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Microscopic structure, dynamics, and wear at metal-metal interfaces in sliding contact
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The “generic embedded atom mod€BEAM) has been investigated recenfighys. Rev. E69, 021509
(2004)] to analyze the qualitative equilibrium and nonequilibrium properties of bulk metals in both undeformed
and shear deformed states. In the present work, a natural extension of the GEAM is proposed and applied to
characterize the microscopic structure, dynamics, and wear at clean commensuratg- metal
meta), and metgl-metaj sliding interfaces. Nonequilibrium molecular dynamics simulation, used as a GEAM
solver, reveals that the dynamics of dislocations, crystalline domains, and related flow befsixéssstensor,
shear modu)i are coupled. The rotation of crystal domains is detected to trigger material mixing at the
interface in early stages of sliding. Further, we study the dependence of structural changes in inhomogeneous
metal interfaces on the relevant model parameters. A relation is established between shear moduli, effective
shear rate, and shear stress across the interface.
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I. INTRODUCTION intermediate structure, and material transfer at the interface
o o ) between identical and different metals is less well understood
The dry sliding friction between atomically flat commen- [13,14.

surate and incommensurate surfaces are fundamental typesTpe present study focuses on the effect of the choice of
of friction in the tribological sciences. When two unpolishedjnterfacial parameters on the microscopic dynamics and
solid surfaces get in contact, either by touching, or by applystructure in order to characterize a simple embedded atoms
ing a moderate load, they actually interact only over a smallyqde| for metals, and to explore its range of applicability. To
fraction of their total macroscopic area of contact. This load+hjs end we consider a stationary shear deformation between
bearing area consists of a number of asperities since miCrenetals sliding past each other with large relative speeds. We
scopic roughness is strictly unavoidable. Asperities are theestrict ourself to the study of metal-metal contacts, where
spots of exclusive relevance for the understanding of the supe effect of the interfacial parameter is most transparent
macroscopic mechanisms in dry solid friction and adhesiv%nhough the choice of parameters does not reflect any par-
wear. The variety of processes taking place at friction suryjcylar chosen “real” situatiorfwe will come back to this
faces(such as inhomogeneous plastic deformation of a Sproint in Sec. Il B. The results help to predict the micro-
surface layer, phase transformations, material transfer, Mmegopic behaviors when two blocks of metal with similar lat-
chanical alloying render it difficult to develop a general tjce constants but different structural and mechanical proper-
approach for describing the microscopic structure, dynamicsjes come in direct solid contact. The present study focuses
and wear in the course of rubbirfg—4]. With the develop- o the role of dislocations, created under steady shear defor-
ment of atomic force microscopy, tribology has reached thgnation, for the flow profile, local structure, and pressure ten-
nanoscale[5,6]. But the atomic friction microscope has its sor, |t is thus complementary to recent large-scale simula-
own limits, in particular for “high speed” friction, and it is  tjons of nanocrystalline metals where for small strasrsall
restricted to extremely sharp tips. This explains the interesme windowy the generation and dynamics of dislocations
for numerical simulations of friction. Recent theoretical stud-p54 peen studied in detail; see Refs5-19.
ies using atomistic models and molecular dynamics simula- Eqr the interactions between metal atoms we adopt an
tions have provided a better insight into friction on the aytension of potentials used in Ref&4,19. For this model,
nanoscale. Such studies offer detailed information about thge total electron density is approximated by a linear super-
influence of solid and fluid thin films on static friction, pho- position of contributions from individual atoms. The electron
non dynamics, and the transition fr_om stick slip to sm(_)oth(or embeddingdensity at the center of mass of any atom is
sliding [7-10}. A rather complete picture about dynamical expressed as a sum over densities from neighboring sites. In
dissipation during slip-stick motion and the solid sliding re- aqgition, there is an energy contribution due to the ion-ion

gime emerged10-13. On the other hand, the relationship jnteractions. Accordingly, the embedded atoms energy is ex-
between material properties, long range elastic deformationgyessed as

N
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TABLE |. Experimental value$29—-33 for Cu, Ni, Ag, Au, Pd, and Pt: lattice constaay, particle number density, energy per particle
(cohesive energyE., bulk B, and shea moduli, along with heats of solutiohE for given host-impurity pairs. The stacking fault energy
vsf and unstable stacking fault energy are obtained with tight-binding and first-principles calculations in R&%,35. For GEAM metal
constitutive properties are given in both in “re&tfimensiona), and reducedadimensionalunits (bottom row.

2 n Econ B G Vst Yusf |')’usf_ 'st| AE (host impurity
Metal (nm) (nm3) (eV) (GPa (GPa (eV/nn?) (eV/nn?) (eV/nn?) (eV)
Cu 0.362 85.9 3.50 142 59.3 0.4 1.25 0.85 0(@8—Ni)
Ni 0.352 84.6 4.45 183 94.3 1.14 1.48 0.34 O(INL— Cu)
Ag 0.409 58.0 2.95 101 335 0.11 0.58 0.47 -0(Ag—Au)
Au 0.408 58.5 3.81 174 30.7 0.23 0.69 0.46 -0(A6—AQ)
Pd 0.389 68.0 3.91 195 54.3 1.06 1.95 0.89 -qPd—PY)
Pt 0.392 66.4 5.77 283 65.1 1.68 2.45 0.77 -QRE—Pd
GEAM 0.271 72.5 1.91 179 52.7 0 1.00 1.00 (dimensional
1.12 0.993 0.552 4,442 1.309 0 0.021 0.021 (adimensiongl
N . _ ¢O 4 3
pi= 2 WijW(I’”) +w(0), (2 Ur) = r_g[B(rcut_ - Arew— rmin)(rcut_ N7, 3
j#i
r r\3
whereE is the total potential energy of the system made up w(r) = Wo<1 + 3;”)(1 - a) , 4)

of N atoms, andp; is local embedding density constructed
from the radial distances’=|r;—r;| of atoms{j} “surround-  for r<rg,, and2(r)=0, w(r)=0 otherwise, with an energy
ing” atom i located at positiorr;. The model requires the scalegy, a length scale,, an interaction rangg,;,, a cutoff
choice of a radially symmetric weighting functiav(r), and  radiusr., and a pre-factor obtained by normalizing the
w(0) is the local embedding density of a solitary atom. Theweight function, wy=w(0)=105/(167r3,). The parabolic
embedding functionaFF(p;) constitutes the energy of a par- GEAM embedding functional reads

ticle represented by the embedding dengityand the radi- _ 6

ally symmetric two-body interaction is modelled through the Flp) = Faold(p = paed” = Wo = paed’] + -+, (5)
potentiall/. The (effectively many-body model potential in wherepgesis the desired embedding density, dhg1 is the

Eq. (1) serves to model a variety of metal properties. Com-embedding strength of GEAM. Odd terms in embedding
pared with the model described in Rgf4], the coefficients  density do not occur in this “expansion” because they create
g; andw; are newly introduced to model the properties ataphysical, destabilizing forces. A linear tethp=(p—pged is

the interface between tw@r morg metal species in contact. ot present because it could be adsorbed by a modified pair
They allow us to specify the strength of interaction betweemotentialz/. The dots in Eq(5) represent higher-order terms
atoms belo.nging to the same and to different materials_. Sincg, Ap which may be considered in order to obtain more than
we are going to deal with two metalsype A and B in 3 qualitative agreement between theoretical and experimental
contact throughout the manuscript, the coefficiesfscan  values for cohesive energy with respect to the quantities
take one of the three valuega, €gp, Or éas =€ga, depending  |isted in Table I. The desired GEAM embedding density is
on the species to which atornand] belong(either Aor B.  get to py.=ry°. The particle number density is denoted as

The same applies to the; interaction strengths. As will bé  n=N/v. The minimum of the binary potential is located at
shown in Sec. Il D, these coefficients affect the heat of soluthe distance =r,,;,,=26r,~1.12, (as for a Lennard-Jones
tion and hardness of the material's interface. By default, anghotentia), the cutoff distance is set tQ = 1.6
if not otherwise mentioned, all interaction strength param-
eters are set to unity. Thus the default igbalk) system
without marked interface. B. Crystal structure

For a system made of particles occupying ideal lattice
sites(or any other configuratigrthe cohesive energy, or en-
Il. GENERIC EMBEDDED ATOMS (GEAM) MODEL ergy per particleE.=E/N is calculated from Eq(1). The
variation of this energy subject to a uniaxial volume conserv-
ing deformation referred to as Bain deformati@®,21, pa-

A particular choice for the model functi¢al)s 2/, w, and ~ rametrized by the rati@y;oq/aj010 between sides of a con-
F has been motivated in Ref19], and leads to the generic ventional bce cubic cell22], is presented in Fig. 1. Under
embedded atom modéGEAM) metal. For this model, both Bain transformation the system transforms from a bcc struc-
the binary interaction potential and weight function are poly-ture arjoq/a019=1 into an fcc structure aByoq/a010)
nomials in the interparticle distance ~1.414. Both fcc and bcc structures correspond to local

A. Definition
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FIG. 1. Cohesive energy vs ratiayioq/8ar01g) during volume

conserving tetragonal Bain transformation, described in Sec. Il B. FIG. 2. Cohesive energy contours in the vicinity of the Burgers
The transformation of the ideal GEAM metal lattice is presented forransformation path; cf. Sec. Il B. The system is simultaneously
global number densities=0.98, ...,1.06. The bcc structure occurs deformed(aygy1) in [011] direction and sheared by an amount

at 8109/8019~1 and thg fee ata[lo@/a[‘?lolzl'd'lﬂ" Thg Inset along the[011] direction/gradient directiof011]. For a Burgers
shows the effect of density on the cohesive energy for ideal fcc 4nstormatior23] the original bec structure is transformed into the
and bec structures. All quantities are given in dimensionless rez.. structure after being deformed by9, 3, and -11 % along the
duced units; cf. Sec. Il E and Table |. [Ol?], [011], and [100Q] directions, respectively, and subsequently

. . . ) ~ sheared withy=1/3.
minima of the cohesive energy with respect to this ratio.

[Doulrcl)]ng n%?g'ot{]agﬁzrggﬁgog' :{Pflkﬁf Zt;técélireaﬁggt;?g;s ?Loen%tructure. Recent studies suggest that the dislocation activity
y= 0 P g is not determined by the value of the stacking fault energy

L p
[10Q] direction by about 21%, so that these axes transform t%lone. The difference between stacking fault energy and un-

[011], [011], and[100] axes of the fcc structure. Burgd®3]  staple stacking fault enerdy,s— y«| has been included into
suggested a mechanism for the bcc to hcp transformation thgie descriptiof15-17,3% For the case of GEAM, the dif-
can be also applied to the transformation of bcc into fccrerence]y,q— ys is comparable in magnitude with the value
structure. For this transformation mechanism the original bcgpserved in metals with lowy values; see Table {ii) In the
structure is deformed along tH@11], [011], and[10Q] di-  strong shear flow regime the thermal energy of the particles
rections for =9, 3, and -11 %, respectively, and subse-is comparable, but smaller than the magnitude of the poten-
quently sheared (with y=1/3) in shear direction tial barrier y,. Therefore atoms in fcc single crystals sub-

[011]/gradient directiorf011]; see Fig. 2. Unexpected at first jected to strong s_hear deformation e_asily slide into their near-
glance, the energy barrier between fcc and bee structures RSt Potential minima, creating stacking faults.
similar for both structure transformation mechanisms, cf, N order to estimate the effect of the given struct(ire,
Figs. 1 and 2. Yet the Bain deformation induces a relative’c9) on the stability O,f systems for ,Wh'Ch the temperature
shift of layers of atoms in the crystal, similar to the shear in@d the volume are fixed at prescribed values, one has to
the Burgers mechanism and therefore the degrees involved fPnSider the Helmholtz free enerdy(T,V)=U-TS [25].
transformation of structure are very similar for these two!he internal energyJ of the system is defined as a sum of
mechanisms, as further discussed in R24. pote_nt|al and kinetic energies, cf. Se<_:. I, anql thus_ directly
For GEAM, both fcc and hep structures are ground statévailable from our molecular dynamig#1D) simulations.
structures, i.e., structures with minimum energy per particleConcerning the absolute entroyhowever, there is no such
This results in a zero stacking fault energy and energy basm; recipe. The “thermodyngmlc mtegratlon“ technique
difference between fcc and hcp structure. For this reasorprowdes a_workaround and estimates the dlff_erence between
one might expect pronounced defects—stacking faults an€€ energies of two phases. The Gibbs relation
twins—in a GEAM metal under shear “flow,” i.e., shear de-
formation at constant deformation rate. This need not to be dF=-PdV-SdT (6)
the case in the strong flow regim@) Stacking fault is cre-
ated when two semi-infinite blocks of fcc crystal are shearegyyantifies how changes in volume and temperature affect the
on the(111) plane along 4110] direction. Along this path, Helmholtz free energy. The basic idea is to transform, via
the system has to first pass through an energy barrier referrédD, the fcc solid into a bee solid along the Bain transfor-
here as the unstable stacking fault eneggy. The stacking mation path at constant temperatuf26,27. Then, the
fault results in the formation of a hcp plane inside the fccchange of the free energiF is
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FIG. 3. Change of the free energy vs ratiQoq/ a1 during 0 ' ' ' !
uniaxial volume conserving Bain transformation. The transforma- 1 1.01 1.02 n 1.03 1.04

tion of the ideal GEAM metal lattice is presented for temperatures
T=0.01,...,0.04. Both fcc and bcc structures correspond to local FIG. 4. Structural phase diagram of GEAM in the temperature-

minima of the cohesive energy with respect to the ratigy/a019- density plane calculated via thermodynamical integration from
NEMD simulation data. The curves separate densities and tempera-
dF = - Py Adx—- P, Ady- P,Adz, @) tures where bcc and fcc structures are energetically favored for two

values of the two body interaction paramedgk =0.5 (dashed ling
] ) and 1.0(bold). All quantities are given in dimensionless reduced
whereP; are diagonal, Cartesian components of the pressurgnits.

tensor(i=xx,yy,z2 andA, denote surface areas orthogonal

to these directions. Figure 3 shows the change.of the specifiG,te as soon as the external field is released.
free energyAF/N along the Bain transformation path at
number densityn=1 and temperaturés=0, ...,0.04, calcu-
lated via MD.

In the limit of low temperatures, the structure with the  The pressure and the elastic modulus tensor is to be ob-
larger internal energy is the thermodynamically stable onetained using the virial expressiori$4,2§ from analytical
Here the bce structuréyyog/ajo19=1) corresponds to a lo- calculations and also from nonequilibrium molecular dynam-
cal, the fcc structure to global minimum. A larger entropy for ics (NEMD), by which the GEAM model is solved numeri-
the bce structure compared to the fcc structure is expectedally (cf. Sec. ll). The symmetric tracelesgnisotropig
since bce is less densely packed. Accordingly, the free erPressure tensor has five independent components. In the spe-
ergy of a bce structure should decrease faster with increasirgjal case of simple shear flow with velocity in thelirection
temperature. At sufficiently high temperature the local mini-and velocity gradient in thg direction only three indepen-
mum atay;oq/ 801g=1 can evolve into a global one. This is dent components have to be consideisiiong as symmetry
what we indeed observe for the GEAM metal, cf. Fig. 3, for'S Not broken in an average sepseet us denote them con-
temperatured >0.03. In Fig. 4, thermodynamical integra- Veniently asp. _ o wherep, = (P,,+P,)/2 corresponds to a
tion is applied to calculate the structural phase diagram fophear pressure, two normal pressure differences pare
GEAM in the temperature-density plane. The diagram shows™ (Pxx~Pyy)/2, and po=[2P,;~(Px+Py,)]/4, respectively.
regions where bcc and fee structures are energetically falhe scalar(isotropig pressurep™ is the trace of the total
vored, and data for two values of the two body interactionPressure tensor divided by the spatial dimensiqft
parameteres, =0.5,1.0. The thermodynamical integration =Py./3. Note that the “stress tensor” is identical with the
also provides the size of the potential barrier between twdressure tensor except for its sign, i.ep.-is the shear
structures along the transformation path. This barrier is smaftress.
in magnitude(A =~ 4x 104 compared with thermal fluctua- First, we extract these pressure tensor components and the
tions at room temperature. Nevertheless, the bulk materigiohesive energy in the limit of low temperatures in two
stays in the bcc structure after rapid cooling since the strucé@sesi(i) shear directiorj100)/gradient directior{010], and
tural transformation away from this state would involve col-(ii) shear direction[110]/gradient direction[111]. In the
lective motions of atoms. The bulk material, free of defectsformer case the distance between the two minima corre-
cannot cross this barrier due to the thermal fluctuations evesponds to a shear deformatior=2, in the latter case the
at high temperatures. Under shear flow, however, the matesame distance corresponds &13/2. In the undeformed
rial can sufficiently accumulate strain energy and cross thistate(y=0) particles occupy ideal lattice sites, i.e., are lo-
barrier, while relaxing to an energetically more preferredcated in a position of minimum potential energy. The cohe-

C. Bulk characteristics
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D
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0.1 2,=0.321 --- 7

] ) ) o FIG. 7. Normal pressure differencgs (ticker curve$ and pg
FIG. 5. Shearing of the ideal fcc crystal in the limit of low (thinner curves vs shear deformatior(y) for shear direction

f[empergtures. The change. of the cohesive enéiigy, W'th the. [1?0]/gradient directiorf11]] in the low-temperature limit; cf. Sec.
increasing shear deformaticy) is presented for shear direction IV A. Particles follow sinusoidal trajectories with amplitudes

[100Q}/gradient directiorf010Q] (thick curves, upper insgaind shear ) L

L — . L . . =0, 0.137, and 0.321 in vorticity directidr221] and a wavelength
dlrectlon[llo]/gradlent dlrgctlor[ll_l] (th.m CUrves, 'OW‘?r insgt equivalent to the distance between two potential minima. Prior to
In the latter case, sinusoidal trajectories with amplitugle0, the onset of shear particles occupy ideal fcc lattice sites.
0.137, and 0.321 in vorticity directidr221] and possessing a wave
length equivalent with the distance between two successive poteggradient direction[111] of the crystal, has minimal resis-
tial minima are assumed. tance. Particles are then stacked within densely packed

hexagonal layers corresponding to {i&1) plane of the fcc

sive energyE, increases with shear deformation until an un-crystal structure. The shear stress and the height of the po-
stable equilibrium is reached, cf. Fig. 5. The correspondingential barrier are further reduced through collective zig-zag
shear stresses are given in Fig. 6. A system with bcc or fcenovements of hexagonal layers within the plane; see
structure produces maximum shear stress and maximum réig. 6.
sistance to shear in shear directipi00)/gradient direction Next, we assume sinusoidal trajectories between two po-
[010], where particles have to cross the highest potential bartential energy minima with amplitudg, in the vorticity di-

rier. The fcc system, when sheared along[th#0] direction/  rection[221] in order to rigorously study the influence of

0.8 zigzag motion. Forz,=0.321, the trajectory goes through

: ' ' C 220, @ — side minimum. In this case, the height of potential barrier
0o z:=0.137 .......... and the shear stress are reduced to a quarter of their values
06 o eo a=0.321 -o-omms 4 for the straight trajectoryz,=0). The normal pressure differ-
&0 @ encespy and p_ change their signs upon increasing the am-
plitude z,, as demonstrated in Fig. 7.

04 i In the limit of low temperatures the simple GEAM yields
expressions for several constitutive properties without ap-
proximations with computational effort of ordé&\; cf. Ref.
[14]. The elastic coefficients—bulk moduluB, average

shear moduliG, C,4 andC44=(C;;—C;,)/2—depend on the
second derivative of the free energy for a nearest neighbor
model[14]. The second order term in the embedding func-
tional, Eq.(5) without dots, mostly determines the values of
the elasticity coefficients including, C,4, and C;, charac-
terizing the response of GEAM on volume changes, since the
embedding density is usually very close to the desired em-
FIG. 6. Shear stresé-p,) vs shear deformatiofiy) for shear ~ bedding density. The orientationally averaged shear modulus

direction [100]/gradie£t directionf010] (ticker curve, upper insgt G, and its maximum and minimum componerig, andC,y,

and shear directiofl110]/gradient direction{111] (thinner curves, respectively, characterize the material’'s response to a volume
lower inse}. In the latter case, particles follow sinusoidal trajecto- conserving shear deformation. This type of deformation
ries with amplitudez, in vorticity direction[221] and a wave length  leaves the embedding density unchanged and therefore does
equivalent to the distance between two potential minimayAD not contribute via the embedding functional to the free en-
particles occupy ideal fcc lattice sites. ergy. For this reason the shear moduli scale with the two

+
R
02
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FIG. 8. Effect of GEAM parameterg,g andwug on the alloy FIG. 9. Effect of GEAM parameterg andw,g on the number
heat of solutionAE for a single substitutional impurity in the fcc densityn=N/V (reduced unitgat zero pressure for a single substi-
crystal lattice. tutional impurity in the fcc crystal lattice.

body interaction parametees, andegg linearly, more ex- result, the number densityn) around an impurity increases
plicitly, in case of average shear modulus we h&@y)  with increasing differencv,g —Waa| in order to achieve the
=eyG(ex=1.) for X e {AA,BB}. desired vanishing isotropic pressure; cf. Fig. 9. The heat of
solution increases with the absolute distajveg; —waa| due
to the parabolic form of the embedding functional; see Fig.
D. Doping characteristics 9.

In this section we calculate heats of solution and shear
moduli for binary metal systems, and metals with metallic E. Dimensionless units
inclusions, where different metals are in contact. To this end \ypen implementing the GEAM model and solving it nu-

we can also demonstrate the usefulness of the polynomi%erica"y, any measurable quantiqy with physical dimen-

GEAM format. , _ sion [Q]=kg* m# s” specified in S| units kg, m, and s is
The heat of solutiol\E for a host bulk material of type A made dimensionless by a reference quanti,y
re

and an inclusion of type B is defined as the change of th%ma+y/2rg+'y¢6‘y/2, such thatQ=QyeeQuer. Dimensionless

total system’s energy when an atom of the host material A ig, ,antities(Qyeed in this manuscript are therefore always
replaced by an impurity atom of type B. To estimate the iven in terms of these “referendéennard-Jonasunits.”

effect 9f ntm(iel hparametersl OT tthethheat of t.?OI.Ut'ct)r? '? "’?t he quantitiesn, ro, and ¢, provide the scales via the inter-
approximate tashion, we caicurate this quantity in the imit; ., potential Eq(3) and the equations of motion. The

of low temperatures using the following procedure: an atonm) ¢ : :
: . . Lo rence val for length rticle number densi ner
from the bulk is replaced by an impurity; the radial distance eference values for length, particle number density, energy,

. . ; ; . ) temperature, time, shear rate, presgoreslastic modulusin
to its next ne!ghbors is adjusted so that _(tmial) ISOOPIC — torms of the simulation parameters are therefoge=r,
pressure vanishes; the heat of solution is calculated as t =3 & o= Po=KaTren Lier=To(M/€ o) ™2 - =t and
difference between total energies between start- and fin "”_(g ;__3_'r;f 0 ?e;ef’e(r;five? B ?hoo,sizrgef jeg) Ik
configurations. For metals with similar crystal lattice con—_zgklg 0 I; re_ﬁ"(’)reapa pone z.bta)i/ns¢ 3 45ng/ On B
stants, within focus of this worksee Table | and Ref36]), _ LA 0~ - ' ref

=725 nm?, and ry;=0.24 nm, for GEAM. For 0.8 exp

the true amount of relaxation is small. For that reason also< 1.2 and 0.4 e <15 the alloy heats of solution of

corrections to the approximate values calculated here mu o ]
be small. Resulting curves are displayed in Fig. 8, where th}:}’EA'\/I metal are within the range expected for real metals;

.~ - " cf. Table I. Atomic masses of most metals are within the

effect of the strengthe,g andw,g on the heat of solution is - 25 .
> > _ _ . rangem=(0.8-3.5 X 10> kg, thus a reference time ts;

presented. Foeyg=eaa=1, andwyg=was=1 there is no 092 1083 s Constituti " d heats of
difference between impurity and material, thAE vanishes ~( . 0% . S -ONSHIULVE properties and nheats o
in that limit. The heat of solution increases linearly wilg splqtlon aré given in Table | fpr three pairs of metals with
as the binary interaction potential does. From Fig. 9 we se&imilar lattice constantéCu—Ni, Ag—Au, Pd—PY.
that the density corresponding to zero pressure increases with
exg as a result of the mismatch between zero pressure den- Il. SIMULATION DETAILS
sities for systems interacting solely via binary and embed- ,
ding interactions, respectively. The sizevgfs influences the A. Algorithm
value of the embedding densify) at the impurity location Simulations are carried out in a three dimensional, cubic
in such a way that it is decreasing with decreasing. As  simulation box. The force acting on partidlés obtained by
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variation of the energyE,=F;- &' of Eq. (1), and reads studied several system sizes to make sure that the presented
: i results are not artificially driven by finite size effects. Yield
Fl=2>F, ) stress and the frequency of defects formed in the steady state

17 shear regime depend via the energy needed to form a defect
on the system size; see R@48]. Thus it is important to use
_W”< dF(p) dF(p) ) w a sufficient large number of particlédl>5000 to obtain
i O\ dp | ap |y arly reliable information about dislocation formation, dynamics,
and microstructure generation. Values for the isotropic pres-

Particles move according to Newton's equations of MO"sure are estimated from the penetration hardness, defined as

tion, which are second-order ordinary differential equationst e ratio between loadl and contact area at onset of plas-
S°|Ve.d numerically n subs_equent time steps using a standaE flow. For most metals, the penetration hardness lies in the
velocity-Verlet algorithm with the forces from E(B) [37). A 110 0050 002Beduced L] units cf. Refs.[49,50. The
suitable integration time step ist=0.01 [reduced Lennard- dry solid friction process is characterized by large relative

;]?QS;;;:}S% ubnol';s]vzci?[;]a Qieotgilca:xgaz:jna:eTgﬁ:j?tti%rﬁé 'IAS Cl?sbég velocities at the interface. In simulations presented here the
P y ‘relative velocity is about 0.@% (the shear rate i§=0.00J),

The cenral box represents justa fragment. of an asperity. '.:%herecT is the transverse sound speed. Thus for the GEAM
this reason, the properties of the system like overall dens'tymedal the relative velocity is of the order of 30 m/s. Such

\?vr:terﬁ tr?er:asdilrﬁﬂfé\tﬁ)r;dcglmﬁoeirritu(r)zeaarlesr:?;?get% rgqeaf;c:]nstq%h velocities are expected for example in case of thread
: P . breaking[51-53. The time scale of a solid friction process is

Ilr?gvf)l,of/)ve(:(l)o g:feg}sge\?vi?geaSg;\gzg;‘;&%;:re]lg;g/jier;;gggn Nestimated by the size of an average asperity and velocity,

' " . ) leading to a value of approximately 100 ns. The typical
.(Lees-Edwards bounda_ry cond|t|()ns'|'he'f|ow SImuIat|on. length of a simulation run is fOtime units which corre-
mtroduce_s the_shear rate= ﬁ”.xl’?y as an mde_pendent varl- sponds to a total simulation time of about 2 ns. The total
able. While a linear flow profile is observed in steady shear

. - stimulation time represents only a fraction of the time scale
during the transition towards a steady state, parts of the SYSt the friction process. However, as shown in Sec. IV A the

telm I_r:ove in blocks. TO slerlously dhaTdIef_IS|muI§_t|onséj V;’:thst(:ltionary state structure is reached soon after onset of the
P ugtl t?slzt)rtjjctures_, \éve |rr|1p ler?entt(; a profi ?I un |as|,e 'tt' € shear flow and enables us to obtain a picture about interplay
mosta (. T) which ca culates the mean How VeIOCIIeS payyeen the microstructure, dislocation dynamics, material
self-consistently{38]. The kinetic temperature is introduced mixing, and flow propertiegstress tensor, effective shear

: i o — b o (p
thr?UQh peculiar velocities of particle§,=r'-u(r'), where rate. The MD simulations with simulation times up to 2.5
v(r') denotes themacroscopigflow velocity on position of w108 and with different initial configurationge.g., amor-

particlei: phous, with parallel slig[110]) and shear directions, and
extended in gradient directionare performed to ensure that
processes that might dominate shear deformation are recog-
nized properly during the limited time window of the MD
Peculiar particle velocities are seen as thermal fluctuasimulations to be discussed.
tions and suppressed by the thermostat. The first method car-
rying out a simulation under strongly controlled conditions
was the velocity scaling algorithm proposed by Woodcock
[39], which conserves a canonical distributigeee Ref. The common neighbor analysis method based on planar
[4Q)), if after each integration step, velocities are scaled tagyraphs is utilized here to obtain information about the local
satisfy the constant kinetic energy condition. The efficientorder within NEMD atomic configurations. This method re-
procedure is easily implemented. Further details of this temlies on a suitable definition for “relevant” neighbojs4].
perature control method are given elsewhere; see Ref®airs of atoms are considered to be relevant neighbors, if
[41,42. Alternatively, shear flow can also be generated bythey are within distance of the first pair correlation function
modifying the equations of motion with a SLLOD algorithm minimum. The diameter of the second coordination shell for
[43,44. One should note that NEMD simulations of sliding a bcc structure is just 15.47% larger compared with the di-
interfaces have a minimum shear rate below which compuameter of its first shell. Already at low temperatures atoms
tational costs become expensive. For particular low ratedrom these two shells are mixing, for the bcc structure we
alternate simulation strategies, employing transient time cortherefore have 14 relevant neighbors. For fcc and hcp we
relation functiong45], evaluating differences between equi- have 12 relevant neighbors, i.e., the ones in the first coordi-
librium and nonequilibrium trajectorigg6], or beyond equi- nation shell, because, in contrast to bcc, the above value is
librium molecular dynamic$47] may be considered. sufficiently large(41.4%. The method is stable against den-
Boundary conditions potentially effect the newly formed sity fluctuations and minor structural changes as discussed in
crystal structure. Crystal planes tend to contain a multiple oRef. [54]. Polyhedra formed by relevant neighbors are trans-
unit crystal cells between the boundaries of the system. Thikted into planar graphs with polyhedra edges as branches
results in a deviation between densely packed planes arahd neighbors as nodes. Since these graphs contain only in-
planes normal to the flow gradient, potentially increasing thdormation about connections, orientation, and thermal dis-
probability for the appearance of defects at finite size. Weplacements of the crystal structure do not influence the

a

Fij =- e”
or

. 3
7S (fi-v(r)2= NigT. (©)

B. Common neighbor analysis
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FIG. 11. Average square displacement of particles projected to
velocity gradient directiorty), and vorticity direction(z). Initially,
particles are placed at ideal fcc lattice sites with the axgsz
corr_espo_nding t¢100Q], [010], [00]] (thicker curves[]) and[111]],
[221], [110] (thinner curves[]) directions in the fcc lattice.

02 timg"(‘lo" U%t?its) 0.8 10 different model metals feel an extra attraction due to the

embedding term and we chooggg # 1. In Sec. IV C two

FIG. 10. Relative amount of volume occupied by fcc, bce, andmaterials with different shear moduli are in contact, i.e., we
hcp structures vs time. The bold cur(ery) represents the amount Setegg # 1 (while keepingeag =€aa)-
occupied by all three crystalline structures together obtained via For all three cases, a contact zone at relative motion in the
NEMD simulation of a homogeneous GEAM metal subjected tox direction, with a load and shear gradient in thdirection
steady shear. Initially, particles are placed at ideal fcc lattice sitess simulated. The temperatuiie=0.01 and densitn=1 are
with the X,y,z axes corresponding tf100], [010], [001] (thicker  held constant. The initial positions of the particles are fcc
curves, systenil) and[111], [221], [110] (thinner curves, system lattice sites, where axesy,z correspond to the directions in
0) directions in the fcc lattice. starting crystal configuratiorj100], [010], [001], and[111],

[221], [110], denoted with(l and [, respectively. Simula-
analysis. The obtained planar graphs are compared with plaions are performed wittN;=43 200 andN;=48 668 par-
nar graphs of ideal bcc, fcc, and hecp crystal structures. Thécles. In the latter case, the shear direction is orthogonal to
method resolves the local structure surrounding each atonthe slip plane. The shear rate 50.001. The shear defor-
For the choice of parameters made here all the three crystabation is switched on at=0. In our simulations of shear at
structures are observed. The ratio between all atoms whicthe interface between two blocks of different metals, we use
belong to a structurgcentral atom plus its neighbors, no homogeneous GEAM configurations, presheared for 4000
double countingand total number of atoms in the system istime steps, as startup. Each particles’ type is set according to
taken as a measure for the amount of this crystal structurehe side of the interface where it residestaD; type A is
Domains with different crystal structures can overlap, thereassigned to particles with negatiwe coordinates. At the
fore the total amount of crystallinitfcry) is not just the sum, boundary in they direction there is an artificial interface.
but often less, than the amounts separately occupied by fc@articles crossing this interface change type.
bce, and hep structure; cf. Fig. @&).

A. Clean metal,-metal, contact
IV. METAL-METAL (GEAM-GEAM) CONTACTS Ei ider d lid friction bet two block
SUBJECTED TO SHEAR Irst, we consider dry solid friction between two blocks

made of identical GEAM material, i.ew;=¢g;=1 for all

In this section we present results for three different types,j e {A,B}. After the shear deformation is switched on, the
of metal-metal contacts subjected to shear. While the twaystem responds with growing shear stress. After reaching a
materials are characterized &g, ,Waa, and egg,Wgg, re-  yield stress at;=180,t;=110(reduced units we observe a
spectively, the interface is characterized by the strength ofudden increase of the amount of hcp structure as demon-
the binary interaction parameteesg and wyg. We begin  strated in Fig. 10. Atoms move into the nearest potential
with studying the “homogeneous” case of a clean, and dryminima, causing shear of the crystal planes in oblique to the
metal-metal contact, where all the six interaction strengthshear flow direction. Layers of hcp structure are formed, and
are equal and set to unit§sec. IV A). Here, the interface tend to block the flow. During continued shear significant
arises due to initial conditions. In order to understand thestructural changes start to appear. The rearrangement of the
effect of the interaction strengths on the dynamical behaviorgrystal structure is followed by an increase of self diffusion,
we study two inhomogeneous cases upon varying a singler self mixing, of atoms. In Fig. 11, the average squared
interaction strength in both cases. In Sec. IV B, atoms otlisplacement of particles with respect to the shear gradient
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—_

(y) direction and(vorticity, z) direction normal the shear o
-y plane is plotted. These quantities do not only define the =
diffusion coefficient, but also monitor the amount of inter- ~
penetration of particles across the interface. After approxi- &
mately 1000 time units a stationary structure is formed. The_=<
particles are packed in hexagonal layers stacked along thi o
gradient direction to maximize the distances between par-Ezs ST ]
ticles as they shear past each other, and to reduce resistan & .
S 2 I //{'/ -

1

shear stress, -p, ——
2

<(vy-7y) >y

N WAk UL\

to shear; cf. Sec. Il C. For the chosen set of simulation pa- §
rameters, fcc and hcp structures are stationary state structure = 1.5 2 b
[54]. In the course of the structural rearrangement particles E 1. + o0
move in average for=1.3 reduced lengths units in shear §0_5 TR
direction, what is equivalent te=1.5 hexagonal layer dis- v

tances. For the fcc structure the most densely packed plane 0.4 0.45 0.5 0.55 0.6 0.65

correspond to thél11) plane, and slip occurs if110] direc- ' time (]04Uunits)
tion. The corresponding plane and direction in a bcc structure

is (011) and [111], resp.egtlvely. The shear direction is stick slip motion. Values for shear stregsp,) (top) and average
clqsely par.a"el’. bUt, definitely nonparallel, to the nearestSquare deviation of velocities from a linear profjleottom graph
nt_alghbor(sllp) direction of the newly formt_ed SFrUCture_; cf. Data obtained via NEMD with 43 200, 48 668 particles at density
Fig. 14 att=6500 for systeni]. The shear direction projects -1 temperaturd=0.01, and shear rate=0.001. Nonequilibrium
onto the point(e, 6)=(+m/2,m/2). A deviation between the 1 gecular dynamics simulation results for homogeneous GEAM
steady state shear direction and the fixed flow direction remetal subjected to steady shear. In starting configurations particles
sults in a small increase of the average square displacemesye placed at the ideal fcc lattice sites with the axgs,z corre-

with time. If the particles are moving back in direction of sponding to[100], [010], [001].

their starting positioriin y or z direction), the average square ) ] o

displacement can also decrease. The long time self-diffusiofnergy”[9]. Energy stored during stick is released to gener-

behavior, however, still remains unresolved within the actuaPt€ local phonons and later dissipated in the system. The
simulation times. stick-slip motion observed here is the property of those thin

Shear deformation inherently generates defects since a@Yers which interact strongly with the substraie].
oms can move oblique to the shear direction to reach some The kinetic and potential contributions to the pressure ten-

close-by energetically preferred states. Even when a statiori—Or can be computed separately via NEMD. The kinetic part

. SN . f the scalar pressure is, due to temperature control, given b
ary flow situation is reached, defects blocking the flow are P P g y

1ISO —
observed. These defects should be responsible for the diffeF

a C!.;!g'egniq

Lk
ALy L
ARSI A
FRA .“5;\__\: VS RYIN N

$q

! Yoty A
! 4 NN
1 R 11 1 I

FIG. 12. Section of a long simulation run for systéhrshowing

wn=NksT and of the order of the potential contribution to

he scalar pressure. The kinetic contributions to the shear

ence between the observed amounts of hcp and fcc Stru‘éiress(—m) and normal pressure differencgs o), however,

tures. Though they possess the same energy per particle In T . .
the limit of low temperatures, and occur together as rans e negligible compared with the potential counterpgnts

domly close packed structures, in our simulations the fccthe order of 0.1% as for dense fluid§55]. At t=6000 we
y P > . bserve an effective shear rat@+y for both systems. Simul-
structure shows up to be dominant. The explanation shoul ;
aneously, we observe that the shear stress and its fluctua-

be that the hcp structure a]lows shearing only in a sing| ions decrease. The explanation should be that different
plane and that it is less resistant to defects, as compared Modes of collective motion of densely packed hexagonal lay-
fce. After a defect, partially or completely blocking the flow, yp 9 Y

is formed. parts of the system move as blocks. Shear stress$&S yield different average shear stresses; see Sec. Il C. Also,
P >YST . - e existence of different shear modes should be responsible
then released locally, yielding very high effective shear rates

) . for slow changes of the shear stress in time. Normal pressure
We observed effectlve_ shear rates up tqmoundt 5000 .differences, however, are close to zero, and their behavior
in both systems, cf. Fig. 12. The material between blocks is . . ; . . :
X . . shows little connection with the intermediate flow properties.
moving fast in densely packed layers, and blocks are carrie ;
e observe a change of the normal pressure differences only

with the flow. Thus the increase of the effective shear rate . .
. . |{ the system cannot globally adjust itself to accommodate
alone does not result in larger average square dlsplacemenS ear deformation

of particles. The quasiperiodic spikes of the shear stress an The normal pressure differenge increases sharply in

square deV|at|(_)n of the ﬂO\.N vel_ocny f_rom_ a linear profile Fig. 13(thinner curve, after a defect is formed &t6600 in
indicate the existence of stick-slip motion in the system :
the system. Increase ofp_ is followed by a structural

cf. Fig. 12. The period between two spikes=sL00 time f . f f the f into b
units. During this process, in a first step the shear s,[restrans ormation of parts of the fcc structure into beg structure
) ' >3nd a decrease of isotropic pressure. The isotropic pressure

accumulates inside the blocks and the velocity profile Sdecreases since at the same temperature and density the bcc
mostly linear. In a second step, after slip starts, the accumus /e has negative isotropic pressé Figs. 10 and
lated shear stress is released in a thin layer between blockf3) Under structural transformation the originél slipL)
Earlier simulations of dry sliding friction between a single Ni =" = — = ==~ ’
asperity and a Cu surface show similar behavior: kinetic enblane[110] direction of the fcc structure transform into

ergy is converted into potential energy and stored as “straifi011) plane[111] direction, of the bcc structure; see Fig. 14.

066139-9



STANKOVIC, HESS, AND KROGER PHYSICAL REVIEW EO, 066139(2004)

0.12 3.14

0.08

i

] 0
oy
0.04
95 14 0
0 U]
0.04
SV 0

-0.04 -

HRE

0 0.2 04 , 0.6 0.8 1.0 o o )
time (107 LJ units) FIG. 14. Angular distribution of directions to closest neighbors

during the transformation between fcc and bcc crystal structures.

FIG. 13. Evolution of the isotropic pressupg, and the three  Snapshots are obtained via NEMD with 43 200 partigggstem
components of the anisotropic pressure tersar, with time; cf. [0). Simulation parameters aré=0.01, y=0.001, anch=1. Start-
Sec. II C for definitions. Results are obtained via NEMD with ing configuration is the ideal fcc structure, the flow, gradient, and
43200, and 48 668 particles at number densityl, temperature  yorticity directions correspond ti11], [221], [110] crystal direc-
T=0.01, and shear ratg=0.001 for a homogeneous GEAM metal tjons, respectively. The nodes represent neighbors and they are con-
subjected to steady shear. Initially, particles are placed at ideal fCRected with an edge if they are neighbors with themselves. Atoms in
lattice sites with the axes,y,z corresponding 19100, [010], [001]  g|ip planes are marked by bold lines. In this representation, the
(thicker curves, systerl) and[111], [221], [110] (thinner curves,  shear direction projects at point®, 6)=(xw/2,7/2).
system]) directions in the fcc lattice.

metal-metal interface. The mixing of the material at the in-

We could not simply classify this structure transformationterface was closely related with the fine-grained microstruc-
into one of the basic mechanisms described in Sec. Il B. Thgyre  which is created during the shear.

available results suggest, that both mechanisms are locally

present. During the transformation of bcc structure back into . - .

fcc structure, parts of the system transform along several B Metaly-metal, contact with additional embedding
different directions. Snapshots of the systémduring the Interaction
transformation(around t=7000 are presented in Fig. 15 | the interfacial embedding interaction parametess
where domains with different structures can be observed. Ak 1 s different from the embedding interaction parameters
t=7500 the fcc structure is recovered, a number domaingithin the bulkw, =Wgg=1 the local density changes in the
with different orientations are visible and the large-scalevicinity of impurities. The effect of this binary embedding
structure is oriented to block the flow; see Fig 15. Thesénteraction in the limit of low temperatures is discussed in
domains rotate with the flowvorticity). After t=8000, the  Sec. Il D. For GEAM, the local number densitE=N/V is
system is again partially aligned with the flow but different close to the embedding densipy calculated from Eq(2).
domains are still visible; see Fig. 14. The rotation of domainsrigure 16 shows the the evolution of the number density
is characterized by a steep increase of the average squatg,,+pg within the interfacial layer between two model
displacement in flow gradiertly) direction, while the dis- metals forw,z=0.3, 0.5, and 1.3three casés Embedding
placement in the neutrdk) direction is small. During 2500 densitiesp,, pg are calculated for each particle type sepa-
time units domains move ig direction for=2.5 layer dis- rately for each point at a square grid. The interface, inclu-
tances((Ay?~5.4). In Ref. [13], a similar behavior was sions, and vacancies formed during shear are visualized
observed for a two-dimensional embedded atom modethrough the measure,—pg.
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brer=6900 FIG. 15. Snapshots visualiz-

Roe { %OH,;@ ing the evolution of structure

[ ;o"ofo%;’%%i% e Ooréj;;.jga;%i; : during temporary transformation

%5%0&%%5 S of crystal structure from fcc into
25 o ‘°§’.§° o O;Ao"q%;,o%%%og;g;@ o bcc. Snap_shots are obtaln_ed via

B & §f§?f§°%%oo NEMD with 43200 particles

o008,

.
o
.

; gggf&oz%g?g’-so_oc)wg;gc%%o %%c (system O0). Each slice has a
S SRR depth of unity. Simulation pa-
rameters areT=0.01, y=0.001,
and n=1. The [111], [221],
[110] directions in the starting

e
DD

N
e
oY
.

16.5 : .
s configuration, a fcc crystal lat-
O, . .
-:;: tice, correspond to shear flow di-
0030008 rection, gradient direction, and
5950359 98050% . .
heseRasa direction of normal to the shear

s plane, respectively. The type of
local structure is indicated. The
shear direction is indicated in the
upper left picture. As before, all
guantities are expressed in di-

mensionless LJ units.

16,55
6.

The density inside the bulk material is constant and simicf. Eq.(5). This results in an increase of the local density for
lar in all these(threg cases. At the interface, we observe w,z=0.3. 0.5(light line in Fig. 16 and a decrease fav,g
changes in the local number density. The system minimize=1.3 (dark ling. For w,g=0.3, after a defect—followed by
the embedding energy locally by changing the embeddin@urgers transformation—is formed &t 7200, the part of the
density such that it matches the desired embedding densitgystem located around the contact plane starts to rotate with
the shear flow to form an inclusion. The microscopic inclu-
sion produced in sliding penetrates for about three length
units into the other material block. This process results in
mechanical alloying at the interface since the parts of the
inclusions move with different relative speeds in shear direc-
tion due to the flow gradient. For cross sections takeh at
=11 000 see Fig. 16. Similar behavior is observedvigg
=1.3. Forw,g=0.5, the slip direction of the crystal structure
is nonparallel with the interface. This leads to a gradual al-
loying of two materials parallel to the interface. We also
observe in Fig. 16, vacancies created during the shear flow as
black spots in the,+ pg density plots. Their vacancy is typi-
cally two atoms wide and has a life time between 50 and 400
time units. They appear with and without defects and tend to
be aligned with the flow.

Within statistical errors, we did not detect an influence of
the (additiona) embedding interaction on the shear stress
and normal pressure differences. This is plausible, because
the interface occupies only a small portion of total volume
and pressure tensor components reflect the material flow
within the whole system.

ear direction w,p=0.5 t/t,,,=1000

agyy =
L

9 =

=

=
=}

.0

FIG. 16. Cross section of the embedding density close to the
interface, averaged over a time peridt=200 for three values of C. Metal,-metalg contact
the GEAM parametew,g (arranged in columnsand three different .
times(arranged in rows The local density is estimated from the The_ fprm of t_he EAM allows to System_atlcall_y vary shear
sum of embedding densities of the two materials ps, p=pa moduli, e, ress'gance to shear deformation, with strength of
+pg (lower, more structured, nine density plptEmbedding densi- WO body interaction parametem, €xg, andegs; see Sec.
ties p, pg are calculated for each type of particles separately for allll D. We chooseegg=1. (basic GEAM metgland varyesa,
points at a grid. To visualize and resolve inclusions and vacancies a¥hile exg =€ . After onset of shear flow, an inhomogeneous
the interface the quantity,—pg is used(upper density plots The shear profile is established; cf. Fig. 17. We observe that the
NEMD configurations are sampled after every ten time units. Simuimechanical alloying at interface depends on the shear moduli
lation parameters in LJ units ar€=0.01, y=0.001, anch=1. of the two materials. If the absolute difference between their
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FIG. 17. Mean flow velocity profile for cases, where two mate- ) . . .
rials with different two body GEAM interaction parametegga FIG. 18'_ Ratio of effective Sg‘eaf ratqg/_ ¥e (full line) _and
=ex5=0.5, 0.8, 1.2, and 1.6vhile exs=1) are in contact. The four corresponding shee_lr stresq_a%/pxy (broken ling vs the ratio of
samples exhibit different ratios between shear moduli of the twoehear modulGa/Gg in maten_als of types.A and B. Symbols de_note
interacting materials3,/G,=0.5, 0.8, 1.2, and 1.5, respectively. averages from the simulation of an |nterface.for shear rate
The velocity profiles are averaged over the time frame :0.00_1 and temperatuﬂ§_=0.01 with 43 200 particles. The shear
=3000-7000. All systems have 43 200 particles. For the same syé"—10du|l arE controlled via the GEAM parameteega and egg,
tems sample density profiles for both types of particles are given a‘f’hereeAB_eBB' Curves are drawn to guide the eyes.

time t=6000. The shear rate ig=0.001 and temperatufé=0.01.

All quantities are given in LJ units.
nant structures for two of the dominant structures on the

right side of Fig. 19. It is visible that two-dimensional
shear moduli is largéhereey, =0.5 or 2, the shear is con- densely packed layers in bcc and fcc structures are parallel
centrated in the material with smaller shear modulus whileand shear such that they pass each other. In the two remain-
the other material moves almost as a block. For this reasoimg cases, foea, =€,5=0.8, 1.2, the fcc structure becomes
we observe mixing of the two metals only within a single stationary within the whole system. Mechanisms of mechani-
hexagonal layer at the interface. If shear moduli are compaeal alloying are similar to the case where we exploited the
rable (here eaa=0.8, 1.2 we observe that both materials additional embedding interactiofw,g # 1). Again, we ob-
penetrate for=3 hexagonal close packed layer distances beserve a temporary transformation of parts of the system into

hind the interfacghere, after 8000 time unitsThe depen- bcc structure; cf. Fig. 19 fogas =€xg=1.2.

dence of the ratio of effective shear ratgg yg on the ratio
of shear moduliG,/Gg for metalsA and B is presented in
V. CONCLUSIONS

Fig. 18. We tested a simple hyperbolic relationship between
them, where the coefficient is obtained via regression. Since
In this paper we explored several dynamical and struc-

the shear stress and moduli have the same ofiganed back
to the shape of two body interaction potentidhe observed tural, equilibrium, and nonequilibrium, properties of a simple
ratio of shear stresses equals the ratio of shear moduli, i.eembedded atom model. The model helps us to understand
Pl /pf’y=GA/GB. We find that only the ratio of shear moduli and predict processes taking place during dry solid friction
inﬁuences the local shear stress and effective shear rate. THigtween metal-metal interfaces. The initial configuration
should be a consequence of the strong dependence of loaalassively changed under the applied shear. A re-ordering of
particles takes place: particles create hexagonal layers or-
zigzag motion; cf. Sec. Il € thogonal to the flow gradient direction. The shear deforma-
tion involves motion of these planes. In the steady state re-

The analysis of the crystal morphologytat4000 is pre-
sented in Fig. 19. In casg, =exg=0.5, the bcc structure is  gime, defects are created when atoms move oblique to the
shear direction to reach some close-by energetically pre-

shear stress on the mode of collective motiamplitude of

the dominant stationary structure for metalarticles atT

=0.01 andy=0.001. In the limit of low temperatures the fcc ferred states. These defects potentially block the shear flow
structure is preferred in megalThe difference between en- and lead to shear banding. While the total amount of crystal-
ergies per particle in bcc and fcc structut€, p.—E. 10,  linity during the simulation is fairly constargguantified via
decreases with the strength of the two body interaction pacommon neighbor analysisthe fcc structure partially trans-
rametereys. In Ref. [21] it is shown that the bcc structure forms, as long as defects blocking the flow are present, into
can be additionally stabilized by entropy contributions to thethe bcc structure. During these processes, transient, grained

free energy. To make this more visible we also provide themicrostructures are created. Related to the grain formation is
angular distribution of directions to next neighbors of domi-the mixing of the material through rotation of the grains
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grained and smooth, or trigger stick-slip on larger scales.

Conclusions about these mechanisms are obviously out of
reach for the present simulations. However, stick-slip on the
nanoscale is accessible when sliding a blunt tip over a sub-
strate. In this application shear deformation is confined

within several layers around the interface.

The generic embedded atom model has been further ex-
tended to study interfaces between different metals with
similar lattice constants. We illustrated the dependence of the
heat of solution and the local density for a single substitu-
tional impurity on model parameters. The mechanism of
mixing (or mechanical alloyingare similar for all three ver-
sions of interface: homogeneous, with additional embedding
interaction and with different shear moduli. Unexpected at
first glance, the additional embedding interaction leads to a
pronounced increase in the local density. For the same sys-
tem, penetration of inclusions through the interface and sub-
sequent mechanical alloying has been observed and dis-
cussed. Further, gradual alloying at the interface has been
traced back to the mismatcgfinal anglg between the inter-
facial plane and shear direction. In this early stage of me-
chanical alloying, we do not detect an influence of the addi-
tional embedding interaction on the shear stress. In our
simulations, the area where two materials are mixed occupies
only a small portion of the total volume and thus only
slightly influences the pressure tensor components. The low
degree polynomial format of GEAM comes together with a
simple relationship between the strength of the two body

‘| interaction and the shear moduli in the limit of low tempera-
-6 e 018 : tures, which determine the resistance of the system to the
' ) shear deformation. We find a dependence between ratios of
shear moduli, shear stresses, and effective shear rates in two

FIG. 19. Structural snapshogieft) at the interface of o ma- o iarials while the values for moduli, shear stress, and shear
terials. Shown are systems with three different shear moduli at time

1-4000(recuced unis Coresporing patameters wgy =1 and 170 B 12 PR TR SE8 OB AR SE Y PO
eaxg=egp=0.5, 0.8, and 1.2from top to bottom. Snapshots are ’ P

obtained via NEMD with 43 200 particles. Each slice has a depth o*ectlve motion of hexagonal layers are coupled across the

unity. The angular distributiorgright) of directions to the closest material interface. . . )
neighbors is provided for the dominant structures. Interfaces between metals with different lattice constants

where potential incommensurabilities increase the number of
dislocation types remain to be studied. The features observed
before the system re-enters a dynamically equilibraga-  in this work should be generic to high-speed friction at the
tionary) state. The structural information also helps to inter-metal-metal interface. Except for very finely polished sur-
pret the observed changes of the pressure tensor. We coulaices, mesoscale inhomogeneities and inclusions are known
show, that the isotropic pressure is mainly determined by thé play an important role. The recently developed mesoscale
(instantaneouslydominating crystal structure. Normal pres- grid free simulation techniques offer the potential for mod-
sure differences are close to zero during most simulatiorling metals at larger scal§s6—59. The nanoscale physics
runs. Nonvanishing normal pressure differences occur if dediscussed in this manuscript provides ingredients to be used
fects(blocking the flow are created which the system cannotby these methods.
accommodate. The shear stress is found to depend on the
modes of collective motion of atoms stacked into hexagonal ACKNOWLEDGMENTS
planes. The NEMD results for shear stress and normal pres-
sure differences were compared with analytic calculations Financial support provided by the Deutsche Forschungs-
for collectively moving atoms. In situations, where defectsgemeinschaf{DFG) via the special research area Sfb 448
are blocking the flow, except within a narrow slit, stick-slip “Mesoskopisch strukturierte Verbundsysteme” and the fruit-
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