairly constant. For that reason, it is not possible study long
time behavior of the average square displacement and calculate self diffusion coefficients
at in this work simulated time scale .

5.6.2 Clean amorphous metalA-metalA contact

Figure 5.23 shows results of a NEMD simulations of solid friction between two blocks
made of the same GEAM amorphous material. Starting configurations is obtained by
rapid cooling of melted metal from a temperature of approximately twice the melting
temperature. The system is then relaxed for 2000 time units. The material responds
with growing shear stress to the shear deformation immediately after t/tref = 0. The
yield stress is reached at t/tref = 90 and system starts to flow. In contrary to case of
crystalline contact described in preceding section, the linear velocity profile is immedi-
ately established. The value of the yield stress is ∼ 10 times smaller then yield stress
in case of crystalline configuration and differs very little from value of the shear stress
in stationary flow regime.

During transformation of the amorphous structure, arrays of particles aligned with
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Figure 5.23: Evolution of relative volumes occupied by fcc, bcc and hcp crystal structures
and amorphus icosahedral (ico) structure, average square displacements of particles,
isotropic pressure piso and components of traceless pressure tensor −p+, −p0, and p−
with time. Results are obtained via NEMD with 43200 particles at density n = 1.,
temperature T = 0.01 and shear rate γ̇ = 0.001. Non-equilibrium molecular dynamics
simulation results for homogenous GEAM metal subjected to steady shear. Starting
configurations is amorphous material obtained by rapid cooling of melted metal.

shear directions are formed. After 2000 time units first traces of crystalline structure
are observed, at the same time amount of icosahedral structure decreases. The crystal
structure completely fills simulation box at t/tref = 4000. The transformation is grad-
ual and slower then in case of crystalline initial configuration, since there was no local
crystalline order before the shear started, cf. Sec.5.4. The particles move in average
during the transformation for ∼ 1.4 in both directions orthogonal to the flow direction.
This indicates that despite amorphus structure of the material, self diffusion is small.
Isotropic pressure and total potential energy decrease during the structure transforma-
tion while average value of shear stress −p+ stays the same during the course of the
simulation. This behavior can be explained, by mechanism described in Sec. 5.3: if
model metal stays crystalline (during shear), it is to reduces energy per particle rather
than to reduce resistance to shear. The normal pressure differences are very close to
zero when material is in amorphous state. In crystalline state, different modes of collec-
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tive motion are responsible for larger fluctuations of shear stress and values of normal
pressure differences.
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Figure 5.24: Cross-section of the embedding density close to the interface, averaged
over a time period ∆t = 200 for three values of the GEAM parameter wAB (arranged in
columns) and three different times (arranged in rows). The local density ρ is estimated
from the sum of embedding densities of the two materials ρA, ρB, ρ ≈ ρA + ρB (lower,
more structured, nine density plots). Embedding densities ρA, ρB are calculated for each
type of particles separately for all points at a grid. To visualize and resolve inclusions
and vacancies at the interface the quantity ρA − ρB is used (upper density plots). The
NEMD configurations are sampled after every 10 time units. Simulation parameters in
LJ units are: T = 0.01, γ̇ = 0.001 and n = 1.
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5.6.3 Contact with additional embedding interaction

If the interfacial embedding interaction parameter wAB 6= 1 is different from the embed-
ding interaction parameters within the bulk wAA = wBB = 1. the local density changes
in the vicinity of impurities. The effect of this binary embedding interaction in the limit
of low temperatures is discussed in Sec. 2.2.2. For GEAM, the local number density
n = N/V is close to the embedding density ρ calculated from Eq. 2.2. Figure 5.24 shows
the the evolution of the number density n ≈ ρA + ρB within the interfacial layer be-
tween two model metals for wAB = 0.3, 0.5, and 1.3 (three cases). Embedding densities
ρA, ρB are calculated for each particle type separately for each point at a square grid.
The interface, inclusions and vacancies formed during shear are visualized through the
measure ρA − ρB.
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Figure 5.25: Mean flow velocity profile for cases, where two materials with different two
body GEAM interaction parameters eAA = eAB = 0.5, 0.8, 1.2, and 1.5 (while eBB = 1)
are in contact. The four samples exhibit different ratios between shear moduli of the two
interacting materials G1/G2 = 0.5, 0.8, 1.2, and 1.5, respectively. The velocity profiles
are averaged over the time frame t = 3000−7000. All systems have 43200 particles. For
the same systems sample density profiles for both types of particles are given at time
t = 6000. The shear rate is γ̇ = 0.001 and temperature T = 0.01. All quantities are
given in LJ units.

The density inside the bulk material is constant and similar in all these (three) cases.
At the interface, changes in the local number density are observe . The system minimize
the embedding energy locally by changing the embedding density such that it matches
the desired embedding density, cf. Eq. 2.14. This results in an increase of the local
density for wAB = 0.3, 0.5 (light line in Fig. 5.24) and a decrease for wAB = 1.3 (dark
line). For wAB = 0.3, after a defect – followed by Burgers transformation – is formed
at t = 7200, the part of the system located around the contact plane starts to rotate
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with the shear flow to form an inclusion. The microscopic inclusion produced in sliding
penetrates for about 3 length units into the other material block. This process results in
mechanical alloying at the interface since the parts of the inclusions move with different
relative speeds in shear direction due to the flow gradient. For cross-sections taken at
t = 11000 see Fig. 5.24. Similar behavior is observed for wAB = 1.3. For wAB = 0.5,
the slip direction of the crystal structure is non-parallel with the interface. This leads
to a gradual alloying of two materials parallel to the interface. In Fig. 5.24 can be also
observed vacancies created during the shear flow as black spots in the ρA + ρB density
plots. Their vacancy is typically 2 atoms wide and has a life time between 50−400 time
units. They appear with and without defects and tend to be aligned with the flow.

Within statistical errors, an influence of the (additional) embedding interaction on
the shear stress and normal pressure differences is not detected. This is plausible,
because the interface occupies only a small portion of total volume and pressure tensor
components reflect the material flow within the whole system.
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Figure 5.26: Dependence of ratios of effective shear shear rates γ̇A/γ̇B and local shear
stresses pAxy/p

B
xy from the ratio of shear moduli GA/GB in materials type A and B.

Symbols denote averages from the simulation of an interface for shear rate γ̇ = 0.001
and temperature T = 0.01 with 43200 particles. The shear moduli is controlled via
parameters eAA and eBB, eAA = eAB. The curve is interpolated through NEMD data.
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5.6.4 MetalA-metalB contact

The form of the EAM allows to systematically vary shear moduli, i.e., resistance to shear
deformation, with strength of two body interaction parameters: eAA, eAB, and eBB, see
Sec. 2.2.2. Here is chosen eBB = 1. (basic GEAM metal) and vary eAA, while eAB = eAA.
After onset of shear flow, an inhomogeneous shear profile is established, cf. Fig. 5.25. It
can be observed that the mechanical alloying at interface depends on the shear moduli
of the two materials. If the absolute difference between their shear moduli is large (here
eAA = 0.5 or 2.), the shear is concentrated in the material with smaller shear modulus
while the other material moves almost as a block. For this reason mixing of the two
metals is observed only within a single hexagonal layer at the interface. If shear moduli
are comparable (here eAA = 0.8, 1.2) both materials penetrate for ≈ 3 hexagonal close
packed layer distances behind the interface (here, after 8000 time units).

The dependence of the ratio of effective shear rates γ̇A/γ̇B on the ratio of shear
moduli GA/GB for metals A and B is presented in Fig. 5.26. A simple hyperbolic
relationship between them is tested, where the coefficient is obtained via regression.
Since the shear stress and moduli have the same origin (traced back to the shape of
two body interaction potential), the observed ratio of shear stresses equals the ratio of
shear moduli, i.e., pAxy/p

B
xy = GA/GB. It is found, that only the ratio of shear moduli

influences the local shear stress and effective shear rate. This should be a consequence of
the strong dependence of local shear stress on the mode of collective motion (amplitude
of zig-zag motion, cf. Sec. 2.2.1).

The analysis of the crystal morphology at t = 4000 is presented in Fig. 5.27. In case
eAA = eAB = 0.5, the bcc structure is the dominant stationary structure for metalA
particles at T = 0.01 and γ̇ = 0.001. In the limit of low temperatures the fcc structure
is preferred in metalA. The difference between energies per particle in bcc and fcc
structure, (Ec,bcc − Ec,fcc), decreases with the strength of the two body interaction
parameter eAA. In Ref. [17] it is shown, that the bcc structure can be additionally
stabilized by entropy contributions to the free energy. To make this more visible the
angular distribution of directions to next neighbors of dominant structures are also
provided for two of the dominant structures on the right side of Fig. 5.27. It is visible that
two-dimensional densely packed layers in bcc and fcc structures are parallel and shear
such that they pass each other. In the two remaining cases, for eAA = eAB = 0.8, 1.2, the
fcc structure becomes stationary within the whole system. Mechanisms of mechanical
alloying are similar to the case of the additional embedding interaction (wAB 6= 1).
Again, a temporary transformation of parts of the system into bcc structure is observeed,
cf. Fig. 5.27 for eAA = eAB = 1.2.
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Chapter 6

Porous structures

6.1 Simulations of metallic foam wall rupture

Solid metal foams are usually produced by solidification of a liquid metallic foam.
The latter is generated by the introduction of gas into a melt analogous to aqueous
foams. This is achieved either by direct injection gases (air, nitrogen, argon) into the
melt [44, 45, 46] or adding of a blowing agent to the melt [47, 48, 49]. The blowing
agent decomposes under the influence of heat and releases gas, which then in return
foams the metallic melt. The foaming process is stochastic and controlled only through
the composition of the melt and process conditions. Insight into the foaming process is
obtained by means of metallography, x-ray tomography, and small-angle neutron scat-
tering [119, 120]. In situ observations during foam formation have been carried out
using x-ray radioscopy [121]. Experimental investigations show a distribution of oxides
throughout the material [122]. The optimization of production techniques until now
has based on trail and error. In order to obtain a stable foam stabilizing forces must
exist created by added particles or oxide films. If their content is low the resulting foam
is not stable and shows significant drainage. Three mechanisms are assumed to play a
role when the additional particles care present: i) reduce surface tension of the melt,
ii) increase bulk viscosity and prevent flow, iii) create a network of fragments captured
between the cells stabilizing the the cell walls [51, 123]. Also detailed analysis of exper-
imental data revealed that there is critical rupture thickness of the cell walls: when a
film is stretched below a thickness of about 50µm, rupture occurs [51]. Recent numerical
studies with lattice Boltzmann automata have provided a better insight into physics of
foaming [52]. These methods allow to study the evolution of the foam. Yet this methods
only partially resolves the mechanisms behind coalescence of bubbles in foam. The two
bubbles grow together when wall thickness falls below some threshold value. Only with
particle models, such as molecular dynamics or smooth particle hydrodynamics (SPH),
the mechanisms governing foam stabilization can be numerically explored [40, 41, 42].

The current computer simulations aim at the characterization of the effects of ma-
terial properties on rupture of foam walls, in order to test of a simple embedded atoms
model for metals and to explore its range of application. The current study is restricted
to model metal foam wall, where the effect of the characteristics are most transpar-
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ent although the choice of parameters does not reflect any particular real experimental
situation. The simulations does not include the influence of the blowing agent. The re-
sults should most likely help to explain the microscopic behaviors of foam walls during
coalescence of two bubbles under microgravity conditions.
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Figure 6.1: Drainage and rupture in the GEAM metal wall at T=0.025. The number
of particles within different cross sections of the wall is presented. The GEAM metal
is investigated with F2 = 1. and Fk = 0., k > 4. Simulations are performed with
N = 58096 particles for pore (ellipse) axes ratio a/b = 1.75. All quantities are expressed
in LJ units.

The molecular dynamics simulation method is used to study the evolution of of
metallic foam walls. Starting configurations is obtained by rapid cooling of a melted
metal from a temperature of approximately twice the melting temperature. The atoms
are then removed from the center of the system to create ellipsoidal shaped walls. The
system is relaxed for 1000 time units, and after that heated again to a temperature
above the melting point (Tmelt ≈ 0.02). A cubic simulation box with periodic boundary
conditions is used. The dimensions of the simulation box throughout the work are
100x100x12 (width, height, length). In Figure 6.1, the evolution of the number of
atoms inside ∆z = 2. wide cross section normal to the foam wall is presented. The
snapshots of the same system are given in Fig. 6.2. A GEAM metal is investigated with
F2 = 1., F4 = 12., and Fk = 0. for k > 4, which has the energy pro particle to the
vacancy formation energy ratio similar like real metals (cf. Sec. 2.2.1). Simulations are
performed with N = 58096 particles for the pore (ellipse) axes ratio a/b = 1.75. At
t=0. the sponge wall is approximately 10 nearest neighbor distances wide. First, the
cell wall particles gradually drain towards the base of the wall and the number atoms
decreases in the middle cross section of the sponge wall. There is a positive feedback
effect: the number of atoms falls faster as the wall becomes thinner and the resistance
to its contraction smaller. Due to the accumulation of atoms at the base of the wall
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Figure 6.2: Evolution of GEAM metal wall, drainage and rupture, at T=0.025 (N =
58096, a/b = 1.75). The GEAM metal is investigated with F2 = 1., F4 = 12., and
Fk = 0. for k > 4. Snapshots are taken at t/tref = 500, 1000, 1200, 1500, and 2000.
Time and length scales are expressed in dimensionless LJ units. Black surfaces are cross
section of the system with simulation cell.
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Figure 6.3: Rupture of the GEAM metal wall is investigated for different values of the
energy per particle controlled via F2 and F4 parameters, while Fk = 0. for k > 4. at
T = 0.025. For GEAM with F2 = 1. and Fk = 0., k > 4 surface energy is Ecoh = 0.552.
The number of particles within middle cross sections of the wall is presented. Simulations
are performed with N = 58096 particles. The temperature is T=0.025 and the axes
ratio a/b = 1.75. All quantities are expressed in LJ units.

number of atoms in lower (upper) cross sections rises. At the moment of cell rupture
an avalanche-like contraction of the remaining parts of the wall is observed, since the
surface tension tries to eliminate broken cell walls and to redistribute the additional
melt (cf. Fig. 6.1 and T/Tref = 1500., 2000. in Fig. 6.2). When the thickness of the
sponge walls is varied via axes ratio a/b. As expected, in the thicker wall there is more
material and it needs more time to rupture, cf. Fig. 6.4.

The increase of energy per particle accelerates the rupture of the sponge wall, see
Fig. 6.3. For GEAM with F2 = 1. and Fk = 0., k > 4 surface energy is Ecoh = 0.552. The
surface energy calculated for the crystalline state proves to be an unreliable estimate
for the surface tension in the sponge wall, see Sec. 2.2.1. The observed influence of
temperature is very small (Fig. 6.4). The reason might lie in the large value of the
cohesive energy and thickness of the wall: the process was too fast for us to be able to
resolve the differences. The modification of EAM potential described in Sec. 2.2.2, allows
us to model foam wall with additional particles. The same initial configuration is used
like in previous examples where the type of random chosen atoms is changed. A system
is studied with NA = 58189 and NB = 2900 particles of type-A and B respectively.
The eAA = eBB = 1. are set and strength of two-body interaction particle-metal eAB is
varied. The case eAB = 1. corresponds to homogenous GEAM metal and eAB = 2., 4., 6.
to two, four and six times stronger two-body interaction between the additional particle
and the surrounding metal. The results of MD simulations are presented in Fig. 6.5.
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Figure 6.4: Influence of wall thickness and temperature on the drainage and rupture of
the GEAM metal wall. The wall thickness is controlled via a/b ratio. Simulations are
performed with N = 58096 particles. The temperatures are T = 0.025, 0.03, 0.04 and
the axes ratio a/b = 1.75, 2.5. All quantities are expressed in LJ units.

The presence of additional particles slows down the rupture of the sponge wall and the
life span of the wall increases with the strength of interaction between particles and
metal. The effect increases with increase of eAB.

Due to the generic choice of the model potential, the spatial coordinate of a particle
may represent either the position of a “model ion” or the position of a spatially localized
number of nuclei. One should note that the thermostat which controls the temperature
in case of embedded atom mode, in the generalized case is a source of damping, dissipa-
tion of energy in the system (referred to also as viscosity). Temperature can be defined
only for the case of embedded atoms, otherwise the parameter T is understood as a con-
trol parameter for the damping in the system, similar to artificial viscosity commonly

system (atoms) rref (nm) Eref , kBT Γref (erg/cm
2) Pref tref

embedded atoms 0.24 3.45eV, 40kK 0.96 0.97× 10−13s
(8) 0.48 27.6eV 1.92 1.9× 10−13s

embedded (64) 0.96 0.2keV 3.83 40GPa 3.9× 10−13s
particles (500) 1.92 1.8keV 7.67 7.8× 10−13s

(4000) 3.84 14keV 15.3 0.97× 10−12s

Table 6.1: The values of reference units for length (rref), time (tref), energy (Eref),
surface energy (Γref), and pressure and elastic moduli (Pref). The number of atoms
inside embedded particle is given in brackets. One should note that the temperature
can be only defined for single atoms.
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Figure 6.5: Influence of additional particles on rupture of the model metal wall. The
GEAM metal is investigated with F2 = 1., F4 = 12., and Fk = 0. for k > 4. Simulations
are performed with with NA = 58189 and NB = 2900 particles of type-A and B respec-
tively. The strength of interaction between aditional particles and metal is controlled
via parameter eAB. The temperature is T = 0.025 and the axes ratio a/b = 1.75. All
quantities are expressed in LJ units.

used in mesoscale SPH method [42]. Reference values needed to compare dimensionless
model quantities with experimental data are listed in Table 6.1. They are estimated
using the procedure explained in Sec. 2.3.

In conclusion, the model metallic foam walls, described above, exhibit several in-
teresting features which are realistic, such as: an increase of energy per particle in the
whole system accelerates the rupture of the wall. In contrary, the additional particles
bound surrounding metal particles creating a network and slowing drainage. This re-
sults in a slowing of the rupture. The evolution of the structure during the breaking is
studied in detail. Still, the performed simulations are at nanoscale and direct compari-
son with the experiments is not possible. Even so, the results show plenty of phenomena
which are experimentally observed for metal foams. This work demonstrates that par-
ticle mesoscale methods [40, 41, 42] could prove a very powerful tool for understanding
processes taking place in foam walls.
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6.2 GEAM metallic porous structures

The relation between the geometric microstructure of heterogenous porous media and
transport properties of a fluid confined in it is important for a wide range of applica-
tions, such as the paper manufacturing, dialysis, osmosis, contaminant transport and
geophysics [53, 54, 55, 56, 57]. However, many unsolved problems remain. Especially,
an understanding of the relation between pore structure and its transport properties is
lacking. An important aspect of research in this area is played by numerical simulation
(see Ref.[53, 124]). Usually numerical simulations use models of the porous structures as
input which can be roughly divided in two groups: reconstruction models, that attempt
to reconstruct a realistic pore structure, and stochastic models, such as Boolean model,
Voronoi tessellation and levelled-wave model [125].

t   =100ref t   =150ref

t   =500reft   =250ref

Figure 6.6: Equilibration of a GEAM metal sponge at T/Tref = 0.04 (N = 50000, n =
0.25, ρdes = 1, all in reduced units) obtained via MD simulation. Initial configuration
is fcc lattice (not shown). Snapshots taken at t/tref = 100, 150, 250 and 500. Black
surfaces are cross sections of the system with simulation cell.

In this section, a variation of the GEAM model potential serves to create metallic
porous media (sponge): a controlled mismatch is introduced between overall number
density n and desired (bulk) embedding density ρdes. If ρdes > n for given particle
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density n, after onset of the simulation run each atom tries to obtain the local embedding
density – and local number density – equal to desired embedding density. The holes
surrounded by metal are created. The surface tension in GEAM is very high compared
with Lennard-Jones interaction potential, cf. Ref. [126]. As result sponge walls stay
connected while material tries to reduce its surfaces. In this way a set of sponges with
continuously decreasing surface, volume, and connectivity is created. The pore structure
resembles that of the porous silica glass or the polymer membranes.

Snapshots of GEAM metal sponge at t/tref = 100, 150, 250, 500 are shown in Fig. 6.6.
In the starting configuration (not shown) atoms are placed at the ideal fcc lattice sites.
The overall number density is n = N/V = 0.25 in reduced units and the desired (bulk)
embedding density ρdes = 1.0 of the GEAMmetal. The temperature is fixed to T = 0.04.
The generated configurations are stored for later use in the computation of diffusion
properties of fluid confined in the pores. The rate of phase separation at onset of simu-
lation is very high and decreases with the time, see Fig. 6.7. This should be explained
by increasing of the size of the sponge walls, cf. Fig. 6.4 in previous section. In appli-
cations, foams are usually produced with 0.05− 0.20 porosity, defined as ratio between
volume occupied by sponge walls and total volume occupied by the sponge. In GEAM
metal porosity should converge to a ratio between global number density and desired
embedding density n/ρdes = 0.25. Also volume should converge to V = nV0 and surface
to S = (4π)1/3(3nV0)

2/3. In the current system, the porosity converges to V/V0 = 0.3
after 1500 LJ time units. This is a finite size effect, due to the volume occupied by the
particles at the surface of the wall. For the same reason the total volume and surface
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Figure 6.7: Evolution of volume and surface during equilibration of a GEAM metal
sponge at T/Tref = 0.04 obtained via MD simulation (N = 50000, n = 0.25, ρdes = 1,
all in reduced units). Initial configuration is fcc lattice (not shown). Volume and surface
of the sponge are calculated via Monte Carlo integration.
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converge to V = 60000 and S = 10000 in reduced units, respectively, cf. Fig. 6.7. The
volume of the free space inside the pores is Vpore = V0− V . However a comparison with
systems, which are smaller/larger by a factor 10 − 20, confirms that the sponge struc-
ture is qualitatively independent of the system size above N ∼ 10000 particles under
the current conditions.

gas particles
sponge wall particles

particles with fixed positions 
inside of the sponge

Figure 6.8: Schematic representation of model porous system (left). The thermostat acts
only on wall particles (light gray), the gas particles (black) are thermostated indirectly
through the walls. Snapshot of the system with N = 400 SHRAT particles at t/tref =
900 (right). The porosity of the sponge is V/V0 = 0.35. Black surfaces are cross sections
of the system with simulation cell.

6.2.1 Diffusion of short range attractive particles

The starting configuration is obtained by taking a snapshot of the GEAM sponge at
t/tref = 250 during the relaxation, see Figs. 6.6 and 6.7. The pores of the sponge are
then randomly filled with the particles interacting via SHRAT potential (Eq. (2.12).
For the choice of parameters (rmin = 21/6, rcut = 1.6) made in this work, SHRAT poten-
tial resembles the Lennard-Jones (LJ) potential. The trajectories for the SHRAT gas
particles and particles at the surfaces of the wall are calculated via molecular dynamics
method described in Sec. 3. The positions of particles inside of the sponge are fixed
to prevent a change of the topology of the porous media inside simulation box during
the simulation. The temperature of the particles at the sponge surface is controlled
by rescaling their velocities, see Sec. 3.3, and gas particles are thermostated indirectly
through the collisions with the sponge wall particles. This is indicated schematically
on the left side of Fig. 6.8 by the presence of a gas (black) particles within the pores.
For potential modelling the interaction of gas particles with the pore wall is chosen as
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a short range repulsive potential (SHREP):

Urep(r) = φ0r
−4
0 (rmin − r)4 (6.1)

for r ≤ rmin, and Urep(r) = 0 otherwise. A snapshot of this system is given in Fig. 6.8
(right).

In Fig. 6.9, molecular dynamics results are given at temperature T/Tref = 0.01 for
a dilute SHRAT gas with N = 400, 4000 particles. The system is relaxed for 2000 time
units before the data are extracted. A typical way to characterize diffusive transport
of a gas in porous media is through diffusion coefficient D. In a system consisting of
a single type of particles, one also refers to a self diffusion coefficient. When particles
move randomly, the self diffusion coefficient is defined through the mean square dis-
placement using Einstein relation, 〈∆r2〉 = 6Dt. According to Einstein relation, the
increase of the mean square displacement with time has exponent equal unity at times
larger then collision time. However, at low temperatures spontaneous condensation of
SHRAT particles takes place, and clusters inside the pores are formed. This explains
why the diffusion law becomes anomalous, i.e., 〈∆r2〉 ∼ tα with exponent α = 0.93, 0.86
smaller then unity for systems of N = 400, 4000 particles, respectively. In this case,
the diffusion constant, D ∼ tα−1, is time dependent in course of the pore condensation
and decreases. The diffusion coefficient as function of time is influenced by the number
density of SHRAT particles. At larger densities the clusters of SHRAT particles grow
faster resulting in a smaller exponent α. As the number of atoms in cluster increases the
exponent α is expected to converge to unity. The free diffusion regime, with exponent α
equal unity, is associated with particles diffusing from the surface of the clusters. This
crossover is not studied here due to the limited duration of the computer simulations.

 10

 100

 400
 800

 10000

 10  100  1000  10000

<
(∆

r)
2 >

N
 -

 a
vr

. d
iff

us
io

n 
di

st
an

ce

time [LJ units]

N=400
N=4000
N=8000

α=0.93

α=0.86

Figure 6.9: Mean square displacement (average diffusion distance) of SHRAT particle
gas inside of the GEAM matrix as function of time at temperature T/Tref = 0.01 for
N = 400, 4000 SHRAT particles. All quantities are given in LJ units.
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Figure 6.10: Effect of porosity on evolution of the mean square displacement with
time of the SHREP gas inside of the GEAM matrix at temperature T/Tref = 0.015
with N = 8000 SHREP particles. All quantities are given in reduced units. Start-
ing configurations are created by taking snapshots of the GEAM sponge with porosity
V/V0 = 0.4, 0.37, 0.35 during relaxation and filling it randomly with SHREP particles.

6.2.2 Diffusion of short range repulsive particles

Using the same porous matrices like in the previous section diffusion of the particles
interacting via the short range repulsive (SHREP) potential is studied. The evolution
of mean square displacement with time is shown in Fig. 6.10. The system is relaxed
typically for 1000 time units in system of N = 8000 particles before the data are
extracted. In order to discuss the dependence of diffusion coefficient on the pore size
and density, the dilute gas of hard spheres is introduced here as reference model. Two
cases of this system are analyzed: (i) gas of hard spheres confined within porous media
and (ii) unconfined gas of hard spheres. Generally, mean thermal velocity from Maxwell
velocity distribution reads v =

√
8kBT/(mπ). The collision time or time of free flight

is determined by mean free path l of particles between two collisions and mean thermal
velocity, tcoll = l/v. The self diffusion coefficient is related to mean velocity and mean
free path through D = (1/3)vl, see Ref. [127].

In the case of an infinitely dilute gas of hard spheres confined within the porous
media, the mean free path l equals the typical pore diameter dpore. Therefore the
explicit form of the diffusion coefficient can be written as

Dpore =
1

3

√
8kBT

mπ
dpore. (6.2)
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N 8000 8000 8000 800
V/V0 0.4 0.37 0.35 0.35
tcoll 50 60 90 100
l 10 12 18 20
Dpore 0.63 0.76 1.1 1.3
D 0.21 0.28 0.33 0.75

Table 6.2: The values of porosity (V/V0), collision time (tcoll), collision length (l), and
diffusion coefficient (D) for four different systems calculated from MD simulation data
using interpolation. The value Dpore is obtained under assumption that collision length
l equals pore diameter dpore in Eq. (6.2). The simulations are performed with NGEAM =
50000 and NSHREP = 800, 8000 particles at temperature T/Tref = 0.015. All quantities
are given in reduced units.

In Table 6.2 are listed the values of the porosity, collision time, mean free path and
diffusion coefficient for four systems obtained by interpolation of the MD simulation
data, see Fig. 6.10. The mean free path and collision time decrease fast with increasing
porosity. The diffusion coefficient is calculated both from Einstein relation and previous
considerations for dilute gas confined within the porous media. Already at small number
densities of gas particles nSHREP = NSHREP/Vpore = 0.006, the diffusion coefficient (D)
has half of the value calculated in dilute limit (Dpore). The reason might lie in the
heterogenous structure of the porous media, yet the simulations presented here prove to
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Figure 6.11: Mean square displacement of SHREP gas inside of the GEAM matrix
at temperature T/Tref = 0.015, for NSHREP = 800, . . . , 80000 SHREP particles. All
quantities are given in reduced units. The structure GEAM metal sponge is fixed at
t/tref = 250 , n/nref = 0.25, V/V0 = 0.35, and NGEAM = 50000.
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be unable to resolve this. With the increasing number of SHREP particles their collisions
become more frequent, and collision time and mean free path become shorter. Also the
transition from free flight into diffusion regime becomes smoother, see Fig. 6.11. The
diffusion coefficient as function of the number of SHREP particles is given in Fig. 6.12.

In the following, the comparison with the case of the unconfined gas of hard spheres
is made. The mean free path l between two collisions of gas particles can be written as
l = (

√
2nσ)−1 where n is the number density of gas particles. The effective cross section

σ is given by σ = πreff with the effective diameter determined by the distance where
the repulsive energy of the potential in Eq. (6.1) equals temperature:

reff = rmin + (r0φ
−1/4
0 )(kBT )

1/4. (6.3)

In this way it is obtained

Dfree =
2

3π3/2
1

nreff(T )2

√
kBT

m
, (6.4)

for the diffusion coefficient of the dilute hard sphere gas. This approximation serves as
a reference for the results shown in Fig. 6.12. Although the graph of the hard sphere gas
globally has the similar shape it does not fit the simulation results under any condition,
cf. Fig. 6.12. The value of the diffusion coefficient of the confined system is finite and
always smaller then one of the bulk system.
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Figure 6.12: Self-diffusion coefficient of short range repulsive particles confined within
porous media as function of number of particles. The structure GEAM metal sponge
is fixed at t/tref = 250, n/nref = 0.25, V/V0 = 0.35, and NGEAM = 50000. The curve
represents the expresion for diffusion coefficient of the unconfined dilute hard sphere
gas, Eq. (6.4). All quantities are given in reduced units.
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Chapter 7

Conclusions

The structural changes and flow properties in several equilibrium and nonequilibrium
systems were investigated using a simple embedded atom model potential and molecular
dynamics simulations. The focus of the work was on the interplay between intermediate
structural changes, mechanical response of the system and material transfer at model
metal interfaces under the steady shear flow. Some results were presented for drain
in foam walls and transport of gases of short range attractive and repulsive particles
through the model porous media.

The particulary simple low degree polynomial embedded atom model potential was
introduced in Sec. 2.2, and expressions were derived for the pressure tensor and the elas-
tic modulus tensor (Born-Green and fluctuation contributions). These expressions were
applied to fcc, bcc crystal structures, and liquid metals. The general expressions given,
however, also apply to other crystal structures such as simple cubic, hcp, or diamond
cubic. The low degree polynomial format of the potential yields a simple dependency
of the ground state constitutive properties (e.g. cohesive energy, heat of solution, and
components of elastic modulus tensor) on model parameters. Thermo-mechanical prop-
erties of the model have been calculated using MD simulation. An expression for the
“cold” isotropic pressure was adapted to fit the simulation results for a wide range of
model parameters at different temperatures and densities. In addition, the bulk modu-
lus has been determined from MD and compared to its counterpart calculated from an
approximate expression for the pressure. The analytic formula for the isotropic pressure,
Eq. (5.1), could be used as a closure relation (constitutive relation) in the mesoscale
simulation techniques [40, 41, 42, 43] discussed in the Introduction. As demonstrated in
Sec. 5.4, the isotropic pressure of the system is determined by the equilibrium pressure
of the dominant structure when subjected to steady shear. This finding extends the
application of the formula, Eq. (5.1), to other systems under steady shear deformation.

In the present work special attention is paid to the response of the system to an im-
posed shear deformation, switched on and proceeding with a constant shear rate. The
studied system shows elastic behavior for the small deformations. Beyond a yield defor-
mation, the system undergoes a transition to a regime of continuous plastic flow. The
influence of the temperature on the values for the yield deformation and the relaxation
behavior of the accumulated stress has been discussed. The generation of defects, and
the local melting of the system after yield prevents stick-slip motion at low shear, as ob-

87
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served earlier for the the pure SHRAT fluid, cf. Ref. [66]. Under steady shear flow solids
are very much like structured liquids, however, an attempt to describe flow properties
with the viscosity will lead to very high values of the viscosity coefficient. It is observed
that shear stress decreases with increasing temperature. The relation between shear
stress and temperature has been rarely studied so far, leading to a controversy if shear
stress should rise or fall with temperature. The work done on the creep between railway
wheels and rails, see Ref. [128], shows a decrease of the creep force with sliding velocity
only under the assumption, that the friction coefficient (shear stress) decreases with
temperature. A correlation between the resistance to shear and the material strength
parameters such as the yield stress was usually assumed [2, 128]. The NEMD simulation
results presented here show, that this correlation results from processes taking place on
the nanometer scale: the local structure becomes less pronounced with the increase of
the temperature and puts less resistance to the shear. The NEMD simulations also show
that normal pressure differences vanish within precision of data presented in this work.

Information about the local structure, on the level of an atom and its first neigh-
bors, in systems subjected to shear is obtained via a common neighbors analysis based
on planar graphs in Chapter 4. The method resolves the fcc, bcc, hcp and amorphus
icosahedral structure. In the steady state particles form 2D layers and the shear direc-
tion is parallel to the direction to the first neighbor in these layers. All three crystal
structures are observed in the steady state, an icosahedral structure is only observed in
an intermediate regime at higher shear rate γ̇ = 0.01. The influence of shear generated
defects on the local structure after the onset of shear and in the steady state is discussed.
Furthermore, the common neighbor analysis is used here to calculate a nonequilibrium
phase diagram, valid for low shear rates. At high temperatures the bcc structure is
observed at densities, whereas the fcc structure dominates at lower temperatures. The
calculations of the free energy along a Bain transformation path gave an insight into
the thermodynamics of the system and led to an interpretation of a nonequilibrium
phase diagram. The transition of fcc structure into bcc structure upon the increase of
temperature is found to be the result of different vibrational entropies of the two struc-
tures. This transformation could take place due to the combined effect of the pressure
and temperature in the rail tracks leading to hardening of the material after the rapid
cooling.

A rather complex behavior is seen even in the steady shear regime at small time
scales. The shear deformation involves motion of these planes. In the steady state
regime, defects are created when atoms move oblique to the shear direction to reach
some close-by energetically preferred states. These defects potentially block the shear
flow and lead to shear banding. While the total amount of crystallinity during the sim-
ulation is fairly constant (quantified via common neighbor analysis), the fcc structure
partially transforms, as long as defects blocking the flow are present, into the bcc struc-
ture. During these processes, transient, grained microstructures are created. Related to
the grain formation is the mixing of the material through rotation of the grains before
the system re-enters a dynamically equilibrated (stationary) state. The structural in-
formation also helps to interpret the observed changes of the pressure tensor. It could
be shown, that the isotropic pressure is mainly determined by the (instantaneously)



89

dominating crystal structure. Normal pressure differences are close to zero during most
simulation runs. Nonvanishing normal pressure differences occur if defects (blocking
the flow) are created which the system cannot accommodate. The shear stress is found
to depend on the modes of collective motion of atoms stacked into hexagonal planes.
The NEMD results for shear stress and normal pressure differences were compared with
analytic calculations for collectively moving atoms. In situations, where defects are
blocking the flow, except within a narrow slit, stick-slip motion under very high effec-
tive shear rates is observed. The stick-slip motion observed in this work is relevant at
the ‘nanoscale’. On the level of several asperities, during a dry solid friction process,
stick-slip might become coarse-grained and smooth, or trigger stick-slip on larger scales.
Conclusions about these mechanisms are obviously out of reach for the present simula-
tions. However, stick-slip on the nanoscale is accessible when sliding a blunt tip over a
substrate. In this application shear deformation is confined within several layers around
the interface.

The generic embedded atom model has been further extended to study interfaces
between different metals with similar lattice constants. The the dependence of the
heat of solution and the local density for a single substitutional impurity on model
parameters is illustrated. The mechanism of mixing (or mechanical alloying) are similar
for all three versions of interface: homogeneous, with additional embedding interaction
and with different shear moduli. Unexpected at first glance, the additional embedding
interaction leads to a pronounced increase in the local density. For the same system,
penetration of inclusions through the interface and subsequent mechanical alloying has
been observed and discussed. Further, gradual alloying at the interface has been traced
back to the mismatch (final angle) between the interfacial plane and shear direction.
In this early stage of mechanical alloying, an influence of the additional embedding
interaction on the shear stress is not detected. The area where two materials are mixed
occupies only a small portion of the total volume and thus only slightly influences
the pressure tensor components. The low degree polynomial format of GEAM comes
together with a simple relationship between the strength of the two body interaction and
the shear moduli in the limit of low temperatures, which determine the resistance of the
system to the shear deformation. A dependence between ratios of shear moduli, shear
stresses and effective shear rates in two materials is found, while the values for moduli,
shear stress and shear rates of the pure materials seem to be (at least in this study)
uncorrelated. The explanation should be that modes of collective motion of hexagonal
layers are coupled across the material interface.

Interfaces between metals with different lattice constants where potential incommen-
surabilities increase the number of dislocation types remain to be studied.

The features observed in this work should be generic to high-speed friction at the
metal-metal interface. Except for very finely polished surfaces, mesoscale inhomo-
geneities and inclusions at mesoscale are known to play an important role. In this
work, the plastic yield and friction stress have been analyzed within asperities on the
nanometer-scale. Local densities, temperatures, and shear rates inside the asperity are
input parameters for the NEMD simulations. The friction process itself is seen as a
combined effect of processes on a micro-scale (size of asperities) and a nano-scale. The
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meso-scale methods [40, 41, 42, 43] are expected to overcome the gap between the mi-
crometer scale and the nanometer scale. These methods need a phenomenological model
that describes the behavior of the pressure tensor components under deformation. The
results presented in this work may serve as motivation for new models that incorporate
structural changes and their effect on the pressure tensor in a metal subject to shear
deformation and flow.

Last but not least, the embedded atom method was adapted to study porous metallic
structures. The evolution of the structure during the rupture of the metallic foam wall
was studied in detail. The influence of cohesive and surface energies and additional
particles was analyzed. It was found, that an increase of the energy per particle in
the whole system accelerates the rupture of the wall, whereas the additional particles
bound surrounding metal particles, creating a network and slowing drainage. This
results in a slowing of the rupture. The performed simulations were at nanoscale,
still the simulation results showed a number of experimentally observed phenomena.
Under the appropriate choice of simulation parameters (controlled mismatch between
desired embedding density and number density), the model yields porous structures
that resemble porous glasses or the porous membranes. The pores were filled with the
gases of short range attractive (SHRAT) and repulsive particles (SHREP). Spontaneous
condensation of SHRAT particles is observed. Two hard sphere systems were used
as reference system in order to discuss the influence of porosity and pore topology on
diffusion of SHREP particles. Much of the earlier work on the simulation of fluids in the
pores employed slit or cylindrical pore models and solid surface was treated either as
smooth, structureless or idealized structured wall [129, 130, 131]. Yet, in addition to the
pore shape and size, there are other factors which influence transport of fluid through the
porous media, such as macroscopic structure and topology of the pore space. There is
still no agreement which geometrical measures are needed to completely characterize the
transport through the porous media. One of the structural measures of choice may be
the average mean curvature and connectivity obtained via Minkowski functionals [125].
The present work, should serve as a starting point for further investigations of transport
in EAM porous media.



Appendix A

Common neighbor analysis code

PROGRAM SUMMARY

Title of program: RLSCODE

Catalogue number: ADPZ

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N.
Ireland

URL: http://cpc.cs.qub.ac.uk/summaries/ADPZ

Licensing provisions: Persons requesting the program must sign the standard CPC-non-
profit use license (see license agreement printed in every issue)

Computer for which the program is designed and others on which it has been tested:
Alpha-Workstation, Silicon Graphics, Sun, Linux-PC, Windows-PC, MacIntosh

Operating systems or monitors under which the program has been tested: DEC-Unix,
Irix, Solaris, Linux, Windows 98

Program language used: Fortran, MathematicaTM

Memory required to execute with typical data: 10 MBytes

Restrictions on the complexity of the problem
The machine must provide the necessary main memory which increases roughly linearly
with the number of particles.

No. of lines in distributed program: 2224
Number of lines in distributed program and number of fields in distributed test data is
summarized in Table A.1.

Typical running time
A typical running time is less then 20 seconds for 10000 particles on a 600 MHz Pentium
processor.

Keywords: Structure recognition, algorithm, configuration analysis, metal
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code file name lines content
structure.f 356 main program
inc.order 2224 contains all subroutines
configuration file name particles # content
fcckembed.temp=0.00500..0.06440 10976 configurations, melting of fcc
bcckembed.temp=0.00500..0.06440 11664 configurations, melting of bcc
output.shearT=0.008 17576 system under shear flow

Table A.1: Summary of source files of the RLSCODE package.

Nature of physical problem
The nature of the problem is to provide a quantitative measure for the local order in
non-ideal crystalline configurations. This measure will be necessarily heuristic in nature
and not unique. Configurations are specified by collection of particle position in 3D.
The program should return the type of local structure (face centered cubic etc.) for
each atom of the system.

Method of solution
The method is based on a suitable definition for “neighboring atoms”. The correspond-
ing neighbor list, together with information about correlations between neighbors, is
used to uniquely recognize a number of representative crystal structures. The criteria
for the recognition of different crystal structures is formulated using graphs.

The Program
The code RLSCODE makes use of the standard Voronoi construction [87] to determine
relevant neighbors. The minimum image convention and a cutoff, the distance beyond
which atoms are assumed not to be neighbors are used. These measures can cause un-
reliable results for small and/or random systems, if the cutoff is chosen without care.
To avoid that atoms from second coordination shell of fcc and hcp structures enter
analysis, and to ensure that atoms from the (overlapping) first and second coordina-
tion shells of bcc structures enter, a preselection is made by taking cutoff radius to be
minimum of the global pair correlation function between the shell containing “relevant
neighbors” and the subsequent one. The first step of the analysis is therefore to extract
the pair correlation function, the position of its first maximum, as well as the first rele-
vant minimum, (procedure CUTOFFRAD, TableA.2), and to extract from the list of
potential neighbors a set of relevant neighbors by the Voronoi analysis (NEIGHBLST,
Table A.2). Subroutine NEIGHBLST represents the standard Voronoi analysis. This
routine takes in a configuration in a cuboid with periodic boundary conditions and for
each atom obtains the information about relevant neighbors. Using cutoff radius sub-
routine NEIGHBLST eliminates atoms which are neighbors only in one point of space
(relevant for perfect lattices). For bcc lattice the subroutine returns 6 closest atoms
more than it would be expected from coordination number. The information about rel-
evant neighbors is stored in NABLST - a two dimensional matrix containing the list of
indices of relevant neighbors and an array NNAB which contains the number of relevant
neighbors for each atom.
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name of subroutine arguments action, output

ORDER START — opens BCC.DM, FCC.DM, HEX.DM,
ALL.DM and CRS.nb files

ORDER STOP — closing the *.DM and CRS.nb files.

CUTOFFRAD N,MX,MY,MZ,X,CL Function determines rcut (RCUT)

NEIGHBLST N,RCUT,MX,MY,MZ,X,CL, Voronoi analysis, which creates
NNAB,NABLST neighbor list. Output is stored

in NNAB,NABLST variables.

STRUCTLST N,NABLST,NNAB, Structures analysis.
CELLTYPE CELLTYPE is output.

STRUCTOUT RTIME,N,X,CL,CELLTYPE Amounts of different structures and
NNAB,NABLST,PL profile are sent on standard output.

(axis: PL∈ {1 : x, 2 : y, 3 : z})

DIRECTOUT RTIME,N,X,CL,CELLTYPE calculates angular distributions of
NNAB,NABLST,NM neighbors and stores it to *.DM.

CRSSCTOUT RTIME,N,X,CL,CELLTYPE, makes cross section of the
NNAB,NABLST,RSTART, system and stores it to CRS.nb.
REND,PL

PRESSURE N,MX,MY,MZ,X,CL Function calculates potential part
of pressure.

Table A.2: Table of the main RLSCODE subroutines, their variables and actions. Few
more subroutines existing in code are used internally and are not included here.
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parameter type limitations meaning
———— input parameters ————

N . . . . . . . . . . . . . . . . . integer memory total number of particles
X(#1,#2) . . . . . . . . . float memory coordinates #2=(1:x,2:y,3:z)

for particle number #1=1,..,N
CL(1-3) . . . . . . . . . . . . float > 0 cell dimensions (reduced units)
PL . . . . . . . . . . . . . . . . integer ∈ {1, 2, 3} axis normal to cross section

and axis of profile (1:x,2:y,3:z)
NM . . . . . . . . . . . . . . . logical .true./.false. .true. if neighbor angular

distribution is to be normalized
RSTART . . . . . . . . . . float |..| < CL(PL)/2 start of cross section interval
REND . . . . . . . . . . . . . float |..| < CL(PL)/2 end of cross section interval
RTIME . . . . . . . . . . . . float no time parameter for animated output

———— output variables ————
RCUT . . . . . . . . . . . . . float > 0 cut-off distance rcut
MX,MY,MZ . . . . . . . float > 3, number of cells in x, y, z-direction,

< CL/RCUT implemented value: CL/RCUT/2
NNAB(#1) . . . . . . . . integer memory number of neighbors for particle #1
NABLST(#1,#2) . . integer memory particle number of #2’th neighbor

of particle number #1
CELLTYPE(#1,#2) logical .true./.false. .true. if particle #2 has lattice type

#1∈ {fcc(1),hcp(2),bcc(3),ico(4)}

Table A.3: Summary of input and output variables used by subroutines.

The subroutine STRUCTLST performs the analysis of neighbor displacements and
returns a matrix with 4N elements: CELLTYPE. The information about structure that
surrounds each of the atoms is stored in a four dimensional field of logical type. The
field value is “true” for an atom if it is found to belong to one of the following structures
1:fcc, 2:hcp, 3:bcc and 4:ico. For any atom only one of these field values can carry the
“true” bit. If an atom belongs to none of the four structures all fields are “false”.

The information obtained by subroutines NEIGHBLST and STRUCTLST are treated
and visualized by subroutines STRUCTOUT, DIRECTOUT and CRSSCTOUT. The
relative amount of space occupied by fcc, hex, and bcc structure, as well as their com-
bined amount and profiles are calculated by subroutine STRUCTOUT. Output of the
latter procedure is directed to standard display. The subroutine DIRECTOUT calcu-
lates angular distribution functions of the relevant neighbors for the whole system and
each of the crystal structures separately. The output is saved to four files ALL.DM,
FCC.DM, HEX.DM, BCC.DM respectively for all atoms and atoms only surrounded
with fcc, bcc and hcp structure. Cross sections of the system in three orthogonal planes
are visualized with the subroutine CRSSCTOUT. The output is stored in CRS.nb file.
The output of the subroutines DIRECTOUT and CRSSCTOUT is in MathematicaTM

format, see Table A.4.

Subroutines are summarized in Table A.2 and their parameters are collected in
Table A.3. The input data needed to evaluate the local structure consists of coordinates
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file name content call

ALL.DM neighbors of all atoms ALLN[〈time parameter value〉]

FCC.DM neighbors of fcc atoms FCCN[〈time parameter value〉]

HEX.DM neighbors of hcp atoms HEXN[〈time parameter value〉]

BCC.DM

in
M
at
h
em

at
ic
aT

M
fo
rm

at

neighbors of bcc atoms BCCN[〈time parameter value〉]

CRS.nb cross sections CRSxxx[〈time parameter value〉, 〈plane〉]
where xxx ∈ {FCC,BCC,HEX,ICO,NON}

Table A.4: Summary of files being produced by RLSCODE run. Subroutine CREATE-
OUT creates angular distributions of directions to closest neighbors and stores them to
files ALL.DM, FCC.DM, HEX.DM, and BCC.DM. File CRS.nb is created by procedure
CRSSCTOUT. Indices are the time parameter, also used for creating animations, and
the plane of the cross section (1:x, 2:y, and 3:z). The last column lists the appropriate
MathematicaTM calls.

of particles, dimensions of simulation box and a free (time) parameter potentially used
for animations, cf. Table A.3.

The output of the subroutine STRUCTLST looks like:

...

AVERAGE COORDINATION NUMBER = 12.45756

NUMBER OF ATOMS WITH 8 NEIGHBOURS 1

NUMBER OF ATOMS WITH 9 NEIGHBOURS 8

NUMBER OF ATOMS WITH 10 NEIGHBOURS 85

NUMBER OF ATOMS WITH 11 NEIGHBOURS 852

NUMBER OF ATOMS WITH 12 NEIGHBOURS 9448

NUMBER OF ATOMS WITH 13 NEIGHBOURS 5274

NUMBER OF ATOMS WITH 14 NEIGHBOURS 1906

NUMBER OF ATOMS WITH 15 NEIGHBOURS 2

NUMBER OF ATOMS WITH 16 NEIGHBOURS 0

NUMBER OF ATOMS WITH 17 NEIGHBOURS 0

2-axis disc. DENS HEX DENS FCC DENS BCC DENS ICO DENS 1CRY DENS

2CRY [tLJ=2000.00]

0.12431 0.54645 0.53005 0.31694 0.00000 0.95082 0.77596

0.37294 0.33526 0.54335 0.36416 0.00000 0.90173 0.63584

0.62157 0.35111 0.46222 0.35111 0.00000 0.89778 0.59556

0.87020 0.58015 0.55725 0.06870 0.00000 0.87786 0.83969

...

19.76601 0.30000 0.50455 0.30909 0.00000 0.86364 0.63636

20.01464 0.14365 0.45304 0.50276 0.00000 0.93370 0.50276

20.26327 0.28889 0.47222 0.52778 0.00000 0.91111 0.51111

20.51190 0.45578 0.50000 0.27551 0.00000 0.88435 0.69048

show data about crystal structure...

FCCnum = 2000.0000000000 2998

FCCvol = 2000.0000000000 0.5454597473

HEXnum = 2000.0000000000 2695

HEXvol = 2000.0000000000 0.5134842992

BCCnum = 2000.0000000000 923

BCCvol = 2000.0000000000 0.1954938620

ICOnum = 2000.0000000000 0

ICOvol = 2000.0000000000 0.0000000000

crystal = 2000.0000000000 0.8933204412
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error message stop subroutine meaning/usual reason

change N yes main prog. the number of particles
is different from expected

increase MX,MY,MZ or MAXB yes CUTOFFRAD the number of cells, system is
yes NEIGHBLST divided in, is too small

decrease MX,MY,MZ yes CUTOFFRAD the number of cells, system is
divided in, is too large

INCREASE IMPROFILE yes STRUCTOUT profile resolution too small

warning message stop subroutine meaning/usual reason

LESS THAN 4 POINTS GIVEN TO WORK no NEIGHBLST free volume, missing atom
TOO MANY VERTICES no WORK free volume, missing atom
LESS THAN 4 VERTICES FOUND IN WORK no WORK free volume, missing atom
NONINTEGER NUMBER OF EDGES no WORK free volume, missing atom
**** EULER ERROR: DEGENERACY ? **** no WORK free volume, missing atom

Table A.5: Summary of error and warning messages and possible causes.
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[47] F. Baumgärtner, I. Duarte, and J. Banhart, Adv. Eng. Mater. 2, 168 (2000).

[48] I. Duarte and J. Banhart, Acta Mater. 48, 2349 (2000).

[49] J. Banhart and J. Baummeister, J. Mater. Sci. 33, 1431 (1998).

[50] J. Banhart, Prog. Mat. Sci 46, 559 (2001).
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Balkan Physical Union (Vrnjačka Banja, 2003), 1301-1306.
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