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Abstract

A method is described for obtaining information about the local order existing in monoatomic model solids or real materials
based on their atomistic configurations. An efficient algorithmic implementation is provided. The shape of the polyhedra formed
by ‘relevant’ neighbors of each atom enter a pattern recognition method to resolve the type of the (usually non-ideal) crystal
structure to which atoms surrounded by their relevant neighbors belong: hexagonal close-packed, face-centered cubic or body-
centered cubic. Further, this approach allows for the analysis of icosahedral structure which preferably occurs in amorphous
solids. Results of a molecular dynamics computer simulation illustrate how this method can be applied to contribute to an
understanding of the mechanical and structural properties of solids (i) undergoing a steady shear stress and (ii) upon increasing
temperature. 2002 Elsevier Science B.V. All rights reserved.
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Table 1
Summary of source files of the RLSCODE package

Code file name Lines Content

structure.f 356 main program
inc.order 2224 contains all subroutines

Configuration file name Particles # Content

fcckembed.temp=0.00500..0.06440 10976 configurations, melting of fcc
bcckembed.temp=0.00500..0.0644011664 configurations, melting of bcc
output.shearT=0.008 17576 system under shear flow

Memory required to execute with typical data:10 MBytes

No. of lines in distributed program:2224

No. of bytes in distributed program, including test data, etc.:
51 555 974

Distribution format: tar gzip file

Number of lines in distributed program and number of fields in dis-
tributed test data is summarized in Table 1

Keywords:Structure recognition, algorithm, configuration analysis,
metal

Nature of physical problem
The nature of the problem is to provide a quantitative measure for
the local order in non-ideal crystalline configurations. This measure

will be necessarily heuristic in nature and not unique. Configura-
tions are specified by collection of particle position in 3D. The pro-
gram should return the type of local structure (face centered cubic,
etc.) for each atom of the system.

Method of solution
The method is based on a suitable definition for ‘neighboring
atoms’. The corresponding neighbor list, together with information
about correlations between neighbors, is used to uniquely recog-
nize a number of representative crystal structures. The criteria for
the recognition of different crystal structures is formulated using
graphs.

Restrictions on the complexity of the problem
The machine must provide the necessary main memory which in-
creases roughly linearly with the number of particles.

Typical running time
A typical running time is less then 20 s for 10,000 particles on a
600 MHz Pentium processor.

LONG WRITE-UP

1. Introduction

Recent computer simulations of structural phase transitions and plastic flow of model solids [1–4] prove a
need for an analysis which offers a detailed picture about local- and nanostructures on a scale from single to
several atoms. The method to be outlined provides the amount and spatial distribution of different structures at
every time step, recognizes the amorphous regions and yields information about orientation and shape of crystal
domains. Distinct measures of structural information such as structure factors, two-particle correlation functions,
order parameters (e.g.,Q446 via ‘shape spectroscopy’) are not able to provide competitively detailed information
[5–7], since the spatial resolution of our method is at an atomic level and neither restricted to mono-crystalline nor
to ideal structures.

This paper addresses the problem of structure analysis using pattern recognition of the shape of the polyhedron
formed by ‘relevant’ neighbors of any individual atom. The meaning of ‘relevant’ will be clarified below and is
different from ‘closest’ and ‘within first coordination shell’. The algorithm implements criteria for recognition of
the two close packed crystal structures: hexagonal close-packed (hcp) and face-centered cubic (fcc), the almost
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close packed body-centered cubic (bcc), and the icosahedral (ico) structure. The latter is expected to appear in
case of amorphous solids or nanoclusters which tend to be close packed and as an intermediate phase during
the transformation of structure, e.g., in the presence of external fields [8]. These four structures are considered for
convenience and should be the most relevant for the study of dense fluids and metals modeled by radially symmetric
potentials. The algorithm can also be adapted to recognize other structures such as simple cubic structure along the
lines indicated in the following sections.

Concerning physical applications of this algorithm, the computer simulation of a homogeneous shear flow has
shown the existence of shear induced changes even in a fluid-like colloidal dispersions subjected to high shear
rates [9]. The colloids (or ‘atoms’) formed strings parallel to the stream lines which were sometimes ordered in a
perfect hexagonal pattern when projected onto a plane orthogonal to the streaming direction. Similarly, for colloidal
crystals it was also observed from snapshots and pair correlation functions, that they undergo a structural transition
in which two-dimensional hcp (2D-hcp) layers are formed which are oriented to minimize the resistance against
flow [10–16]. This ordering influences the rheological properties, e.g., enhance shear thinning, since the layered
structure complies easily with the flow.

2. The program

Usually, as closest neighbors of an atom confined inside an ideal structure, atoms in its first coordination
shell should be considered. In the following we give some arguments why to consider more than just the closest
neighbors, the so called ‘relevant’ neighbors, in order to recognize the structure.

(i) Taking into account physical reality, namely fluctuations, phonons and non-ideal lattices, it is relevant to note
that for the body-centered structure the difference between radial coordinates of atoms within the first and
second coordination shells may become very small. In fact, the diameter of the second coordination shell for
ideal bcc is just 15.47% larger than the one for its first coordination shell. In contrary, for both, the ideal fcc
and hcp structures, this difference is about 41.4%.

(ii) Both the fcc and hcp lattice contain regular tetrahedra composed of four atoms. If we consider this lowest level,
on which tendency of a material to be close packed can be satisfied, the similar conclusion can be made. The
bcc crystal lattice is not composed of regular tetrahedra. The ratio of the edges in tetrahedra consisting only
of atoms in the first coordination shell, 1 : 1 : 1 : 1.15 : 1.15 : 1.63 (cf. Table 2) shows that the local tendency to
form regular tetrahedra is not even partially fulfilled on the level of the first coordination shell. On the contrary,
tetrahedra consisting of atoms from both first and second coordination shells resemble the regular tetrahedron
(1 : 1 : 1 : 1 : 1.15 : 1.15).

For these reasons, we should include atoms of the second coordination shell for bcc structures into the analysis
of structure. Due to thermal motion of particles atoms from the second shell easily become nearest neighbors in
case of a bcc lattice, the first two shells in bcc structure are going to be mixed and they cannot be separated by the
Voronoi analysis. This is demonstrated in Fig. 1, where already at low temperatures (T = 0.0152 in reduced units,
see Section 3) the first and second maximum of the bcc structure are overlapping, qualitatively different from the
case of fcc structure. The expected number of neighbors will therefore be 14 in the case of a bcc structure. The
expected number of (the closest) neighbors for fcc and hcp structures is 12. The ico structure consists of atoms
surrounded with 12 neighbors, which form 20 irregular tetrahedra. It is assumed that the first maximum in the
pair correlation function of ico structure is at the same position as the first maximum of the other close-packed
structures.

Let us call these particles ‘relevant neighbors’ of an atom.
The code RLSCODE makes use of the standard Voronoi construction [17] to determine relevant neighbors. The

Voronoi method yields a polyhedron, defined as that region of space closer to the chosen atom than to any other.
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Table 2
Positions of the coordination shells I–IV, the cutoff radius—for clarity placed between shells II (bcc) and
II (fcc/hcp)—and the number of the neighbors in coordination shell (in brackets), for three analyzed crystal
structures

Type I II (bcc) rcutoff II (fcc/hcp) III IV

fcc 1 (12)
√

2� 1.41 (6)
√

3� 1.73 (24) 2 (12)

hcp 1 (12) ∼ 1.32
√

2� 1.41 (6) 2
√

2
3 � 1.63 (2)

√
3� 1.73 (18)

bcc 1 (8)
√

4
3 � 1.16 (6) 2

√
2
3 � 1.63 (12)

√
11
3 � 1.91 (24)

Fig. 1. The changes of pair correlation function with temperature for (a) bcc and (b) fcc structure at three temperatures
T /Tref = 0.0152,0.0470,0.0554.

Neighboring polyhedra, sharing at least a single point, define neighboring atoms. The minimum image convention
and a cutoff, the distance beyond which atoms are assumed not to be neighbors are used. These measures can
cause unreliable results for small and/or random systems, if the cutoff is chosen without care. To avoid that atoms
from second coordination shell of fcc and hcp structures enter our analysis, and to ensure that atoms from the
(overlapping) first and second coordination shells of bcc structures enter, a preselection is made by taking cutoff
radius to be minimum of the global pair correlation function between the shell containing ‘relevant neighbors’ and
the subsequent one, cf. Table 2. As shown below, for the purpose of our analysis of non-ideal lattices, this leads to
stable results.

2.1. Criteria based on planar graphs

The first step of the analysis is therefore to extract the pair correlation function, the position of its first maximum,
as well as the first relevant minimum, (procedure CUTOFFRAD, Table 3), and to extract from the list of potential
neighbors a set of relevant neighbors by the Voronoi analysis (NEIGHBLST, Table 3). Next, by using the above
mentioned cutoff a planar graph for each atom is established based on this set of relevant neighbors (STRUCTLST).
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Table 3
Table of the main RLSCODE subroutines, their variables and actions. Few more subroutines existing in
code are used internally and are not included here [22]

Name of subroutine Arguments Action, output

ORDER_START – opensBCC.DM, FCC.DM, HEX.DM,
ALL.DM andCRS.nbfiles

ORDER_STOP – closing the*.DM andCRS.nbfiles

CUTOFFRAD N,MX,MY,MZ,X,CL function determinesrcut (RCUT)

NEIGHBLST N,RCUT,MX,MY,MZ,X,CL, Voronoi analysis, which crates
NNAB,NABLST neighbor list. Output is stored

in NNAB,NABLST variables

STRUCTLST N,NABLST,NNAB,CELLTYPE structures analysis
CELLTYPE is output

STRUCTOUT RTIME,N,X,CL,CELLTYPE amounts of different structures
NNAB,NABLST,PL and profile (axis: PL∈ {1 : x,2 : y,3 : z})

are sent on standard output

DIRECTOUT RTIME,N,X,CL,CELLTYPE calculates angular distributions of
NNAB,NABLST,NM neighbors and stores it to*.DM

CRSSCTOUT RTIME,N,X,CL,CELLTYPE,NNAB, makes cross-section of the
NABLST,RSTART,REND,PL system and stores it toCRS.nb

PRESSURE N,MX,MY,MZ,X,CL function calculates pot. part of pressure

The neighbors are represented by nodes—the central atom is not included in the graph, and the nodes are connected
with an edge if two neighbors of an atom are also neighbors of each other. The graph does only contain information
about connections. Note, that atoms in set of neighbors of an atom do not have to be neighbors of each other.

The planar graphs are topologically different for each of the four structures of interest (cf. Fig. 2). A change of
the orientation of a certain crystal structure does not result in topologically different planar graphs. The criteria to
determine if the graph of a single atom is topologically equivalent with the planar graph of one of the structures
is discussed next. The Euler theorem for planar graphs and further relations connecting the total number of the
edges and the number of different surfaces—with three, four and more edges—into which the plane is divided by
a planar graph, are used. The Euler theorem states that a connected and planar graph withn nodes andm edges
divides the (infinite) plane intof = m − n + 2 surfaces. The theorem is derived by induction over the number of
edges for any number of nodes [18]. We will illustrate the usefulness of the approach by giving an example on the
bcc structure.

From the Euler theorem, the number of surfaces in case of bcc is 24 since the number of neighbors (nodes) is 14
and the number of edges is 36. Let us assume that there are surfaces also surrounded with more than three edges,
e.g., with four edges. The number of these surfaces is denoted by� and♦ for surfaces with three and four edges,
respectively. The equations for surfaces and edges of the planar graph in this case read, respectively,

♦ + � = 24,
4♦ + 3� = 2× 36.

(1)

There is a single solution,� = 24 and♦ = 0. Similar relations can be written for the planar graph with same
number of nodes and edges, which divides the plane into surfaces with arbitrary number of edges: Inserting∑∞

x=3 ©x = 24 (with ©3 ≡ �, ©4 ≡ ♦ etc.) into
∑

x=3x ©x = 2 × 36 yields
∑∞

x=4(x − 3) ©x = 0. Since all©x ’s
are positive numbers, we have∀x�4 ©x = 0. It is therefore proved that just the planar graph with 24 triangular
surfaces does exist (©3 = 24). Trying to combine 24 triangular surfaces in a planar graph, it is found that only one
configuration is possible, the one characteristic for the bcc structure (Fig. 2). There are eight nodes with four edges
and six nodes with six edges.
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Fig. 2. The disposition of neighbors around atom in case of ideal crystal structures and the planar graphs defined on members of set of neighbors
of one atom in bcc (a, d), fcc (b, e), hcp (c, f) and ico (g) structure. The nodes represent the neighbors and they are connected with a branch
(edge) in case if they are also neighbors.

In bcc structure eight neighbors of the atom have four neighbors and the remaining six neighbors have six
neighbors within the set of neighbors of the central atom. The minimum and sufficient criterion for bcc structure
is: an atom is surrounded with bcc structure if it has 14 neighbors and eight of them have four neighbors and six of
them six neighbors within the set of neighbors of the central atom.

In ico structure the atom should have 12 neighbors and each neighbor should have five neighbors (Fig. 2(g)).
Both in the fcc and hcp structure the atom has 12 neighbors which form eight triangular and six square surfaces.
While hcp structure has three pairs of triangular surfaces with the same edge, fcc structure has none and this fact is
now used to distinguish between hcp and fcc, see Figs. 2(e)–2(f).

The ratio between all atoms which are found to belong to that structure (central atoms plus their neighbors, no
double counting) and total number of atoms in the system is taken as a measure of the amount of certain crystal
structure in the material.

2.2. Preparing the input data

The input data needed to evaluate the local structure consists of coordinates of particles, dimensions of
simulation box and a free (time) parameter potentially used for animations, cf. Table 4.

2.3. Subroutines and general format of the output

The first step of the analysis is to determine the cut-off radius by using a subroutine CUTOFFRAD. Subroutine
NEIGHBLST represents the standard Voronoi analysis. This routine takes in a configuration in a cuboid with
periodic boundary conditions and for each atom obtains the information about relevant neighbors. Using cutoff
radius subroutine NEIGHBLST eliminates atoms which are neighbors only in one point of space (relevant for
perfect lattices). For bcc lattice the subroutine returns 6 closest atoms more than it would be expected from
coordination number. The information about relevant neighbors is stored in NABLST—a two-dimensional matrix
containing the list of indices of relevant neighbors and an array NNAB which contains the number of relevant
neighbors for each atom.

The subroutine STRUCTLST performs the analysis of neighbor displacements and returns a matrix with 4N

elements:CELLTYPE. The information about structure that surrounds each of the atoms is stored in a four-
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dimensional field of logical type. The field value is ‘true’ for an atom if it is found to belong to one of the following
structures 1 : fcc, 2 : hcp, 3 : bcc and 4 : ico. For any atom only one of these field values can carry the ‘true’ bit. If
an atom belongs to none of the four structures all fields are ‘false’.

The information obtained by subroutines NEIGHBLST and STRUCTLST are treated and visualized by
subroutines STRUCTOUT, DIRECTOUT and CRSSCTOUT. The relative amount of space occupied by fcc, hex,
and bcc structure, as well as their combined amount and profiles are calculated by subroutine STRUCTOUT. Output
of the latter procedure is directed to standard display. The subroutine DIRECTOUT calculates angular distribution
functions of the relevant neighbors for the whole system and each of the crystal structures separately. The output is

Table 4
Summary of input and output variables used by subroutines

Parameter Type Limitations Meaning

Input parameters

N integer memory total number of particles

X(#1,#2) float memory coordinates #2= (1 : x,2 : y,3 : z)
for particle number #1= 1, . . . ,N

CL(1-3) float > 0 cell dimensions (reduced units)

PL integer ∈ {1,2,3} axis normal to cross-section
and axis of profile(1 : x,2 : y,3 : z)

NM logical .true./.false. .true. if neighbor angular distribution
is to be normalized

RSTART float |..| < CL(PL)/2 start of cross-section interval
REND float |..| < CL(PL)/2 end of cross-section interval

RTIME float no time parameter for animated output

Output variables

RCUT float > 0 cut-off distancercut

MX,MY,MZ float > 3, number of cells inx-, y-, z-direction,
< CL/RCUT implemented value:CL/RCUT/2

NNAB(#1) integer memory number of neighbors for particle #1

NABLST(#1,#2) integer memory particle number of #2th neighbor
of particle number #1

CELLTYPE(#1,#2) logical .true./.false. .true. if particle #2 has lattice type
#1∈ {fcc(1), hcp(2), bcc(3), ico(4)}

Table 5
Summary of files being produced by RLSCODE run. Subroutine CREATEOUT creates angular distributions
of directions to closest neighbors and stores them to filesALL.DM, FCC.DM, HEX.DM, and BCC.DM.
File CRS.nbis created by procedure CRSSCTOUT. Indices are the time parameter, also used for creating
animations, and the plane of the cross-section (1 :x, 2 :y, and 3 :z). The last column lists the appropriate
MathematicaTM calls

File name Format Content Call

ALL.DM MathematicaTM neighbors of all atoms ALLN[〈time parameter value〉]
FCC.DM MathematicaTM neighbors of fcc atoms FCCN[〈time parameter value〉]
HEX.DM MathematicaTM neighbors of hcp atoms HEXN[〈time parameter value〉]
BCC.DM MathematicaTM neighbors of bcc atoms BCCN[〈time parameter value〉]
CRS.nb MathematicaTM cross-sections CRSxxx[〈time parameter value〉, 〈plane〉]

where xxx∈ {FCC, BCC, HEX, ICO, NON}
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saved to four files ALL.DM, FCC.DM, HEX.DM, BCC.DM, respectively for all atoms and atoms only surrounded
with fcc, bcc and hcp structure. Cross-sections of the system in three orthogonal planes are visualized with the
subroutine CRSSCTOUT. The output is stored in CRS.nb file. The output of the subroutines DIRECTOUT and
CRSSCTOUT is in MathematicaTM format, see Table 5.

Subroutines are summarized in Table 3 and their parameters are collected in Table 4.

2.4. Installation procedure

In order to install RLSCODE unpack the folder RLSCODE .tar.gz within your working directory.

3. Test runs

In the following, we present two examples how to use the package RLSCODE to recognize structure of a model
metal to be described in Section 3.1 subjected to (i) melting and (ii) shear at constant shear rate from MD and
NEMD simulations under constant density and temperature.

3.1. Background on the model material

We should give in brief a background on the simulation method used to create the configurations to be analyzed
in this section.

In order to study solid friction we adapted the embedded atom method in the spirit of Holian et al. [19]. The
method was originated by Daw and Baskes [20] and resembles the fact that in metals the conduction electrons are
not localized about the nuclei; the energy depends upon the local electron density, resulting in forces between ions
that are many body in character, rather than simply pairwise additive. Accordingly one considers two contributions
to the potential energyE of the whole system made up byN particles. There is a conventional binary interaction
term through a two-body interaction potentialΦ as function of the distance between interaction sites and a term
stemming from an embedding functionalF(ρi), which produces the effect of the electronic ‘glue’ between atoms.
The quantityF is a nonlinear function of the (local) embedding densityρi of atomsi = 1, . . . ,N . It is constructed
from the radial coordinates of surrounding particles and requires the choice of a weighting functionw(r).

A simple choice for the model functionsΦ andF leads to a generic model metal, called EMB according to
Ref. [3]. For the binary potential functionΦ we have

Φ(r) = φ0r
−4
0

[
3(h− r)4 − 4(h− rmin)(h− r)3

]
, r � h, (2)

andΦ(r; r � h) = 0, with an energy scaleφ0, a length scaler0, and an interaction rangeh. The minimum of
the potential (see Fig. 1(a)) is located at the distancer = rmin = 21/6r0 ≈ 1.12r0 as for a Lennard–Jones potential
and the well depth of the potential is:−Φ(rmin) = φ0r

−4
0 (h − rmin)

4. For reasons discussed in [19,21] we use the
normalized Lucy’s weight functionw(r) = w0(1 + 3r/h)(1 − r/h)3 for r � h, with w0 = w(0) = 105/(16πh3).
The particular simple parabolic embedding potential for EMB is

F(ρ) = F0φ0r
6
0

(
(ρ − ρdes)

2 − (w0 − ρdes)
2), (3)

whereρdes is the desired embedding number density andF0 is the embedding strength, both being simulation
parameters.

Throughout this section we investigate the ‘basic’ model metal for which the desired densityρdes= r−3
0 equals

the particle number densityn ≡ N/V = r−3
0 ; F0 = 1 andh = 1.6r0 are fixed.
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3.2. Test run (i) MD computer simulation of melting

The first test run is concerned with the melting of the model metal EMB described in the previous section by
means of a NVT molecular dynamic method forN =10,978 particles, starting from an ideal fcc and bcc lattice,
respectively. Basic details on the implementation of computer simulation method can be found in the literature
[3,17]. Simulation with constant densityn/nref = 1 have been performed. The temperature is increased stepwise
by δT /Tref = 0.0006 every 800th time unit in the rangeT/Tref = 0.005, . . . ,0.065. Before temperature is increased
configurations were saved to a file, which we provide here as test examples. The free simulation parameters for
the model metal EMB can be chosen as follows:Tref = φ0/kB = 40 kK andtref = r0(m/eb,ref)

1/2 = 1.3× 10−13 s,
wherer0 = 0.256 nm,eb,ref = φ0 = 47.4×10−18 J andm = 1.790×10−21 kg. The temperature is kept constant by
rescaling the magnitude of the particle velocity which corresponds to the Gaussian constraint of constant kinetic
energy. A cubic simulation box with volumeV , and periodic boundary conditions are used. The axesx, y, z

correspond to the initial crystal directions [100], [010], [001], respectively. The angles, in angular distribution
plots, are introduced as the angle,φ, between projection of vector inxz-plane andz-axis taking the values in range
[−π,π] and the angle,θ , betweeny-axis and vector, its values are in range[0,π]. Cutoff radius is calculated only
once for the configuration with the lowest temperature.

In Fig. 3, relative number of atoms found to be surrounded by neighbors, which resume (a) bcc and (b) fcc
structure pattern, and relative volume occupied by atoms and their neighbors in these structures are presented. The
evolution of potential part of pressure with increase of temperature is given for comparison. The relative volume
is larger than relative number of atoms in fcc structure, since the crystalline parts of the sample are fragmented
(Fig. 4). That results in fact that less that 4% atoms whose neighbors have fcc pattern, fill with their neighbors
almost 30% of box volume. Occasional increases of observed crystalline structure after the increase of temperature
can be explained as consequence of fluctuations.

Fig. 3. Molecular dynamics simulation of melting, starting configuration is (a) bcc and (b) fcc. The relative number of atoms (×) surrounded
with crystalline structure, relative volume (+) occupied by atoms and their neighbors, and potential part of pressure (•) are presented.



380 I. Stankovic et al. / Computer Physics Communications 145 (2002) 371–384

Fig. 4. The angular distribution of directions to the closest neighbors and cross-section of the system in planey = 0 (the slice isδy = 1 wide).
Dimensions of the system areLx,Ly,Lz = 22.2. The plane of cross-section corresponds to [100] plane of the crystal. The atoms and their
neighbors whose spatial distribution corresponds to fcc structure are represented with◦, others are represented with•. The evolution of the
system with increase of the temperature is illustratedT /Tref = 0.0152,0.0470,0.0554.

The changes in the fcc lattice with the temperature are illustrated in Fig. 4 with the cross-section in planey = 0
(the crystal plane [100]) and angular distribution of directions to the closest neighbors of atoms for three different
temperaturesT/Tref = 0.0152,0.0470,0.0554, the number of atoms and relative volume are given for comparison.
The slice isδy = 1 wide.

At temperatureT/Tref = 0.0470, a greater dispersion of atoms around these maximums is visible. At melted
state, the angular distribution of neighbors is uniform, and on cross-section of the system absence of the any order
is visible.

The mixing of atoms of first and second coordination shells can be observed—as the points between angular
distribution function maximums of original structure at temperatureT/Tref = 0.0470. This can be also observed in
the pair correlation function of the same system given in Fig. 1.

3.3. Test run (ii) NEMD computer simulation of steady shear-flow

For the case of a model metal under steady shear-flow, a relative motion in thex-direction is simulated, with a
load and shear gradient iny-direction. Simulation with constant temperatureT/Tref = 0.008 and constant density



I. Stankovic et al. / Computer Physics Communications 145 (2002) 371–384 381

n/nref = 1 is performed forN =17,576 particles, where the initial positions of the atoms are fcc lattice sites.
The axesx, y, z correspond to the directions [100], [010], [001] in the starting crystal structure, respectively, the
shear plane corresponds to the (001) plane in the crystal. Shear rate isγ = 0.01 and a conventional (profile based)
thermostat is used. We present a snapshot of the system afterδt/tref = 2000 in Fig. 5. The initial configuration did
not survive under the shear-flow. A new ordering of atoms took place and new fcc- and hcp-dominated structures
appear (Fig. 5). A configuration, oriented to minimize the resistance to shear is visible, the direction of the shear
is parallel to direction[110] in fcc structure—dominant peaks at positions(φ, θ) = (±π/2,π/2) in Fig. 6. Six
peaks atθ = π/2 are the consequence of the existence of the two different orientations of fcc and hcp structures—
a fcc or hcp mono-crystal has tree peaks, separated by%φ = 2π/3. The existence of both types of hexagonal layer
packing: fcc and hcp is a consequence of deviations of layer velocities from ideal profile and the fact that layers
are not parallel with the shear plane (due to the influence of the boundary conditions). The traces of bcc structure
are produced by transformation of a part of the dominating fcc structure; from Fig. 6 it is visible that these two
structures are compatible. The output of the analysis looks like:

...
AVERAGE COORDINATION NUMBER = 12.45756

NUMBER OF ATOMS WITH 8 NEIGHBORS 1
NUMBER OF ATOMS WITH 9 NEIGHBORS 8
NUMBER OF ATOMS WITH 10 NEIGHBORS 85
NUMBER OF ATOMS WITH 11 NEIGHBORS 852
NUMBER OF ATOMS WITH 12 NEIGHBORS 9448
NUMBER OF ATOMS WITH 13 NEIGHBORS 5274
NUMBER OF ATOMS WITH 14 NEIGHBORS 1906
NUMBER OF ATOMS WITH 15 NEIGHBORS 2
NUMBER OF ATOMS WITH 16 NEIGHBORS 0
NUMBER OF ATOMS WITH 17 NEIGHBORS 0
NUMBER OF ATOMS WITH 18 NEIGHBORS 0

2-axis disc. DENS HEX DENS FCC DENS BCC DENS ICO DENS 1CRY DENS 2CRY [tLJ=2000.00]
0.12431 0.54645 0.53005 0.31694 0.00000 0.95082 0.77596
0.37294 0.33526 0.54335 0.36416 0.00000 0.90173 0.63584
0.62157 0.35111 0.46222 0.35111 0.00000 0.89778 0.59556
0.87020 0.58015 0.55725 0.06870 0.00000 0.87786 0.83969
1.11883 0.53801 0.76023 0.16959 0.00000 0.94152 0.90643
1.36746 0.43949 0.58599 0.26115 0.00000 0.91720 0.82803
1.61609 0.41638 0.40956 0.11945 0.00000 0.78498 0.70307
...

18.77150 0.32824 0.43130 0.36641 0.00000 0.89313 0.57252
19.02012 0.20690 0.38424 0.58128 0.00000 0.93596 0.44335
19.26875 0.17647 0.33333 0.56209 0.00000 0.92157 0.37255
19.51738 0.28413 0.40221 0.44280 0.00000 0.92989 0.53506
19.76601 0.30000 0.50455 0.30909 0.00000 0.86364 0.63636
20.01464 0.14365 0.45304 0.50276 0.00000 0.93370 0.50276
20.26327 0.28889 0.47222 0.52778 0.00000 0.91111 0.51111
20.51190 0.45578 0.50000 0.27551 0.00000 0.88435 0.69048

show data about crystal structure...
FCCnum = 2000.0000000000 2998
FCCvol = 2000.0000000000 0.5454597473
HEXnum = 2000.0000000000 2695
HEXvol = 2000.0000000000 0.5134842992
BCCnum = 2000.0000000000 923
BCCvol = 2000.0000000000 0.1954938620
ICOnum = 2000.0000000000 0
ICOvol = 2000.0000000000 0.0000000000
crystal = 2000.0000000000 0.8933204412
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Fig. 5. NEMD snapshots of model metal indicating the type of local structure atδt/tref = 2000 after start of steady shear flow (with shear rate
γ = 0.01 with shear is inx-direction and gradient is iny-direction). The start configuration is a fcc lattice, andx,y, z-correspond to the [100],
[010] and [001] directions in the crystal, respectively. Cross-sections of the system are presented, in planesx = 0, y = 0 andz = 0, one length
unit wide. Dimensions of the system areLx = 20.6,Ly = 20.6,Lz = 41.2.

Fig. 6. The angular distribution of directions to the closest neighbors for all atoms in system and for every of three crystal structures detected
bcc, fcc and hcp.
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Table 6
Summary of error and warning messages and possible causes

Error message Stop Subroutine Meaning/usual reason

change N yes main prog. the number of particles
is different from expected

increase MX,MY,MZ or MAXB yes CUTOFFRAD the number of cells, system is
yes NEIGHBLST divided in, is too small

decrease MX,MY,MZ yes CUTOFFRAD the number of cells, system is
divided in, is too large

INCREASE IMPROFILE yes STRUCTOUT profile resolution too small

Warning message Stop Subroutine Meaning/usual reason

LESS THAN 4 POINTS GIVEN TO WORK no NEIGHBLST free volume, missing atom
TOO MANY VERTICES no WORK free volume, missing atom
LESS THAN 4 VERTICES FOUND IN WORK no WORK free volume, missing atom
NONINTEGER NUMBER OF EDGES no WORK free volume, missing atom
**** EULER ERROR: DEGENERACY ? **** no WORK free volume, missing atom

3.4. Possible errors, runtime messages and extensions

Summary of error messages and possible causes are collected in Table 6. Messages resulting from the
configuration of the system are not interrupting the execution of the program, as indicated in column ‘stop’.

Note added in proof

We lately became aware of the ‘common neighbor analysis’ (CN) structure recognition method [M.R. Sorensen,
M. Brandbyge, and K. Jacobsen, Phys. Rev. B 57 (1998) 3283]. The CN uses rather a distance criterion with a fixed
cutoff than a Voronoi construction with self-adjusting cutoff to recognize nearest (‘bonded’) neighbors. The CN
method analyzes the neighbors in pairs and characterizes each pair with tree indices, while our method analyzes the
displacement of all neighbors within the first coordination shell of an atom. The values of the three indices of the
CN method can be also inferred directly from our planar graphs for those structures. The CN method cannot give
information about orientation and planes of crystalline domains in polycrystalline configurations since it considers
neighbors in pairs. CN method is more sensitive to first signs of crystal nucleation, which comes together with a
higher sensitivity of the recognized structure to random processes.
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