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The “generic embedded atom model”(GEAM) has been investigated recently[Phys. Rev. E69, 021509
(2004)] to analyze the qualitative equilibrium and nonequilibrium properties of bulk metals in both undeformed
and shear deformed states. In the present work, a natural extension of the GEAM is proposed and applied to
characterize the microscopic structure, dynamics, and wear at clean commensurate metalA-
metalA and metalA-metalB sliding interfaces. Nonequilibrium molecular dynamics simulation, used as a GEAM
solver, reveals that the dynamics of dislocations, crystalline domains, and related flow behaviors(stress tensor,
shear moduli) are coupled. The rotation of crystal domains is detected to trigger material mixing at the
interface in early stages of sliding. Further, we study the dependence of structural changes in inhomogeneous
metal interfaces on the relevant model parameters. A relation is established between shear moduli, effective
shear rate, and shear stress across the interface.
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I. INTRODUCTION

The dry sliding friction between atomically flat commen-
surate and incommensurate surfaces are fundamental types
of friction in the tribological sciences. When two unpolished
solid surfaces get in contact, either by touching, or by apply-
ing a moderate load, they actually interact only over a small
fraction of their total macroscopic area of contact. This load-
bearing area consists of a number of asperities since micro-
scopic roughness is strictly unavoidable. Asperities are the
spots of exclusive relevance for the understanding of the sub-
macroscopic mechanisms in dry solid friction and adhesive
wear. The variety of processes taking place at friction sur-
faces(such as inhomogeneous plastic deformation of a sub-
surface layer, phase transformations, material transfer, me-
chanical alloying) render it difficult to develop a general
approach for describing the microscopic structure, dynamics,
and wear in the course of rubbing[1–4]. With the develop-
ment of atomic force microscopy, tribology has reached the
nanoscale[5,6]. But the atomic friction microscope has its
own limits, in particular for “high speed” friction, and it is
restricted to extremely sharp tips. This explains the interest
for numerical simulations of friction. Recent theoretical stud-
ies using atomistic models and molecular dynamics simula-
tions have provided a better insight into friction on the
nanoscale. Such studies offer detailed information about the
influence of solid and fluid thin films on static friction, pho-
non dynamics, and the transition from stick slip to smooth
sliding [7–10]. A rather complete picture about dynamical
dissipation during slip-stick motion and the solid sliding re-
gime emerged[10–12]. On the other hand, the relationship
between material properties, long range elastic deformations,

intermediate structure, and material transfer at the interface
between identical and different metals is less well understood
[13,14].

The present study focuses on the effect of the choice of
interfacial parameters on the microscopic dynamics and
structure in order to characterize a simple embedded atoms
model for metals, and to explore its range of applicability. To
this end we consider a stationary shear deformation between
metals sliding past each other with large relative speeds. We
restrict ourself to the study of metal-metal contacts, where
the effect of the interfacial parameter is most transparent
although the choice of parameters does not reflect any par-
ticular chosen “real” situation(we will come back to this
point in Sec. II E). The results help to predict the micro-
scopic behaviors when two blocks of metal with similar lat-
tice constants but different structural and mechanical proper-
ties come in direct solid contact. The present study focuses
on the role of dislocations, created under steady shear defor-
mation, for the flow profile, local structure, and pressure ten-
sor. It is thus complementary to recent large-scale simula-
tions of nanocrystalline metals where for small strains(small
time windows) the generation and dynamics of dislocations
had been studied in detail; see Refs.[15–18].

For the interactions between metal atoms we adopt an
extension of potentials used in Refs.[14,19]. For this model,
the total electron density is approximated by a linear super-
position of contributions from individual atoms. The electron
(or embedding) density at the center of mass of any atom is
expressed as a sum over densities from neighboring sites. In
addition, there is an energy contribution due to the ion-ion
interactions. Accordingly, the embedded atoms energy is ex-
pressed as

E = o
i=1

N SFsrid + o
j.i

N
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ri = o
jÞi

N

wijwsr ijd + ws0d, s2d

whereE is the total potential energy of the system made up
of N atoms, andri is local embedding density constructed
from the radial distancesr ij = ur i −r ju of atomsh jj “surround-
ing” atom i located at positionr i. The model requires the
choice of a radially symmetric weighting functionwsrd, and
ws0d is the local embedding density of a solitary atom. The
embedding functionalFsrid constitutes the energy of a par-
ticle represented by the embedding densityri, and the radi-
ally symmetric two-body interaction is modelled through the
potentialU. The (effectively many-body) model potential in
Eq. (1) serves to model a variety of metal properties. Com-
pared with the model described in Ref.[14], the coefficients
eij and wij are newly introduced to model the properties at
the interface between two(or more) metal species in contact.
They allow us to specify the strength of interaction between
atoms belonging to the same and to different materials. Since
we are going to deal with two metals(type A and B) in
contact throughout the manuscript, the coefficientseij can
take one of the three valueseAA, eBB, or eAB =eBA, depending
on the species to which atomsi and j belong(either A or B).
The same applies to thewij interaction strengths. As will be
shown in Sec. II D, these coefficients affect the heat of solu-
tion and hardness of the material’s interface. By default, and
if not otherwise mentioned, all interaction strength param-
eters are set to unity. Thus the default is a(bulk) system
without marked interface.

II. GENERIC EMBEDDED ATOMS (GEAM) MODEL

A. Definition

A particular choice for the model function(al)s U, w, and
F has been motivated in Ref.[19], and leads to the generic
embedded atom model(GEAM) metal. For this model, both
the binary interaction potential and weight function are poly-
nomials in the interparticle distancer:

Usrd =
f0

r0
4 f3srcut − rd4 − 4srcut − rmindsrcut − rd3g, s3d

wsrd = w0S1 + 3
r

rcut
DS1 −

r

rcut
D3

, s4d

for r ø rcut, andUsrd=0, wsrd=0 otherwise, with an energy
scalef0, a length scaler0, an interaction rangermin, a cutoff
radius rcut, and a pre-factor obtained by normalizing the
weight function, w0=ws0d=105/s16prcut

3 d. The parabolic
GEAM embedding functional reads

Fsrd = F2f0r0
6fsr − rdesd2 − sw0 − rdesd2g + ¯ , s5d

whererdesis the desired embedding density, andF2=1 is the
embedding strength of GEAM. Odd terms in embedding
density do not occur in this “expansion” because they create
aphysical, destabilizing forces. A linear termDr=sr−rdesd is
not present because it could be adsorbed by a modified pair
potentialU. The dots in Eq.(5) represent higher-order terms
in Dr which may be considered in order to obtain more than
a qualitative agreement between theoretical and experimental
values for cohesive energy with respect to the quantities
listed in Table I. The desired GEAM embedding density is
set to rdes=r0

−3. The particle number density is denoted as
n;N/V. The minimum of the binary potential is located at
the distancer =rmin=21/6r0<1.12r0 (as for a Lennard-Jones
potential), the cutoff distance is set torcut=1.6r0.

B. Crystal structure

For a system made of particles occupying ideal lattice
sites(or any other configuration) the cohesive energy, or en-
ergy per particle,Ec=E/N is calculated from Eq.(1). The
variation of this energy subject to a uniaxial volume conserv-
ing deformation referred to as Bain deformation[20,21], pa-
rametrized by the ratioaf100g /af010g between sides of a con-
ventional bcc cubic cell[22], is presented in Fig. 1. Under
Bain transformation the system transforms from a bcc struc-
ture af100g /af010g=1 into an fcc structure ataf100g /af010g
<1.414. Both fcc and bcc structures correspond to local

TABLE I. Experimental values[29–33] for Cu, Ni, Ag, Au, Pd, and Pt: lattice constanta0, particle number densityn, energy per particle
(cohesive energy) Ecoh, bulk B, and shearG moduli, along with heats of solutionDE for given host-impurity pairs. The stacking fault energy
gsf and unstable stacking fault energygsf are obtained with tight-binding and first-principles calculations in Refs.[34,35]. For GEAM metal
constitutive properties are given in both in “real”(dimensional), and reduced(adimensional) units (bottom row).

Metal
a0

(nm)
n

snm−3d
Ecoh

(eV)
B

(GPa)
G

(GPa)
gsf

seV/nm2d
gusf

seV/nm2d
ugusf−gsfu
seV/nm2d

DE (host impurity)
(eV)

Cu 0.362 85.9 3.50 142 59.3 0.4 1.25 0.85 0.03sCuuNid
Ni 0.352 84.6 4.45 183 94.3 1.14 1.48 0.34 0.11sNiuCud
Ag 0.409 58.0 2.95 101 33.5 0.11 0.58 0.47 −0.19sAguAud
Au 0.408 58.5 3.81 174 30.7 0.23 0.69 0.46 −0.16sAuuAgd
Pd 0.389 68.0 3.91 195 54.3 1.06 1.95 0.89 −0.04sPduPtd
Pt 0.392 66.4 5.77 283 65.1 1.68 2.45 0.77 −0.21sPtuPdd
GEAM 0.271 72.5 1.91 179 52.7 0 1.00 1.00 (dimensional)

1.12 0.993 0.552 4.442 1.309 0 0.021 0.021 (adimensional)
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minima of the cohesive energy with respect to this ratio.
During Bain transformation the bcc structure contracts along
[010] and[001] directions by<−11% and expands along the
[100] direction by about 21%, so that these axes transform to

f011̄g, [011], and[100] axes of the fcc structure. Burgers[23]
suggested a mechanism for the bcc to hcp transformation that
can be also applied to the transformation of bcc into fcc
structure. For this transformation mechanism the original bcc

structure is deformed along thef011̄g, [011], and [100] di-
rections for <9, 3, and −11 %, respectively, and subse-
quently sheared (with g=1/3) in shear direction

f011̄g/gradient direction[011]; see Fig. 2. Unexpected at first
glance, the energy barrier between fcc and bcc structures is
similar for both structure transformation mechanisms, cf.
Figs. 1 and 2. Yet the Bain deformation induces a relative
shift of layers of atoms in the crystal, similar to the shear in
the Burgers mechanism and therefore the degrees involved in
transformation of structure are very similar for these two
mechanisms, as further discussed in Ref.[24].

For GEAM, both fcc and hcp structures are ground state
structures, i.e., structures with minimum energy per particle.
This results in a zero stacking fault energygsf and energy
difference between fcc and hcp structure. For this reason,
one might expect pronounced defects—stacking faults and
twins—in a GEAM metal under shear “flow,” i.e., shear de-
formation at constant deformation rate. This need not to be
the case in the strong flow regime:(i) Stacking fault is cre-
ated when two semi-infinite blocks of fcc crystal are sheared

on the(111) plane along af11̄0g direction. Along this path,
the system has to first pass through an energy barrier referred
here as the unstable stacking fault energygusf. The stacking
fault results in the formation of a hcp plane inside the fcc

structure. Recent studies suggest that the dislocation activity
is not determined by the value of the stacking fault energy
alone. The difference between stacking fault energy and un-
stable stacking fault energyugusf−gsfu has been included into
the description[15–17,35] For the case of GEAM, the dif-
ferenceugusf−gsfu is comparable in magnitude with the value
observed in metals with lowgsf values; see Table I.(ii ) In the
strong shear flow regime the thermal energy of the particles
is comparable, but smaller than the magnitude of the poten-
tial barrier gusf. Therefore atoms in fcc single crystals sub-
jected to strong shear deformation easily slide into their near-
est potential minima, creating stacking faults.

In order to estimate the effect of the given structure(fcc,
bcc) on the stability of systems for which the temperature
and the volume are fixed at prescribed values, one has to
consider the Helmholtz free energyFsT,Vd=U−TS [25].
The internal energyU of the system is defined as a sum of
potential and kinetic energies, cf. Sec. III, and thus directly
available from our molecular dynamics(MD) simulations.
Concerning the absolute entropyS, however, there is no such
basic recipe. The “thermodynamic integration” technique
provides a workaround and estimates the difference between
free energies of two phases. The Gibbs relation

dF = − PdV− SdT s6d

quantifies how changes in volume and temperature affect the
Helmholtz free energy. The basic idea is to transform, via
MD, the fcc solid into a bcc solid along the Bain transfor-
mation path at constant temperature[26,27]. Then, the
change of the free energydF is

FIG. 1. Cohesive energy vs ratioaf100g /af010g during volume
conserving tetragonal Bain transformation, described in Sec. II B.
The transformation of the ideal GEAM metal lattice is presented for
global number densitiesn=0.98, . . . ,1.06. The bcc structure occurs
at af100g /af010g<1 and the fcc ataf100g /af010g=1.414. The inset
shows the effect of densityn on the cohesive energy for ideal fcc
and bcc structures. All quantities are given in dimensionless re-
duced units; cf. Sec. II E and Table I.

FIG. 2. Cohesive energy contours in the vicinity of the Burgers
transformation path; cf. Sec. II B. The system is simultaneously
deformedsaf011gd in [011] direction and sheared by an amountg

along thef011̄g direction/gradient direction[011]. For a Burgers
transformation[23] the original bcc structure is transformed into the
fcc structure after being deformed by<9, 3, and −11 % along the

f011̄g, [011], and [100] directions, respectively, and subsequently
sheared withg=1/3.
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dF = − PxxAxdx− PyyAydy− PzzAzdz, s7d

wherePi are diagonal, Cartesian components of the pressure
tensorsi =xx,yy,zzd andAl denote surface areas orthogonal
to these directions. Figure 3 shows the change of the specific
free energyDF /N along the Bain transformation path at
number densityn=1 and temperaturesT=0, . . . ,0.04, calcu-
lated via MD.

In the limit of low temperatures, the structure with the
larger internal energy is the thermodynamically stable one.
Here the bcc structuresaf100g /af010g=1d corresponds to a lo-
cal, the fcc structure to global minimum. A larger entropy for
the bcc structure compared to the fcc structure is expected,
since bcc is less densely packed. Accordingly, the free en-
ergy of a bcc structure should decrease faster with increasing
temperature. At sufficiently high temperature the local mini-
mum ataf100g /af010g=1 can evolve into a global one. This is
what we indeed observe for the GEAM metal, cf. Fig. 3, for
temperaturesT.0.03. In Fig. 4, thermodynamical integra-
tion is applied to calculate the structural phase diagram for
GEAM in the temperature-density plane. The diagram shows
regions where bcc and fcc structures are energetically fa-
vored, and data for two values of the two body interaction
parametereAA =0.5,1.0. The thermodynamical integration
also provides the size of the potential barrier between two
structures along the transformation path. This barrier is small
in magnitudesD<4310−4d compared with thermal fluctua-
tions at room temperature. Nevertheless, the bulk material
stays in the bcc structure after rapid cooling since the struc-
tural transformation away from this state would involve col-
lective motions of atoms. The bulk material, free of defects,
cannot cross this barrier due to the thermal fluctuations even
at high temperatures. Under shear flow, however, the mate-
rial can sufficiently accumulate strain energy and cross this
barrier, while relaxing to an energetically more preferred

state as soon as the external field is released.

C. Bulk characteristics

The pressure and the elastic modulus tensor is to be ob-
tained using the virial expressions[14,28] from analytical
calculations and also from nonequilibrium molecular dynam-
ics (NEMD), by which the GEAM model is solved numeri-
cally (cf. Sec. III). The symmetric traceless(anisotropic)
pressure tensor has five independent components. In the spe-
cial case of simple shear flow with velocity in thex direction
and velocity gradient in they direction only three indepen-
dent components have to be considered(as long as symmetry
is not broken in an average sense). Let us denote them con-
veniently asp+,−,0, wherep+;sPyx+Pxyd /2 corresponds to a
shear pressure, two normal pressure differences arep−
;sPxx−Pyyd /2, and p0;f2Pzz−sPxx+Pyydg /4, respectively.
The scalar(isotropic) pressurepiso is the trace of the total
pressure tensor divided by the spatial dimension,piso

=Pmm /3. Note that the “stress tensor” is identical with the
pressure tensor except for its sign, i.e., −p+ is the shear
stress.

First, we extract these pressure tensor components and the
cohesive energy in the limit of low temperatures in two
cases:(i) shear direction[100]/gradient direction[010], and

(ii ) shear directionf11̄0g/gradient direction[111]. In the
former case the distance between the two minima corre-
sponds to a shear deformationg=2, in the latter case the
same distance corresponds tog=Î3/2. In the undeformed
statesg=0d particles occupy ideal lattice sites, i.e., are lo-
cated in a position of minimum potential energy. The cohe-

FIG. 3. Change of the free energy vs ratioaf100g /af010g during
uniaxial volume conserving Bain transformation. The transforma-
tion of the ideal GEAM metal lattice is presented for temperatures
T=0.01, . . . ,0.04. Both fcc and bcc structures correspond to local
minima of the cohesive energy with respect to the ratioaf100g /af010g.

FIG. 4. Structural phase diagram of GEAM in the temperature-
density plane calculated via thermodynamical integration from
NEMD simulation data. The curves separate densities and tempera-
tures where bcc and fcc structures are energetically favored for two
values of the two body interaction parametereAA =0.5 (dashed line)
and 1.0(bold). All quantities are given in dimensionless reduced
units.
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sive energyEc increases with shear deformation until an un-
stable equilibrium is reached, cf. Fig. 5. The corresponding
shear stresses are given in Fig. 6. A system with bcc or fcc
structure produces maximum shear stress and maximum re-
sistance to shear in shear direction[100]/gradient direction
[010], where particles have to cross the highest potential bar-

rier. The fcc system, when sheared along thef11̄0g direction/

gradient direction[111] of the crystal, has minimal resis-
tance. Particles are then stacked within densely packed
hexagonal layers corresponding to the(111) plane of the fcc
crystal structure. The shear stress and the height of the po-
tential barrier are further reduced through collective zig-zag
movements of hexagonal layers within the plane; see
Fig. 6.

Next, we assume sinusoidal trajectories between two po-
tential energy minima with amplitudeza in the vorticity di-

rection f221̄g in order to rigorously study the influence of
zigzag motion. Forza=0.321, the trajectory goes through
side minimum. In this case, the height of potential barrier
and the shear stress are reduced to a quarter of their values
for the straight trajectorysza=0d. The normal pressure differ-
encesp0 and p− change their signs upon increasing the am-
plitude za, as demonstrated in Fig. 7.

In the limit of low temperatures the simple GEAM yields
expressions for several constitutive properties without ap-
proximations with computational effort of orderN; cf. Ref.
[14]. The elastic coefficients—bulk modulusB, average

shear moduliG, C44 and C̃44=sC11−C12d /2—depend on the
second derivative of the free energy for a nearest neighbor
model [14]. The second order term in the embedding func-
tional, Eq.(5) without dots, mostly determines the values of
the elasticity coefficients includingB, C11, andC12 charac-
terizing the response of GEAM on volume changes, since the
embedding density is usually very close to the desired em-
bedding density. The orientationally averaged shear modulus

G, and its maximum and minimum components,C44 andC̃44,
respectively, characterize the material’s response to a volume
conserving shear deformation. This type of deformation
leaves the embedding density unchanged and therefore does
not contribute via the embedding functional to the free en-
ergy. For this reason the shear moduli scale with the two

FIG. 5. Shearing of the ideal fcc crystal in the limit of low
temperatures. The change of the cohesive energysEcohd with the
increasing shear deformationsgd is presented for shear direction
[100]/gradient direction[010] (thick curves, upper inset) and shear

direction f11̄0g /gradient direction[111] (thin curves, lower inset).
In the latter case, sinusoidal trajectories with amplitudeza=0,

0.137, and 0.321 in vorticity directionf221̄g and possessing a wave
length equivalent with the distance between two successive poten-
tial minima are assumed.

FIG. 6. Shear stresss−p+d vs shear deformationsgd for shear
direction [100]/gradient direction[010] (ticker curve, upper inset)

and shear directionf11̄0g /gradient direction[111] (thinner curves,
lower inset). In the latter case, particles follow sinusoidal trajecto-

ries with amplitudeza in vorticity directionf221̄g and a wave length
equivalent to the distance between two potential minima. Atg=0
particles occupy ideal fcc lattice sites.

FIG. 7. Normal pressure differencesp− (ticker curves) and p0

(thinner curves) vs shear deformationsgd for shear direction

f11̄0g /gradient direction[111] in the low-temperature limit; cf. Sec.
IV A. Particles follow sinusoidal trajectories with amplitudesza

=0, 0.137, and 0.321 in vorticity directionf221̄g and a wavelength
equivalent to the distance between two potential minima. Prior to
the onset of shear particles occupy ideal fcc lattice sites.
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body interaction parameterseAA and eBB linearly, more ex-
plicitly, in case of average shear modulus we haveGseXd
=eXGseX=1.d for XP hAA,BBj.

D. Doping characteristics

In this section we calculate heats of solution and shear
moduli for binary metal systems, and metals with metallic
inclusions, where different metals are in contact. To this end
we can also demonstrate the usefulness of the polynomial
GEAM format.

The heat of solutionDE for a host bulk material of type A
and an inclusion of type B is defined as the change of the
total system’s energy when an atom of the host material A is
replaced by an impurity atom of type B. To estimate the
effect of model parameters on the heat of solution in an
approximate fashion, we calculate this quantity in the limit
of low temperatures using the following procedure: an atom
from the bulk is replaced by an impurity; the radial distance
to its next neighbors is adjusted so that the(total) isotropic
pressure vanishes; the heat of solution is calculated as the
difference between total energies between start- and final
configurations. For metals with similar crystal lattice con-
stants, within focus of this work(see Table I and Ref.[36]),
the true amount of relaxation is small. For that reason also
corrections to the approximate values calculated here must
be small. Resulting curves are displayed in Fig. 8, where the
effect of the strengthseAB andwAB on the heat of solution is
presented. ForeAB =eAA =1, and wAB =wAA =1 there is no
difference between impurity and material, thusDE vanishes
in that limit. The heat of solution increases linearly witheAB
as the binary interaction potential does. From Fig. 9 we see
that the density corresponding to zero pressure increases with
eAB as a result of the mismatch between zero pressure den-
sities for systems interacting solely via binary and embed-
ding interactions, respectively. The size ofwAB influences the
value of the embedding densitysrd at the impurity location
in such a way that it is decreasing with decreasingwAB. As

result, the number densitysnd around an impurity increases
with increasing differenceuwAB −wAA u in order to achieve the
desired vanishing isotropic pressure; cf. Fig. 9. The heat of
solution increases with the absolute distanceuwAB −wAA u due
to the parabolic form of the embedding functional; see Fig.
9.

E. Dimensionless units

When implementing the GEAM model and solving it nu-
merically, any measurable quantityQ with physical dimen-
sion fQg=kga mb sg specified in SI units kg, m, and s is
made dimensionless by a reference quantityQref
=ma+g/2r0

b+gf0
−g/2, such thatQ=QdimlessQref. Dimensionless

quantitiessQdimlessd in this manuscript are therefore always
given in terms of these “reference(Lennard-Jones) units.”
The quantitiesm, r0, andf0 provide the scales via the inter-
action potential Eq.(3) and the equations of motion. The
reference values for length, particle number density, energy,
temperature, time, shear rate, pressure(or elastic modulus) in
terms of the simulation parameters are thereforer ref=r0,
nref=r0

−3, eb,ref=f0=kBTref, tref=r0sm/eb,refd1/2, ġref= tref
−1, and

Pref=f0r0
−3=nrefeb,ref, respectively. By choosingTref=f0/kB

=40 kK, Pref=40 GPa one obtainsf0=3.45 eV, nref
=72.5 nm−3, and r0=0.24 nm, for GEAM. For 0.8,eAB
,1.2 and 0.4,eAB ,1.5 the alloy heats of solution of
GEAM metal are within the range expected for real metals;
cf. Table I. Atomic masses of most metals are within the
rangem=s0.8−3.5d310−25 kg, thus a reference time istref

<s0.9−2.0d310−13 s. Constitutive properties and heats of
solution are given in Table I for three pairs of metals with
similar lattice constantssCuuNi,AguAu,PduPtd.

III. SIMULATION DETAILS

A. Algorithm

Simulations are carried out in a three dimensional, cubic
simulation box. The force acting on particlei is obtained by

FIG. 8. Effect of GEAM parameterseAB andwAB on the alloy
heat of solutionDE for a single substitutional impurity in the fcc
crystal lattice.

FIG. 9. Effect of GEAM parameterseAB andwAB on the number
densityn=N/V (reduced units) at zero pressure for a single substi-
tutional impurity in the fcc crystal lattice.
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variation of the energydEb=F i ·dr i of Eq. (1), and reads

F i = o
jÞi

F i j , s8d

F i j = − eijU ]U
]r
U

i j
− wijSU ]Fsrd

]r
U

i
+ U ]Fsrd

]r
U

j
DU ]w

]r
U

i j
.

Particles move according to Newton’s equations of mo-
tion, which are second-order ordinary differential equations
solved numerically in subsequent time steps using a standard
velocity-Verlet algorithm with the forces from Eq.(8) [37]. A
suitable integration time step isDt=0.01 [reduced Lennard-
Jones(LJ) units] for a metal at room temperature. A cubic
simulation box with periodic boundary conditions is used.
The central box represents just a fragment of an asperity. For
this reason, the properties of the system like overall density,
shear, gradient, and temperature are taken to be constant
within the simulation cell. To impose a shear deformation(or
flow), periodic images are subjected to a relative motion in
the flow sxd direction, with a shear gradient in they direction
(Lees-Edwards boundary conditions). The flow simulation
introduces the shear rateġ;]vx/]y as an independent vari-
able. While a linear flow profile is observed in steady shear,
during the transition towards a steady state, parts of the sys-
tem move in blocks. To seriously handle simulations with
pluglike structures, we implemented a “profile unbiased ther-
mostat” (PUT) which calculates the mean flow velocities
self-consistently[38]. The kinetic temperature is introduced
through peculiar velocities of particles,Ci ; ṙ i −vsr id, where
vsr id denotes the(macroscopic) flow velocity on position of
particle i:

m

2 o
i

„ṙ i − vsr id…2 =
3

2
NkBT. s9d

Peculiar particle velocities are seen as thermal fluctua-
tions and suppressed by the thermostat. The first method car-
rying out a simulation under strongly controlled conditions
was the velocity scaling algorithm proposed by Woodcock
[39], which conserves a canonical distribution(see Ref.
[40]), if after each integration step, velocities are scaled to
satisfy the constant kinetic energy condition. The efficient
procedure is easily implemented. Further details of this tem-
perature control method are given elsewhere; see Refs.
[41,42]. Alternatively, shear flow can also be generated by
modifying the equations of motion with a SLLOD algorithm
[43,44]. One should note that NEMD simulations of sliding
interfaces have a minimum shear rate below which compu-
tational costs become expensive. For particular low rates,
alternate simulation strategies, employing transient time cor-
relation functions[45], evaluating differences between equi-
librium and nonequilibrium trajectories[46], or beyond equi-
librium molecular dynamics[47] may be considered.

Boundary conditions potentially effect the newly formed
crystal structure. Crystal planes tend to contain a multiple of
unit crystal cells between the boundaries of the system. This
results in a deviation between densely packed planes and
planes normal to the flow gradient, potentially increasing the
probability for the appearance of defects at finite size. We

studied several system sizes to make sure that the presented
results are not artificially driven by finite size effects. Yield
stress and the frequency of defects formed in the steady state
shear regime depend via the energy needed to form a defect
on the system size; see Ref.[48]. Thus it is important to use
a sufficient large number of particlessN.5000d to obtain
reliable information about dislocation formation, dynamics,
and microstructure generation. Values for the isotropic pres-
sure are estimated from the penetration hardness, defined as
the ratio between loadN and contact areaA at onset of plas-
tic flow. For most metals, the penetration hardness lies in the
range 0.005–0.0025(reduced LJ units); cf. Refs.[49,50]. The
dry solid friction process is characterized by large relative
velocities at the interface. In simulations presented here the
relative velocity is about 0.01cT (the shear rate isġ=0.001),
wherecT is the transverse sound speed. Thus for the GEAM
medal, the relative velocity is of the order of 30 m/s. Such
high velocities are expected for example in case of thread
breaking[51–53]. The time scale of a solid friction process is
estimated by the size of an average asperity and velocity,
leading to a value of approximately 100 ns. The typical
length of a simulation run is 104 time units which corre-
sponds to a total simulation time of about 2 ns. The total
stimulation time represents only a fraction of the time scale
of the friction process. However, as shown in Sec. IV A the
stationary state structure is reached soon after onset of the
shear flow and enables us to obtain a picture about interplay
between the microstructure, dislocation dynamics, material
mixing, and flow properties(stress tensor, effective shear
rate). The MD simulations with simulation times up to 2.5
3104 and with different initial configurations(e.g., amor-

phous, with parallel slipsf11̄0gd and shear directions, and
extended in gradient directions) are performed to ensure that
processes that might dominate shear deformation are recog-
nized properly during the limited time window of the MD
simulations to be discussed.

B. Common neighbor analysis

The common neighbor analysis method based on planar
graphs is utilized here to obtain information about the local
order within NEMD atomic configurations. This method re-
lies on a suitable definition for “relevant” neighbors[54].
Pairs of atoms are considered to be relevant neighbors, if
they are within distance of the first pair correlation function
minimum. The diameter of the second coordination shell for
a bcc structure is just 15.47% larger compared with the di-
ameter of its first shell. Already at low temperatures atoms
from these two shells are mixing, for the bcc structure we
therefore have 14 relevant neighbors. For fcc and hcp we
have 12 relevant neighbors, i.e., the ones in the first coordi-
nation shell, because, in contrast to bcc, the above value is
sufficiently large(41.4%). The method is stable against den-
sity fluctuations and minor structural changes as discussed in
Ref. [54]. Polyhedra formed by relevant neighbors are trans-
lated into planar graphs with polyhedra edges as branches
and neighbors as nodes. Since these graphs contain only in-
formation about connections, orientation, and thermal dis-
placements of the crystal structure do not influence the
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analysis. The obtained planar graphs are compared with pla-
nar graphs of ideal bcc, fcc, and hcp crystal structures. The
method resolves the local structure surrounding each atom.
For the choice of parameters made here all the three crystal
structures are observed. The ratio between all atoms which
belong to a structure(central atom plus its neighbors, no
double counting) and total number of atoms in the system is
taken as a measure for the amount of this crystal structure.
Domains with different crystal structures can overlap, there-
fore the total amount of crystallinity(cry) is not just the sum,
but often less, than the amounts separately occupied by fcc,
bcc, and hcp structure; cf. Fig. 10(a).

IV. METAL-METAL (GEAM-GEAM) CONTACTS
SUBJECTED TO SHEAR

In this section we present results for three different types
of metal-metal contacts subjected to shear. While the two
materials are characterized byeAA ,wAA, and eBB,wBB, re-
spectively, the interface is characterized by the strength of
the binary interaction parameterseAB and wAB. We begin
with studying the “homogeneous” case of a clean, and dry,
metal-metal contact, where all the six interaction strengths
are equal and set to unity(Sec. IV A). Here, the interface
arises due to initial conditions. In order to understand the
effect of the interaction strengths on the dynamical behavior,
we study two inhomogeneous cases upon varying a single
interaction strength in both cases. In Sec. IV B, atoms of

different model metals feel an extra attraction due to the
embedding term and we choosewAB Þ1. In Sec. IV C two
materials with different shear moduli are in contact, i.e., we
seteBBÞ1 (while keepingeAB =eAA).

For all three cases, a contact zone at relative motion in the
x direction, with a load and shear gradient in they direction
is simulated. The temperatureT=0.01 and densityn=1 are
held constant. The initial positions of the particles are fcc
lattice sites, where axesx,y,z correspond to the directions in
starting crystal configuration:[100], [010], [001], and[111],
f221̄g, f11̄0g, denoted with① and ②, respectively. Simula-
tions are performed withN①=43 200 andN②=48 668 par-
ticles. In the latter case, the shear direction is orthogonal to
the slip plane. The shear rate isġ=0.001. The shear defor-
mation is switched on att=0. In our simulations of shear at
the interface between two blocks of different metals, we use
homogeneous GEAM configurations, presheared for 4000
time steps, as startup. Each particles’ type is set according to
the side of the interface where it resides att=0; type A is
assigned to particles with negativey coordinates. At the
boundary in they direction there is an artificial interface.
Particles crossing this interface change type.

A. Clean metalA-metalA contact

First, we consider dry solid friction between two blocks
made of identical GEAM material, i.e.,wij =eij =1 for all
i , j P hA,Bj. After the shear deformation is switched on, the
system responds with growing shear stress. After reaching a
yield stress att①=180,t②=110(reduced units), we observe a
sudden increase of the amount of hcp structure as demon-
strated in Fig. 10. Atoms move into the nearest potential
minima, causing shear of the crystal planes in oblique to the
shear flow direction. Layers of hcp structure are formed, and
tend to block the flow. During continued shear significant
structural changes start to appear. The rearrangement of the
crystal structure is followed by an increase of self diffusion,
or self mixing, of atoms. In Fig. 11, the average squared
displacement of particles with respect to the shear gradient

FIG. 10. Relative amount of volume occupied by fcc, bcc, and
hcp structures vs time. The bold curve(cry) represents the amount
occupied by all three crystalline structures together obtained via
NEMD simulation of a homogeneous GEAM metal subjected to
steady shear. Initially, particles are placed at ideal fcc lattice sites
with the x,y,z axes corresponding to[100], [010], [001] (thicker

curves, system①) and [111], f221̄g, f11̄0g (thinner curves, system
②) directions in the fcc lattice.

FIG. 11. Average square displacement of particles projected to
velocity gradient directionsyd, and vorticity directionszd. Initially,
particles are placed at ideal fcc lattice sites with the axesx,y,z
corresponding to[100], [010], [001] (thicker curves,①) and [111],

f221̄g, f11̄0g (thinner curves,②) directions in the fcc lattice.
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syd direction and(vorticity, z) direction normal the shearx
-y plane is plotted. These quantities do not only define the
diffusion coefficient, but also monitor the amount of inter-
penetration of particles across the interface. After approxi-
mately 1000 time units a stationary structure is formed. The
particles are packed in hexagonal layers stacked along the
gradient direction to maximize the distances between par-
ticles as they shear past each other, and to reduce resistance
to shear; cf. Sec. II C. For the chosen set of simulation pa-
rameters, fcc and hcp structures are stationary state structures
[54]. In the course of the structural rearrangement particles
move in average for<1.3 reduced lengths units in shear
direction, what is equivalent to<1.5 hexagonal layer dis-
tances. For the fcc structure the most densely packed planes

correspond to the(111) plane, and slip occurs inf11̄0g direc-
tion. The corresponding plane and direction in a bcc structure

is s011̄d and [111], respectively. The shear direction is
closely parallel, but definitely nonparallel, to the nearest
neighbor(slip) direction of the newly formed structure; cf.
Fig. 14 att=6500 for system①. The shear direction projects
onto the pointsw ,ud=s±p /2 ,p /2d. A deviation between the
steady state shear direction and the fixed flow direction re-
sults in a small increase of the average square displacement
with time. If the particles are moving back in direction of
their starting position(in y or z direction), the average square
displacement can also decrease. The long time self-diffusion
behavior, however, still remains unresolved within the actual
simulation times.

Shear deformation inherently generates defects since at-
oms can move oblique to the shear direction to reach some
close-by energetically preferred states. Even when a station-
ary flow situation is reached, defects blocking the flow are
observed. These defects should be responsible for the differ-
ence between the observed amounts of hcp and fcc struc-
tures. Though they possess the same energy per particle in
the limit of low temperatures, and occur together as ran-
domly close packed structures, in our simulations the fcc
structure shows up to be dominant. The explanation should
be that the hcp structure allows shearing only in a single
plane and that it is less resistant to defects, as compared to
fcc. After a defect, partially or completely blocking the flow,
is formed, parts of the system move as blocks. Shear stress is
then released locally, yielding very high effective shear rates.
We observed effective shear rates up to 10ġ aroundt=5000
in both systems, cf. Fig. 12. The material between blocks is
moving fast in densely packed layers, and blocks are carried
with the flow. Thus the increase of the effective shear rate
alone does not result in larger average square displacements
of particles. The quasiperiodic spikes of the shear stress and
square deviation of the flow velocity from a linear profile
indicate the existence of stick-slip motion in the system①;
cf. Fig. 12. The period between two spikes is<100 time
units. During this process, in a first step the shear stress
accumulates inside the blocks and the velocity profile is
mostly linear. In a second step, after slip starts, the accumu-
lated shear stress is released in a thin layer between blocks.
Earlier simulations of dry sliding friction between a single Ni
asperity and a Cu surface show similar behavior: kinetic en-
ergy is converted into potential energy and stored as “strain

energy” [9]. Energy stored during stick is released to gener-
ate local phonons and later dissipated in the system. The
stick-slip motion observed here is the property of those thin
layers which interact strongly with the substrate[12].

The kinetic and potential contributions to the pressure ten-
sor can be computed separately via NEMD. The kinetic part
of the scalar pressure is, due to temperature control, given by
pkin

iso=nkBT and of the order of the potential contribution to
the scalar pressure. The kinetic contributions to the shear
stresss−p+d and normal pressure differencessp−,0d, however,
are negligible compared with the potential counterparts(of
the order of 0.1%), as for dense fluids[55]. At t=6000 we
observe an effective shear rate<2ġ for both systems. Simul-
taneously, we observe that the shear stress and its fluctua-
tions decrease. The explanation should be that different
modes of collective motion of densely packed hexagonal lay-
ers yield different average shear stresses; see Sec. II C. Also,
the existence of different shear modes should be responsible
for slow changes of the shear stress in time. Normal pressure
differences, however, are close to zero, and their behavior
shows little connection with the intermediate flow properties.
We observe a change of the normal pressure differences only
if the system cannot globally adjust itself to accommodate
shear deformation.

The normal pressure differencep− increases sharply in
Fig. 13(thinner curve), after a defect is formed att=6600 in
the system②. Increase ofp− is followed by a structural
transformation of parts of the fcc structure into bcc structure
and a decrease of isotropic pressure. The isotropic pressure
decreases since at the same temperature and density the bcc
structure has negative isotropic pressure(cf. Figs. 10 and
13). Under structural transformation the original slip(111)
plane/f11̄0g direction of the fcc structure transform into

s011̄d plane/[111] direction, of the bcc structure; see Fig. 14.

FIG. 12. Section of a long simulation run for system① showing
stick slip motion. Values for shear stresss−p+d (top) and average
square deviation of velocities from a linear profile(bottom graph).
Data obtained via NEMD with 43 200, 48 668 particles at density
n=1, temperatureT=0.01, and shear rateġ=0.001. Nonequilibrium
molecular dynamics simulation results for homogeneous GEAM
metal subjected to steady shear. In starting configurations particles
are placed at the ideal fcc lattice sites with the axesx,y,z corre-
sponding to[100], [010], [001].
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We could not simply classify this structure transformation
into one of the basic mechanisms described in Sec. II B. The
available results suggest, that both mechanisms are locally
present. During the transformation of bcc structure back into
fcc structure, parts of the system transform along several
different directions. Snapshots of the system② during the
transformation(around t=7000) are presented in Fig. 15
where domains with different structures can be observed. At
t=7500 the fcc structure is recovered, a number domains
with different orientations are visible and the large-scale
structure is oriented to block the flow; see Fig 15. These
domains rotate with the flow(vorticity). After t<8000, the
system is again partially aligned with the flow but different
domains are still visible; see Fig. 14. The rotation of domains
is characterized by a steep increase of the average square
displacement in flow gradientsyd direction, while the dis-
placement in the neutralszd direction is small. During 2500
time units domains move iny direction for <2.5 layer dis-
tancesskDy2l<5.4d. In Ref. [13], a similar behavior was
observed for a two-dimensional embedded atom model

metal-metal interface. The mixing of the material at the in-
terface was closely related with the fine-grained microstruc-
ture, which is created during the shear.

B. MetalA-metalA contact with additional embedding
interaction

If the interfacial embedding interaction parameterwAB
Þ1 is different from the embedding interaction parameters
within the bulkwAA =wBB=1 the local density changes in the
vicinity of impurities. The effect of this binary embedding
interaction in the limit of low temperatures is discussed in
Sec. II D. For GEAM, the local number densityn=N/V is
close to the embedding densityr calculated from Eq.(2).
Figure 16 shows the the evolution of the number densityn
<rA+rB within the interfacial layer between two model
metals forwAB =0.3, 0.5, and 1.3(three cases). Embedding
densitiesrA, rB are calculated for each particle type sepa-
rately for each point at a square grid. The interface, inclu-
sions, and vacancies formed during shear are visualized
through the measurerA−rB.

FIG. 13. Evolution of the isotropic pressurepiso and the three
components of the anisotropic pressure tensorp+,−,0 with time; cf.
Sec. II C for definitions. Results are obtained via NEMD with
43 200, and 48 668 particles at number densityn=1, temperature
T=0.01, and shear rateġ=0.001 for a homogeneous GEAM metal
subjected to steady shear. Initially, particles are placed at ideal fcc
lattice sites with the axesx,y,z corresponding to[100], [010], [001]

(thicker curves, system①) and[111], f221̄g, f11̄0g (thinner curves,
system②) directions in the fcc lattice.

FIG. 14. Angular distribution of directions to closest neighbors
during the transformation between fcc and bcc crystal structures.
Snapshots are obtained via NEMD with 43 200 particles(system
①). Simulation parameters are:T=0.01, ġ=0.001, andn=1. Start-
ing configuration is the ideal fcc structure, the flow, gradient, and

vorticity directions correspond to[111], f221̄g, f11̄0g crystal direc-
tions, respectively. The nodes represent neighbors and they are con-
nected with an edge if they are neighbors with themselves. Atoms in
slip planes are marked by bold lines. In this representation, the
shear direction projects at pointssw ,ud=s±p /2 ,p /2d.
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The density inside the bulk material is constant and simi-
lar in all these(three) cases. At the interface, we observe
changes in the local number density. The system minimize
the embedding energy locally by changing the embedding
density such that it matches the desired embedding density;

cf. Eq. (5). This results in an increase of the local density for
wAB =0.3. 0.5(light line in Fig. 16) and a decrease forwAB
=1.3 (dark line). For wAB =0.3, after a defect—followed by
Burgers transformation—is formed att=7200, the part of the
system located around the contact plane starts to rotate with
the shear flow to form an inclusion. The microscopic inclu-
sion produced in sliding penetrates for about three length
units into the other material block. This process results in
mechanical alloying at the interface since the parts of the
inclusions move with different relative speeds in shear direc-
tion due to the flow gradient. For cross sections taken att
=11 000 see Fig. 16. Similar behavior is observed forwAB
=1.3. ForwAB =0.5, the slip direction of the crystal structure
is nonparallel with the interface. This leads to a gradual al-
loying of two materials parallel to the interface. We also
observe in Fig. 16, vacancies created during the shear flow as
black spots in therA+rB density plots. Their vacancy is typi-
cally two atoms wide and has a life time between 50 and 400
time units. They appear with and without defects and tend to
be aligned with the flow.

Within statistical errors, we did not detect an influence of
the (additional) embedding interaction on the shear stress
and normal pressure differences. This is plausible, because
the interface occupies only a small portion of total volume
and pressure tensor components reflect the material flow
within the whole system.

C. MetalA-metalB contact

The form of the EAM allows to systematically vary shear
moduli, i.e., resistance to shear deformation, with strength of
two body interaction parameters:eAA, eAB, andeBB; see Sec.
II D. We chooseeBB=1. (basic GEAM metal) and varyeAA,
while eAB =eAA. After onset of shear flow, an inhomogeneous
shear profile is established; cf. Fig. 17. We observe that the
mechanical alloying at interface depends on the shear moduli
of the two materials. If the absolute difference between their

FIG. 15. Snapshots visualiz-
ing the evolution of structure
during temporary transformation
of crystal structure from fcc into
bcc. Snapshots are obtained via
NEMD with 43 200 particles
(system ①). Each slice has a
depth of unity. Simulation pa-
rameters are:T=0.01, ġ=0.001,

and n=1. The [111], f221̄g,
f11̄0g directions in the starting
configuration, a fcc crystal lat-
tice, correspond to shear flow di-
rection, gradient direction, and
direction of normal to the shear
plane, respectively. The type of
local structure is indicated. The
shear direction is indicated in the
upper left picture. As before, all
quantities are expressed in di-
mensionless LJ units.

FIG. 16. Cross section of the embedding density close to the
interface, averaged over a time periodDt=200 for three values of
the GEAM parameterwAB (arranged in columns) and three different
times(arranged in rows). The local densityr is estimated from the
sum of embedding densities of the two materialsrA,rB, r<rA

+rB (lower, more structured, nine density plots). Embedding densi-
tiesrA,rB are calculated for each type of particles separately for all
points at a grid. To visualize and resolve inclusions and vacancies at
the interface the quantityrA−rB is used(upper density plots). The
NEMD configurations are sampled after every ten time units. Simu-
lation parameters in LJ units are:T=0.01, ġ=0.001, andn=1.
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shear moduli is large(hereeAA =0.5 or 2), the shear is con-
centrated in the material with smaller shear modulus while
the other material moves almost as a block. For this reason
we observe mixing of the two metals only within a single
hexagonal layer at the interface. If shear moduli are compa-
rable (here eAA =0.8, 1.2) we observe that both materials
penetrate for<3 hexagonal close packed layer distances be-
hind the interface(here, after 8000 time units). The depen-
dence of the ratio of effective shear ratesġA/ ġB on the ratio
of shear moduliGA/GB for metalsA and B is presented in
Fig. 18. We tested a simple hyperbolic relationship between
them, where the coefficient is obtained via regression. Since
the shear stress and moduli have the same origin(traced back
to the shape of two body interaction potential), the observed
ratio of shear stresses equals the ratio of shear moduli, i.e.,
pxy

A /pxy
B =GA/GB. We find that only the ratio of shear moduli

influences the local shear stress and effective shear rate. This
should be a consequence of the strong dependence of local
shear stress on the mode of collective motion(amplitude of
zigzag motion; cf. Sec. II C).

The analysis of the crystal morphology att=4000 is pre-
sented in Fig. 19. In caseeAA =eAB =0.5, the bcc structure is
the dominant stationary structure for metalA particles atT
=0.01 andġ=0.001. In the limit of low temperatures the fcc
structure is preferred in metalA. The difference between en-
ergies per particle in bcc and fcc structure,sEc,bcc−Ec,fccd,
decreases with the strength of the two body interaction pa-
rametereAA. In Ref. [21] it is shown that the bcc structure
can be additionally stabilized by entropy contributions to the
free energy. To make this more visible we also provide the
angular distribution of directions to next neighbors of domi-

nant structures for two of the dominant structures on the
right side of Fig. 19. It is visible that two-dimensional
densely packed layers in bcc and fcc structures are parallel
and shear such that they pass each other. In the two remain-
ing cases, foreAA =eAB =0.8, 1.2, the fcc structure becomes
stationary within the whole system. Mechanisms of mechani-
cal alloying are similar to the case where we exploited the
additional embedding interactionswAB Þ1d. Again, we ob-
serve a temporary transformation of parts of the system into
bcc structure; cf. Fig. 19 foreAA =eAB =1.2.

V. CONCLUSIONS

In this paper we explored several dynamical and struc-
tural, equilibrium, and nonequilibrium, properties of a simple
embedded atom model. The model helps us to understand
and predict processes taking place during dry solid friction
between metal-metal interfaces. The initial configuration
massively changed under the applied shear. A re-ordering of
particles takes place: particles create hexagonal layers or-
thogonal to the flow gradient direction. The shear deforma-
tion involves motion of these planes. In the steady state re-
gime, defects are created when atoms move oblique to the
shear direction to reach some close-by energetically pre-
ferred states. These defects potentially block the shear flow
and lead to shear banding. While the total amount of crystal-
linity during the simulation is fairly constant(quantified via
common neighbor analysis), the fcc structure partially trans-
forms, as long as defects blocking the flow are present, into
the bcc structure. During these processes, transient, grained
microstructures are created. Related to the grain formation is
the mixing of the material through rotation of the grains

FIG. 17. Mean flow velocity profile for cases, where two mate-
rials with different two body GEAM interaction parameterseAA

=eAB =0.5, 0.8, 1.2, and 1.5(while eBB=1) are in contact. The four
samples exhibit different ratios between shear moduli of the two
interacting materialsG1/G2=0.5, 0.8, 1.2, and 1.5, respectively.
The velocity profiles are averaged over the time framet
=3000–7000. All systems have 43 200 particles. For the same sys-
tems sample density profiles for both types of particles are given at
time t=6000. The shear rate isġ=0.001 and temperatureT=0.01.
All quantities are given in LJ units.

FIG. 18. Ratio of effective shear ratesġA/ ġB (full line) and
corresponding shear stressespxy

A /pxy
B (broken line) vs the ratio of

shear moduliGA/GB in materials of types A and B. Symbols denote
averages from the simulation of an interface for shear rateġ
=0.001 and temperatureT=0.01 with 43 200 particles. The shear
moduli are controlled via the GEAM parameterseAA and eBB,
whereeAB =eBB. Curves are drawn to guide the eyes.
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before the system re-enters a dynamically equilibrated(sta-
tionary) state. The structural information also helps to inter-
pret the observed changes of the pressure tensor. We could
show, that the isotropic pressure is mainly determined by the
(instantaneously) dominating crystal structure. Normal pres-
sure differences are close to zero during most simulation
runs. Nonvanishing normal pressure differences occur if de-
fects(blocking the flow) are created which the system cannot
accommodate. The shear stress is found to depend on the
modes of collective motion of atoms stacked into hexagonal
planes. The NEMD results for shear stress and normal pres-
sure differences were compared with analytic calculations
for collectively moving atoms. In situations, where defects
are blocking the flow, except within a narrow slit, stick-slip
motion under very high effective shear rates is observed. The
stick-slip motion observed in this work is relevant at the
“nanoscale.” On the level of several asperities, during a dry
solid friction process, stick-slip might become coarse-

grained and smooth, or trigger stick-slip on larger scales.
Conclusions about these mechanisms are obviously out of
reach for the present simulations. However, stick-slip on the
nanoscale is accessible when sliding a blunt tip over a sub-
strate. In this application shear deformation is confined
within several layers around the interface.

The generic embedded atom model has been further ex-
tended to study interfaces between different metals with
similar lattice constants. We illustrated the dependence of the
heat of solution and the local density for a single substitu-
tional impurity on model parameters. The mechanism of
mixing (or mechanical alloying) are similar for all three ver-
sions of interface: homogeneous, with additional embedding
interaction and with different shear moduli. Unexpected at
first glance, the additional embedding interaction leads to a
pronounced increase in the local density. For the same sys-
tem, penetration of inclusions through the interface and sub-
sequent mechanical alloying has been observed and dis-
cussed. Further, gradual alloying at the interface has been
traced back to the mismatch(final angle) between the inter-
facial plane and shear direction. In this early stage of me-
chanical alloying, we do not detect an influence of the addi-
tional embedding interaction on the shear stress. In our
simulations, the area where two materials are mixed occupies
only a small portion of the total volume and thus only
slightly influences the pressure tensor components. The low
degree polynomial format of GEAM comes together with a
simple relationship between the strength of the two body
interaction and the shear moduli in the limit of low tempera-
tures, which determine the resistance of the system to the
shear deformation. We find a dependence between ratios of
shear moduli, shear stresses, and effective shear rates in two
materials, while the values for moduli, shear stress, and shear
rates of the pure materials seem to be(at least in our study)
uncorrelated. The explanation should be that modes of col-
lective motion of hexagonal layers are coupled across the
material interface.

Interfaces between metals with different lattice constants
where potential incommensurabilities increase the number of
dislocation types remain to be studied. The features observed
in this work should be generic to high-speed friction at the
metal-metal interface. Except for very finely polished sur-
faces, mesoscale inhomogeneities and inclusions are known
to play an important role. The recently developed mesoscale
grid free simulation techniques offer the potential for mod-
eling metals at larger scales[56–59]. The nanoscale physics
discussed in this manuscript provides ingredients to be used
by these methods.
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FIG. 19. Structural snapshots(left) at the interface of two ma-
terials. Shown are systems with three different shear moduli at time
t=4000 (reduced units). Corresponding parameters areeAA =1 and
eAB =eBB=0.5, 0.8, and 1.2(from top to bottom). Snapshots are
obtained via NEMD with 43 200 particles. Each slice has a depth of
unity. The angular distribution(right) of directions to the closest
neighbors is provided for the dominant structures.
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