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We study equilibrium and nonequilibrium properties of a simple “generic embedded-atom niGdeXM)
for metals. The model allows to derive simple analytical expressions for several zero-temperature constitutive
properties—in overall agreement with real metals. The model metal is then subjected to shear deformation and
strong flow via nonequilibrium molecular dynamics simulation in order to discuss the origins of some quali-
tative properties observed using more specific embedded-atom potentials. The “common neighbor analysis,”
based on planar graphs is used to obtain information about the transient structures accompanying viscoplastic
behavior on an atomic level. In particular, pressure tensor components and plastic yield are investigated and
correlated with underlying structural changes. A simple analytical expression for the isotropic pressure at finite
temperatures is proposed. A nonequilibrium phase diagram is obtained by semianalytic calculation.
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I. INTRODUCTION layers—at a moderate overall speed—may propagate over
several thousand crystal lattice constait$—13,17. Thus,

An understanding of the processes accompanying plastide frictional force—the shear stress integrated over the vol-
deformation of solids is of fundamental interest to materialume of the asperities—must be considered as inhomoge-
science. Crystalline materials and metals, in particular, deneous with respect to density, velocity, and temperature
form when subjected to stress. After reaching a maximuniields. An understanding of the physical mechanisms in the
(vield) stress, the material does not return to its origina|mentloned strong n(_)nequ!llbnum situations is _relevant for
shape when relieving external forces. The extent of structurai€Veral phenomena including the processes inside the earth’s
change depends on the magnitude and rate of deformatioftSt[18], high velocity deformations, and breaking of met-
For small and slow deformations cooperative motions oft'S at high velocities and impad$9,20.

atoms—and the displacement of full layers—are observed, 3]”; tmsc‘j’vcl’rr‘:{ ¥V‘I9 adnodp: t?r?ver?ibe?dﬁ?i_?tom rr;ethb@—ri -
Irreversible plastic deformation at low shear rates is usuall3{ 0 model metals and to nvestigate MICroscopic origins o

. . . : he observed macroscopic behavior. This method takes into
described through the motion of microscopic defects, such a3-count that energy of atoms in metals depends on local

dislocations, voids, microcracks, and grain boundddess]. electron density, resulting in forces that are many body in

When ;ubjgcted to steady shear, howeyer, the system undeliaracter. Simulation provides us with the time-dependent
goes significant structural transformations on a range o

X . ositions and momenta of atoms in the system and thus al-
length scales, as known from atomic force microscopyows for a detailed structure-relationship analyéisr ex-

(AFM). Tribology has approached the microscopic Ievelamme, by using planar graphi24]). A particularly simple
[6-10], but AFM does not operate at the high speeds needeghoice of model, the “generic embedded-atom model”
to investigate a strong flow regime which will be also inves-(GEAM), will be shown to reproduce the main zero-
tigated in this work. Along with its bulk properties, metals temperature constitutive properties of real metal by varying a
reveal still incompletely resolved surface phenomena, e.gset of basic model parameters. It is characterized by a few
during dry solid friction, wear, and abrasi¢®a1—13. Dry  model parameters, the strength of the embedding function,
solid friction of two metal bodies involves the formation, the position of the minimum, and the cutoff radius of an
growth, and disappearance of a number of small contadhteratomic binary potential, thus allowing for a systematic
zones(asperities, area typically of the order of 10n” while  analysis of the influence of constitutive properties on the
occupying 0.1% of the visible argan which friction forces  structure and mechanical behavior of metals. The parameters
are thought to build upl4—16. Low energy electron dif- independently adjust several constitutive propertlastic
fraction experiments proved the existence of crystal struceoefficients, vacancy formation, and cohesive enegmch
tures at the sliding surfaces that are aligned with the sheahat we can adjust them through analyzing corresponding
direction in abraded materigqll7]. The observed structural properties of real metals. In particular, only the “quadratic
changes, originated by large relative speeds in the surfaderm” in the embedding functional contributes to the elastic
coefficients, which include response to volume changing de-
formation(bulk modulusB, C;;, andC;,) since they depend
*Corresponding author. Email address: stankovic@itp.physik.tuon the second derivative of the cohesive energy. We simulate
berlin.de shear flow of the model metal within a single asperity, at a
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length scale where local properties, e.g., temperature anghererl denotes the norm of the relative vectdf=r;
density of the macroscopic body can be considered gradient-r; between atomsandj. The embedding functiong# has
free. For the case of sliding friction we simulate a contactto be a nonlinear function of thigocal) embedding densities
zone at a relative motion ixdirection, with a load and shear p; of atomsi=1, ... N. The local embedding densipy is
gradient iny direction. The value of penetration hardness is aconstructed from the radial coordinates of surrounding atoms
good estimate for the typical pressure in the contact area, faind requires the choice of a weighting functier),

the case of rough surfaces and moderate I¢adE Recent

work [25—27 on friction between a rolling wheel and a rail _ i

combines plastic deformation, friction, and heat generation pi_; w(r)+w(0). )
effects with Hertzian calculations of stress distribution. The

study reveals information about the feedback effects of tem- Here, w(0) is the local embedding density of a solitary
perature on shear stress and shear on structure, neither gtbm. The(effectively many-body model potentials intro-
which are included in the aforementioned work on rolling duced above serve to model a variety of metal properties.
friction. The simulation allows to measure the influence ofThe potential contributions to the pressure tensor and the
initial crystal orientation on transient flow behaviors, the for- elastic moduli can be obtained from the terms of first and
mation of shear bands and dislocations, and the general ragecond order in the expansion of the configurational free en-
dependence of metal flow behavior in its viscoplasticergy with respect to the Lagrangian strain tensgy, de-
(strong flow regime. We present semianalytic calculations offined through particle displacement written a'gﬁriy

the nonequilibrium phase diagram, structure, and shear stress;i 5 . The Greek subscripis, » stand for Cartesian com-

of the systems with fcc, bec, and flujdholten statestation-  honents associated with they,z directions. This expansion

ary configurations. Special attention is paid to the effect Ofig ohtained from the standard expression for the configura-
temperature on the structural behavior. Further, we describgyna Helmholtz free energyBFP°'= —In [ exp(— BE) drN

the evplu_non of isotropic pressure, as wel! as bulk_and shegyith B=1/(kgT).

moduli with temperature for different densities. A simple ap-

proximate expression for isotropic pressure will be obtained.
Two recently developed grid-free computer simulation

techniques, smooth particle applied mechaf®-3(Q and The total pressure tensor is a sum of kinetic and potential

dissipative particle dynamicg31], offer the potential for contributions. The potential part of the pressure is evaluated

modeling metals on a micrometer scalémesoscale’. as aN-particle average according [82]

These methods allow us to study the impacts, high velocity

deformations, formation of contact zones, and processes in- pot_ _ i ]

side contact zones during dry friction of two metal blocks. VP =( P P ;, Pl @

However, they rely on expressions for thermomechanical

properties of model metals as input. One of the goals of this The symbolX;..; denotes a double summation over pairs

work is to provide these expressions based on a generic, ygt of (differeny particles, the angular brackets indicate an

ab initio motivated model. ensemble or time average, and the second rank tepis@ir
This paper is organized as follows: in Sec. Il Awe intro- €1, ... N) is given by

duce the embedded-atom method and present expressions for

the pressure and elastic modulus tensors. In Sec. Il the

model, its format, some of its static properties, and reference

values are given. Implementation details are discussed in

Sec. Il C. The remaining sections analyze the elastic behawhere V. w(r)=r"1r, ow(r)/or as for any function with

ior (Sec. IV), the mechanical behavior of a shear flow simu-spherical symmetry, i.e., whem(r)=w(r).

lation (Sec. \}, and the nonequilibrium structure of the  The kinetic part of the pressug™ is obtained from pe-

model metal(Sec. V) subjected to steady shear. culiar velocity of particlesc'=r'—v(r'), wherev(r') de-

notes the(macroscopitflow velocity on position of particle
Il. THE EMBEDDED-ATOM METHOD i,

Pressure and elastic modulus tensors

dF(p)

B =t | 3V, U+ ivyw<r”)), @)

We consider a model metal composed\batoms at ther- , o

mal equilibrium at temperatur€ located at positions', i Vp';”;=<2 mC',LC'V>- )
=1,2,... N contained in a volumé&/. The potential is the '
sum of two contributions to the total potential energya
conventional binary interaction term through a two-body in-
teraction potential/ and a term stemming from an embed-
ding functionalF, which models the effect of the electronic
“glue” between atomg21,22:

The scalafisotropig pressurgp°is the trace of the total
pressure tensor divided by the spatial dimensiq@t’
=p,./3. The symmetric traceless part pf,, is associated
with the shear stress and normal stress differences. The an-
tisymmetric part of the pressure tensor vanishes for structure-

N less particles with spherical interaction.
. ij The response of the material to deformat®y, is char-
f(p|)+jz>i wr )} @) acterized by the elastic modulus ten@,(,(w,gaé?éfined by

i=1
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linear relation o,=G,, ,,S,,, Where o,,= — (pPo def  wheren=N/V is number density. The Born-Green compo-
nents of the bulk and shear moduli are related in cubic crys-
tals [34,35 via a modified Cauchy relation valid for the
embedded-atom method of the foiif) through

po”ﬁ is the negative difference between the potential con-
tribution to the pressure tensor in the deformed spgfe®’
and its corresponding valugl®*® in the undeformed state.

The elastic modulus tensor can be decomposed into Born- 52 owl \2
Green and fluctuation contributionsG, . ,,= G, BSC=2G0+2pP+ & > —j (E ril— ) :
+GI% , [32,33, with AN AT
(10
BG i ij 1 . N .
VGY. uv= ; Drre (1)) + §<¢W>o5m5,m (6) The fluctuation contribution to the bulk modulus is
0
flct VBﬂCt_ _ ﬂ d P P 2 11
VG)\K uv _B[<(D)\K ,LLV>0 <q))\l<>0<q),uv>0] (7) - §[< a2 ,u,u,>0 < ”“'u'>0]' ( )

In Eq. (6) we use the abbreviationg, ,,(r)  and the total bulk modulus B=BES+ B

=r\V,#,,(r). The subscript “0”in(- - - ), indicates a con-
flguratlonal average to be evaluated in the unstrained state. IIl. THE “GEAM” MODEL POTENTIALS
Later, we will evaluate these expressions for ideal fcc and
bce lattices. In the conventional “Voigt notation” the four ~ For the binary potential functiofr we use a radially sym-
indices(range 1—3are replaced by two indicdsange 1-§  metric short-ranged attractivéHRAT) potential[36,37:
In this notation one denotes elastic moduli of cubic crystals 4 4 3
and of the model with central interaction€;=Gyy xx. UT) = oro T3(reur= )" = 4(r cue= Fmin) (Fewr= 1)1
C1=CGyyyy, andCy=Gyy . The conventional symmetri- (12
zation  according  t0  Cu=(Gyxyxt GyxxyT Gxy.yx
+ G,y xy)/4 is not essential in this case. In this work, the axes,
X,Y,z correspond to the directiofd00], [010], [001] in the
cubic crystal, i.e., to the deformation direction, its gradient
direction, and the direction normal to the shear deformatiors:
plane, respectively. In systems with cubic symmetry, spatia
anisotropy is reflected by the existence of a minimum and
maximum of the shear modulus. The modullig, is associ-
ated with a displacement in tHa00] direction and a (010)

shear plane in a cubic crystal. This modulus stands for bel o he Bol ¢
maximum resistance the system with fcc or bec structure cafEMPeratures below Odl /kg—due to the Boltzmann factor

offer to shear. The same systems, with a displacement aﬁxq U(0)/kgT]—the fraction of particles that reach zero

plied along the 110] direction and the (111) shear plane of distance is smaller than 10" for the choicer o,=1.61o,

=2 . We use the normalized Lucy’s weight function
the crystal, have minimum shear modulus associated with thﬁ”'{‘he def(l)nmon of the embedding dens):ty forgreasons dis-

modulus C,4=(Cy,— C12)/2. For an isotropic systenC.,  cussed in Ref[38], i.e.,
equals the orientationally averaged shear mod@ué\s a

component of the elastic modulus tensor, the shear modulus

can be written as a sum of a Born-Gre@rsually positive w(r)=wp
and a fluctuation(usually negative contribution, G=GB®

+ G The Born-Green contribution is written as a linear for r<r.s andw=0 otherwise, with a prefactor obtained
combination of the extremal contributions to the shear modupy  normalizing the weight function, wy=w(0)

for r=<r¢, andi/(r) =0 otherwise, with an energy scatg,

a length scaley, an interaction range,,,, and a cutoff
radiusr .. The well depth of the two- parUcIébmary inter-
action potentiall{ is —U(r min) = dof o 4(r qur— T min) . This for-

at of the potential has been recently used as the effective
wo-particle interaction in the embedded-atom model metal
38-4(, and to model thermophysical properties of
fluids and solids[36]. The SHRAT potential has a finite
yalue at r=0, ie, U0)= bof o 2 (AT min—Tew).  For

r
1+3—
r

cut r cut

r\3
(1——) , (13

lus, precisely, =105/(167r3,). The embedding potential in polynomial
3G, 4T form is
441 2C 4
G®o= 5 ’ ® k k1, 3K
Fip)=¢o 2 Fil(p—paed = (Wo= paedIrs
The fluctuation contribution to the average shear modulus (14)
becomes

wherepyesis the desired embedding number density &pd
are embedding strengths, being part of the model. Odd terms
G't=— [6<q) y>0+<(q)xx yy)2>0]' © in the sum ar% excll?ded sincgI ?heir contribution would be
always repulsive in nature, the linear terik=(1) could be
The response to a volume changing deformation of adsorbed in a modified pair potentlaﬂ The desired density
isotropic solid can be inferred from th@sothermal bulk  in this model equals roughlyges= rO , the embedding den-
modulus or compression modulu8=n(dp'*®*%an);, sity and particle number density=N/V=r, 3. Polynomial
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TABLE I. The values of constitutive properties and their ratios for Cu, Ni, Ag, Au, Fe, and the model metal GEAM( are equal
to unity and all other parameters are 2efithe top values are experimental data from Rigf4—~47, and the two lower values are calculated
for input parameters in the first four columns. The model parameters for the metals are obtained by linear optimization of ratios of
constitutive properties using experimental data.

ﬂ nEcoh E G
Metal F, F, Feut 26 n Econ B G B Econ B A
Cu 85.9 nm? 3.50 eV 142 GPa 59.3 GPa 0.339 0.366 0.418 3.19
(fce) 0.42 0. 1.010 1.00 0.997 0.419 2.889 1.158 0.145 0.897 0.401 3.35
0.42 8.5 1.010 1.00 0.997 0.972 2.909 1.158 0.333 0.412 0.398 3.35
Ni 84.6 nm 2 4.45 eV 183 GPa 94.3 GPa 0.329 0.360 0.513 2.45
(fco) 0.2 0. 1.017 1.02 0.957 0.366 2.408 1.202 0.145 1.034 0.499 2.95
0.2 6.5 1.017 1.02 0.957 0.839 2.468 1.203 0.325 0.838 0.487 2.96
Ag 58.0 nnt ® 2.95 eV 101 GPa 33.5 GPa 0.271 0.373 0.331 2.88
(fco) 0.7 0. 1.006 1.00 0.994 0.486 3.609 1.214 0.134 0.793 0.336 2.85
0.7 8. 1.006 1.00 0.994 0.982 3.621 1.214 0.270 0.415 0.335 2.85
Au 58.1 nm® 3.81 eV 174 GPa 30.7 GPa 0.204 0.236 0.177 2.85
(fce) 1.3 0. 0.988 0.94 1.052 0.281 4.890 0.842 0.125 0.514 0.172 2.92
1.3 10.2 0.988 0.94 1.052 1.083 5.562 0.841 0.204 0.295 0.151 2.83
Fe 84.6 nm? 4.29 eV 169 GPa 86.8 GPa 0.344 0.417 0.515 2.70
(bco 0.2 0. 1.17 1.08 0.868 0.417 1.572 0.772 0.252 1.091 0.491 2.97
0.2 1.1 1.17 1.08 0.868 0.417 1.667 0.768 0.342 0.724 0.491 2.97
GEAM 72.0 nm @ 1.91 eV 179 GPa 52.7 GPa
(fco) 1.0 0. 1.00 1.00 0.993 0.552 4,442 1.309 0.123 0.718 0.295 2.34

format of embedding functional is computationally less ex-mum energy is lower in fcc solids. In order to describe the
pensive than standard logarithmic foff@0—22. Also, the influence of model parameters on some constitutive proper-
ratio between cohesive ener@y,, (or energy per particle ties of ideal fcc and bcc structures we will consider a state
and B can be systematically changed without influence orpoint with vanishing(total) isotropic pressure and fix the
values of other constitutive properties of the system, sebinary potential well depth to the above GEAM value. The
Table 1. In the following sectior{Sec. Il A) a property of shape of the binary potential is controlled by changing the
polynomial format, to give simple analytical expressions forvaluesr ., andr,. The size ofr, changes the strength of
many constitutive properties, will be used to explain originscontributions to the embedding density. Smallgy means

of well-known properties of embedded-atom potenitd]. smaller contribution of neighborss;.;w(r"), in Eq. (2).

We investigate a generic embedded-atom model metalhe corresponding parameter in other embedded-atom mod-
with a minimum of the binary potential located at the dis-els, cf. Refs[22,23, is the nearest neighbor equilibrium dis-
tancer =r ,;;=2Y6ry~1.12r, as for the Lennard-Jones po- tance.
tential, with a cutoff distance.,=1.6r,, andF,=1, and
F=0 for k>2. The hereby specified metal will be denoted . T . .

as GEAM. For GEAM, the well depth of the two-particle 04 gﬁﬁ 523 -
potential/ is therefore —U(r in)~0.05¢,. Model param- fec., F§=o -
eters for Cu, Ni, Ag, Au, Fe, and the GEAM model metal are 0.2 bee, Fo=0 -y
given in Table I; parameters for the real metals are obtained
by linear optimization using experimental ddtatios of the < 0 =
constitutive propertiesalso given in the table. m8

02 R 7 i

A. Basic properties 0d Seaa =
The energy per particle can be calculated from @gfor ’

particles, which occupy ideal lattice sites. The resulting 06 F ) i
curves are displayed in Fig. 1 for GEAM withr¢=1) and . L . . . . .
also without £,=0) the embedding contribution. The de- 04 06 038 1 12 14 16

pendence of energy per particle from density is presented,
and the dashed curves show results for particles placed on giG. 1. Cohesive energy or energy per particle vs derfbioyh
bec lattice sites. The fcc and hep structures are energetically 1Ly unitg at ro,=1.60,r min=2"%, (generic embedded-atom
equivalent for n*%,<1.83. For densities close t®  model GEAM for ideal fcc and bec lattices withF,=1) and also
=ry Y3 (or n=1 in reduced units, cf. Sec. llBthe mini-  without (F,=0) the embedding functional.
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FIG. 2. Cohesive energi.on, shearG and bulkB moduli, anisotropy rati@\, and densityn for the case of vanishing pressure tensor. All
guantities are in standard LJ units. Values for ¢salid curve$ and bcc(dashed curvesstructure are presente@) Effect of cutoff radius
Ieut, POSition of the potential minimumn,,, for F,=1 (GEAM). (b) Effect of cutoff radiusr., and embedding strength, for r .,
=2, (GEAM). (c) Effect of r gy, I min (F,=1) on the anisotropy ratid. Areas(bold line) where fcc and bcc structures are energetically
favored are also shown. For cubic structures oneAwag if interactions with the first nearest neighbor shell only are present; “Il shell”
denotes the separation line. The li@g,>|C,,| separates the regimes where bcc and fcc structures are mechanically urdidbiiect of
I eutsFo (for rmin=2%,) on the bulk modulus®® and zero-pressure density

1.54

In the following, elastic coefficients, pressure tensor, andrhe vacancy formation enerdy,, is the minimum energy
related quantities are evaluated from the expressions given ifeeded to move an atom from the bulk onto the surface of
the preceding section in the limit of low temperatures, wherghe crystal[20,22. In order to perform a systematic analysis
particles occupy ideal lattice sites. pf E,, parameter dependence, relaxation of structure around

The cohesive energi.,,=E/N, or energy per particle, vacancy is not considered. The dominant contribution in
depends strongly on the embedding part of the model poterEAM to the unrelaxed vacancy formation energy stems from
tial, see Figs. @) and 2b) for a quantitative analysis. The the binary interaction potential. The unrelaxed vacancy for-
main contribution of the two-particle interaction ., mation energy depends weakly on the embedding part of the
stems form the first neighbors. At zero pressure, the firspotential and the position of the cutoff radius, cf. Table I. It
neighbors are near the minimum of the binary potential; thalepends indirectly—through zero-pressure density—on the
resulting density depends only on the position of the mini-position of the potential minimum. Compared to other con-
mum of the potentiglFig. 2(d)]. Since the well depth of the stitutive properties of EAM metals, the unrelaxed vacancy
two-particle potential is held constant, the cohesive energjormation energy changes slowly with a change of all model
does not depend on the position of the potential minimumparameters. Other ground state defect energies of the model
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metal, e.g., the surface formation energy, can be also calcterms ¢,4,Fg, ...) can beconsidered to obtain a quantita-
lated from Eq.(1). tively improved descriptioiiTable |) predominantly concern-
Recent studies, Ref$41,42, indicate that there is no ing the cohesive energy. Other constitutive properties stay
straightforward comparison between vacancy formation aneanostly unchanged upon considering these higher order
surface formation energies calculated with EAM and experiterms.
mental data. Difference between electronic structure at a sur-
face level and in bulk is not considered by EAM, thus EAM
should give in case of metal with high electronic density
(Pt,Pd noticeably lower vacancy formation energies from To compare nonequilibrium molecular dynamids=MD)
experiment. simulation results with experimental data, we relate constitu-

The elastic coefficients—bulk modulis (averaggshear ~ tive properties of our model with experimental data for real
modulus G, C,, and the Cauchy pressur€,,=(Cy, metals in Table I. The last four columns of this table give the
—Cy,)/2—depend on the second derivative of the free enCharacteristic ratios of constitutive properties for four fcc
ergy for a nearest neighbor model, cf. Ef). The second- metals(Cu,N[,Ag,Au) and ane k?cc metal Fe, together. with
order term[ k=2, Eqg.(14)] in the embedding functional is t.he same ratios for corresponding mode! metals obtained by
most important for the values of the elasticity coefficientslme"’lr optimization of model parameters; 'value.s for GEAM
which include response of material on volume change?re also listed. The reference values for dimensionless model

(B,Cy1,Cy,) since the embedding density is usually very dUantiti€SQaimiess can be computed from experimentabp

close to the desired embedding density, see Fig). Shear numbej and calculated values listed in middle section of
. ~ . . o ' Table I. The determined model parameters and reference val-
moduli C,, andC,4 in cubic crystals include only response

) . ues are not unique in the sense that it is possible to find
to volume conserving shear deformation that do not changgjijar sets which would as well resemble the properties of

e.mbefddln.g delnsn)]{ and consequentlﬁl_ contnbuuokr]\ of embeclir—ea| materials. Concerning reference values used to translate
ding functional to free energy. For this reason shear moduljeqyeen dimensionless simulation quantities and experimen-

depend only on two-body interaction parameterg(Imin)s  tal values, we should discuss them shortly. Any measurable
see Figs. @) and 2b). The same conclusion can be Obta'”edquantityQ with a dimensior Q] specified in SI units kg, m,

from symmetry analysis of Eq6) for cubic crystals. This 5.4 s'is made dimensionless by a reference quantity
enables us to fit experimental values for the shear ma@uli

and bulk moduliB independently by varying strength B% Q=M Y2 BT Y g Y2 for [Q]=kg*mPs?, (16)
term. Other order terms of embedding functional may be

considered to obtain an improved quantitative agreement bes,cp, thatQ = QgimesQre; quantitiesm, ro, and ¢, provide
tween model behaviors and experimentally observed behaype scales via the interaction poteniia®) and the equations

iors, in particular with respect to the ratios between elastics motion. The reference values for lengtmumber density

coefficients and the cohesive energy, cf. Table I. Due to Eqn, energyksT (and defect energigstemperatureT, time t,

(10), the difference between bulk and shear modulus is apéhear ratéy, pressureP, and the elastic moduli in terms of

B. Reference values

roximatel . ; -
P y the simulation parameters are theref«_)pg:ro, Ne=Tg 3
(3B—5G)~ nFa DRL w ’ (15) €ore= Po=KaTrets trer=To (M/€he) " Yrer=trei » AN Pref
3 & o ' = ¢or53=nrefebvref. For Cu, e.g., one obtains reference val-

ues ¢o=3.61 eV andP,=38 GPa,r,=2.26 A, andn,
=86.2nm 3 from Table . Atomic mass of copper isic,

near the zero-pressure density in an ideal cubic crystal. The

= — 25 . . .
ratio G/B=<23/5 decreases with increasing second-order term_ 1.06<10°° "kg and the reference time is estimatedigp

: , . =0.97x10 3s. By choosingT,.= ¢o/kg=40 kK, P
in the embedding functional. . ref— Pol KB » Fref
g =40 GPa one obtaing=3.45 eV, N,="72.5nm 3, and

The so-called “anisotropy ratioA= C,,/C,, of a cubic r=24 A for GEAM
material is the ratio of the extremal values of the shear® Thé predicted va.lues of the vacancy formation energy,
modulus, maximunC,4, and minimum Cauchy pressu@®,.  elastic anisotropy, and the bulk modulus are within the ex-
It depends on the shape of weighting function and the twopected ranges for fcc and bce metals. Since both density and
particle potential. It does not depend on the embeddingacancy formation energy depend strongly on the position of
strength ;). The anisotropy ratio i&\=2 in cubic crystals, the potential minimum, there is no unique way to choose
when only interactions with nearest neighbors are presenfnodel parameters such that both density and vacancy forma-
according to Cauchy relations. In bcc structure the CaUChﬁon energy precise|y maitch values for a gi\/en real meta|, cf.

pressure falls with increasing cutoff radius and the anisotTaple | and Figs. @) and 2b) for possible choices.
ropy ratio rises. If the Cauchy pressure becomes negative,

the system is mechanically unstable for zero applied stress,
see Fig. ). For the mechanical stability analysis in case of
nonzero stresses one should use modified stability criteria, The equations of motion in the conducted NEMD simu-
see Ref.[43]. Even when disregarding the higher order lation are integrated by a velocity-Verlet algorithm. A cubic
terms, the embedded-atom potentia#h) predicts well the simulation box with constant volume and Lees-Edwards pe-
anisotropy ratios of both fcc and bcc metals. Higher orderiodic boundary conditions are used to simulate shear defor-

C. Implementation of the model
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mation. Details about the implementation can be found in ' ' ' T ' ' '
Refs.[39,48—-5]. The force acting on particle directly ob-
tained from Eq.(1), reads

)aw

ar

j

Fi:_E {%{ +<57:(P)
iZi | or i ap

A suitable integration time step iAt/t,=0.01 for the
chosen range of temperatures and densities. The temperatu
is kept constant by rescaling the magnitudes of the peculiai
particle velocities which corresponds to a Gaussian con-
straint of constant kinetic energy in the limitt— 0. -0.1

For the case of a model metal under steady shear defor 0005 001 0015 002 0.025 003 0035 0.04
mation(or flow), a relative motion of periodic images in the T

flow (x) direction is performed, with a shear gradient in the . .
» P 9 h FIG. 3. Pressure as function of temperatyire standard LJ

direction. The flow simulation introduces the shear rafe g for different model parameters, cutaff,, and minimum of
given by y=dv,/dy, as a further independent variable. the potentiak,y,. Molecular dynamic§MD) simulation results for
While a linear flow profile is observed at moderate rates, aps®are denoted with (bcc configurationand X (fcc). The curves
higher shear rates and during the transition towards a steadgpresent the approximate expression for the pressure(Hjsind
state, parts of the system move as blocks. To allow simulatl9). Global density in the system is=1.00.

tions of pluglike flow, in this paper is used a “profile unbi-

ased thermostat,” which calculates the mean peculiar velocimodel potentials and solved without approximations with
ties self-consistently. The details of this temperature controfomputational effort of ordeN.

method are given elsewhere, see RE§2,53. Alternatively,

shear flow can also be generated by modifying the equations IV. EQUILIBRIUM PROPERTIES

of motion with a Sllod algorithnj54,55|.

The values of the shear stress components are obtained b
extracting their averages once the system has reached tA
stationary state. This corresponds to the statistical averadg " ; . . o .
typically over a periodAt/t,.=800 in system of 2000 par- eir posmon_s in an ideal crys_tal. Tr_\e |so_trop|c cold” pres-
ticles, the configurations are sampled after every 10 timgure PeoN) i cc_alculateq by Inserting dlstanc_gs of nearest
units. The temperature was increased stepwise efefty, neighborgfor an |d¢al latticeinto Eq.(3). A modification of
=2000. The results for pressure tensor components for H‘e known expression for'the cold pressure has been recently
number of parameters are compared with data extracted fro sed to model the isotropic pressure at finite temperatures for
NEMD simulations of larger system&NE 43 000) and runs the case of the SHRAT potential used here_, see [l
At/t,= 4000 to test convergence to steady state. The stickThe e_ldapted_ formula for the pressure takes into account that
slip motion is observed only in intermediate state and it isWIth increasing temperature particles approach each other
not observed after first 1000 time units of the simulation."°"® closely, and reads

dF(p)
o

. (17

ij

When material is subjected to deformation or an increase
temperature, it responds with changes of its free energy
d pressure. At low temperatures the particles are near to

System size effects on total energy, pressure tensor compo- Psoiid N, T) =NKg T+ 3{pcoid N+ Sp(N, T)]
nents, and their fluctuations are not observed. Yield stress S o '
and frequency of defects formed in steady state shear regime +Peod N—Se(n, T) 1} (18

depend through energy needed to form a defect on the sys-
tem size, see Ref56]. Thus, it is important to use a large ~ We observe that the factose(n,T) depends on the
number of particles N>>5000) to obtain relevant informa- Strength of the embedding functiongl(here onlyF is con-
tion about value of yield stress and stationary state structurdidered and also on the type of crystal structure as follows:
of system. K
For our systems, the total simu_late(_j physical time will be sfFCC(n,T)w \/(5_25_ 1_25:2)LT,
of the order of 101°—10"° s which is smaller than the €
minimum “lifetime” of an asperity. The minimum lifetime,

in a process of solid friction, is estimated by the size of an be ] ksT

average asperity (12m) divided by a high velocity, e.g., se (N, T)=\/(45+ O'H:Z)e_z' (19

100 m/s in case of thread breakifsy —59. Concerning both

length and time scales, the simulated systems may represent\We have sEc(n,O)=s,’%°C(n,0)=0 and e,= 9°E ./ In>.

only a fragment of an asperity. For this reason, the propertieEquation(19) improves the corresponding expression given
of the system such as overall density, pressure, and temperia-Ref. [36]. Though one could discuss further corrections to
ture are taken to be constant within the simulation cell. Thahe expression fosg(n,T), the proposed Eq(19 shows
simple model metal is explicitly determined by the set ofgood agreement with simulation results as demonstrated by
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5.0 - - T - - same system, melting is observed near the temperdture

48F "lEuamum, : =0.035.

a6 | D - N The isothermal bulk modulus and shear modulus deter-
_aal g**"“‘n—n”\Bm | mine the elastic properties of an isotr(_)pic solid. Using the
§42 I LT EY e SEBG- approximate expression for the isotropic presggs. (18) '
g L L and(19)], an approximate expression for the bulk modulus is
S1a | ] obtained directly. It is shown in Fig. 4 for a range of tem-
S, Yvvnugyy : | peratures and dens_ltle_s wher_e the system is solid. _The elastic
v °Poeo, 8 é AT tags ,]GBG moduli decrease with increasing temperature. At higher tem-

10 n=102, B¥G° = “88gg Bag i peratures the fluctuation contribution to the shear modulus is

0.8 Ej:gg’ ggags . Pao ga. of the same order of magnitude as the Born-Green contribu-

0.6 | n=1.00, IB:G e . . ?G . tion. In the molten state the shear modulus vanishes.

0 0.01 0.02 T0.03 0.04 0.05

FIG. 4. Shear modulusg), bulk modulus B), and their Born- V. MECHANICAL PROPERTIES DURING STEADY SHEAR

Green contributions vs temperature for densities1.00,1.02 for A. Plastic yield

GEAM in dimensionless LJ units, obtained via honequilibrium mo- R . | f the NEMD simulati
lecular dynamic§NEMD). The curve for bulk modulusBj,) is epresentative results of the simulation concern-

calculated inserting the approximate expression for pressure, Eq¥9 €lastic response and plastic yielding of the solid GEAM
(18) and(19) into the definition of bulk modulus. are presented in Fig. 5. The system responds with growing
shear stress{P,,) to an increasing shear deformatign

Fig. 3. This figure presents equilibrium molecular dynamics= Yt (constant shear ratg) switched on att=0. In this
(MD) results for the heating of the EAM metdht n figure, §h.elar stress is plotted as function of shear deformation
—1.00) for different model parameters. The temperature i€0r an initially prepared fcc GEAM metal at temperatures
increased stepwise betwe@r=0.006 and 0.044T=0.002 T=0.01,0.04 and three different shear rajes0.001, 0.005,
each 1000 time unijs In Fig. 3, MD results forp's® are  and 0.01(reduced units The axesx,y,z correspond to the
denoted by symbols, and lines stem from the analysis basetirections[ 100], [010], [001] in the initial crystal structure.

on the above expressior(é8) and (19). The system can It is seen that the yield deformation does not depend on the
withstand tension due to internal attraction, when the presshear rate forT=0.01. This may be expected in view of
sure is negative. This is a consequence of the presence bindemann’s criterion which says that a crystal will melt
boundary conditions at fixed volume. For the large negativavhen the amplitude of vibratiorxf) of atoms exceeds about
pressuresmodel parameters:;;=0.975< 26 r ,=1.56, one-tenth of the lattice constants. The smaller values of the

F,=1) holes in the system are created, and the system doggeld deformation at high temperatur€=0.04 and y
not reach a stable state within the simulation time. For the=0.001 can be also explained by this criterion. If we assume

a harmonically oscillating motion of atoms, we obtain the

0.3 —— . . relation kT=fx§/2 between temperature and the amplitude
f \%“!— (8:8‘8 szg'ggi’kg'g}t - of vibrations, wheref stands for an effective spring coeffi-
( ¥20.005.T=0.01 ------- cient between an atom and its neighborhood. The coefficient
Fiviy ¥=0.005,T=0.04 f can be related to elastic moduli, see Ré0], and it falls
Lozr FERNY 1=0.01,T=0.01 il with temperature. High temperatures and a small spring co-
§ AR 1=0.01,T=0.04 efficient result in a large amplitude of oscillations and a
2 small yield deformation.
501 The plastic behavior following the yield point, however,
Che depends on shear rate. At high ratasd high temperaturgs
defects are formed immediately after a yield stress is
reached. This results in a slowdown of the relaxation of ac-
o N cumulated stress at high shear rates. Under these conditions,
. L et . soon after the yield point has been reachéére atvy
0 02 0.4 0.6 0.8 1 =0.1), shear-induced melting is observed. During this inter-
shear deformation mediate statginhomogeneous meltinga layer of liquid

. . metal is formed between two blocks of the solid metal, and
FI(_E. 5. Shear stress as function of deformation for three sheatrhe blocks are moving at constant speed, see upper left cross
rates y=0.001, 0.005, and 0.01 at two temperatui®s0.01  gection in Fig. 10. Actually, the periodic simulation cell con-

(thicker curve andT=0.04 (thinner curve of GEAM, obtained via  t5ing 34 Jayers of particles and an effective shear rate at the
NEMD. The starting configuration is the ideal fcc structure at den-

sity n=1.00 with N=43 000 particles. The shear startedtatO. p‘?s'“o"‘ of the layer is~34y—just at startup of flow. For .
Shear direction is th¢100] direction in crystal, and shear plane this reason, for systems at temperatqres near the melting
coincides with the (010) crystal plane. The coeffici€ny, is ob-  point (T=0.04) and at high shear ratgs=0.005,0.01 the
tained via MD simulation. All quantities are given in LJ units. system partially melts soon after the shear commenced. In
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TABLE II. Coefficients in approximate expressions for shear 0.1 T T

T l 6 T
stress,—p,y=arT+c, in Figs. 6 and 7 for different values of as Arcut=l'52r0’rrniu=1'025le;6r0 am
model parametens.,, I min, andF, (all other parameters are zgro 009 F—_2 1oy=1.6810, 11y =1.0252""r, @7

0.08 - GEAM ©® |

@ rLUt ] 0.07 “ A 7
216 1.6 F, y ar c . A a®

0,06 - a 1
1 1. 0. 0.001 —0.34(6) 0.0371) ' )
1 1. 0.5  0.001 —0.47(6)  0.03®) 005 w0 e 1
1. 1. 1. 0001 —044(5)  0.048) 00af T8 000 e e 1
1. 1. 1. 0010 -037(5)  0.0401) OO e @ e
1.025 0.9 1. 0001 -05(2)  0.0925) 0.03 - °e 8 g0
1025 105 1. 0001 -0647)  0.058) 002 Lt . . .

0.01 0.02 T 0.03 0.04

F?f' E&g’ ?f'mélar behaVIOI\rllls Obbster;/ed.dur.mg ISILqmg 'I?l: a  FIG. 7. Shear stress as function of temperatimestandard LJ
etrahedral tip(Cu) over a Ni substrate via simulation. e_ units) for different model parameters, minimurg,, and cutoff ra-

S_tiCk'S”p m_otion is observed, with abrupt structural trans_"dius of the potential ;. Symbols denote averages from the NEMD
tion of the tip layer closest to the substrate between two slips. ) o . .
Simulation at shear rateg=0.001. Curves are obtained by linear

in which Cu (110) surface transformed into (111) surface t(_)regression analysis of the simulation results.

match (111) surface structure of Ni substrate. Two compari-
sons with inhomogeneous melting in our system can béures can cross the potential barrier and enter the next poten-

made. tial minimum faster.
(i) We also observe regions in intermediate shear regime
(before stationary state structure is formed, Fig. Bhere B. Rheological properties for stationary shear flow

motion is converted to the strain energy. A part of strain
energy is spent on the structure chaqgelting of the struc-
ture between the blocks and the rest is dissipated througho
the system.

For a planar Couette flow the symmetric traceless pres-
pre tensofwhich equals the negative stress tensas only
ree independent componemts _ o, a shear pressune,

(ii) The structure of fluid at interface tends to match the— " xv ©" Sieég strepss IZW and 2’;0 norIanaI plgess%re (il/i\fl“fer-
interface surface structufé1,62. The observed melting is a ences:p_=(Pxx—Py)/2, po=[2P;;— (Px+Py,) /4. We

result of two opposed mechanisms, blocks have fcc (100falculate(via NEMD) the pressure tensor over the range of

surface structure but the system tends to form fcc (111 emperatures T=0.00§...,0.06, for . densities n
structure in this p|anésee Sec. \M =0.98 ...,1.08, and for two shear rate$20001,001
The measured yield stress decreases considerably withese simulations are performed with 1000, 2000, and

temperature, since particles at comparatively high temperz#3 000 particles. _ _
In order to discuss the relationship between shear stress

T and temperature for two shear rates we test a simple linear
1 relationship between them, where the coefficients are ob-
tained via regression. Within statistical errors and for the
i range of chosen densities, we did not detect an effect of
density on the friction pressure. The resulting approximate
expressions are given in Table Il. The regression curves of
shear stress{p, or —P,,) together with the simulation
data are presented in Fig. 6. Data are plotted for two shear

ol rates y=0.001 (solid curve, y=0.010 (dashed curyeand

0 | 'y=0.001Fo=O (dotted curve The shear stress decreases
0.025 - Fé@oo . with increasing temperature. This is so, because atoms have
large kinetic energies and can move uncorrelated and far
0.02 L L L L from their equilibrium positions as compared to atoms in a
0.01 0.02 T 0.03 0.04 layer plane. For the same reason, the observed shear stress
decreases with increasing shear rate. At a higher shear rate
FIG. 6. Shear stress vs temperature. Symbols denote averagg¥ore defects are produced and the ordering of atoms into
from the NEMD simulation of GEAM with different densities for hexagonal layers is weakened, see the insets of Fig. 10. The
two shear ratesy=0.001,0.01 F,=1) and for F,=0 (y  ©mbedding contribution reduces density fluctuations, making
=0.001). All quantities are expressed in LJ units. Curves are obatoms more bounded into layer structure, thus shear stress
tained by linear regression analysis of the simulation results. Estidecreases with decreasing influence of embedding contribu-
mated error rangestandard deviatigrhave similar size for all data  tion, cf. Table Il and Fig. 6. The simulated values of the two
points, for this reason they are plotted onlyTa&f ;= 0.08. normal pressure differencgs. o are found to both vanish

0.045 - GEAM, ¥=0.001
' GEAM, $=0.010
o F,=0.0, y=0.001

o ed

0.04 |
0.035 |
£

0.03
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0.08 T T T

T T T T T T T o T T
(a) 1=0.001 - N=43000 © 0.7 F 7=0.001/N=43000 = I
007 = . N=2000/1000 : 4 ¥=0.010/N=43000 .
o 0.6 N=1000/2000 -
0.06 - ' . o . Se
005 - . - 8 04
2 e g
004 -5 . S
' : 03
003 F " .
0.2
0.02 4
0.1
0.01 - 1 T gt BT bee e
] 0
O " Y [Bra-sental B 4 T 177 ) YIPTY = 1 4 1 1 1 1
01 0 01 02 03 04 05 06 07 08 0.01 0.02 0.03 0.04 0.05 0.06
Piso T
o (b) 1|'(=0 010 ' " N=43000 o FIG. 9. Effect of temperature on the isotropic part of the pres-
0.08 e ~ N=2000/1000 . 4 sure of the system under shear. Symbols indicate results from
NEMD simulation of GEAM at different densities, number of par-
007 A . . .
. ) ticles, temperatures, and shear rates. The curve for isotropic pres-
0.06 T - T sure comes from the molecular dynamics simulations of melting for
005 - - . - o | different densities for bcc and fcc structufeithout shear. All
Q%‘ : Lot e e guantities are given in standard LJ units.
004
0.03 - dal crystals in solid states5]. However, in colloidal crystals
0.02 - the shear stress rises at the melting transif@®-65. The
001 - structure in a colloid is formed to reduce the resistance to
shear. Only if the shear rate and the temperature are suffi-
0

ciently low, the system can reduce the potential energy by
forming periodic crystal structures. In metals the interaction
between atoms is stronger than in colloids and the mecha-

FIG. 8. Shear stress p,, vs the isotropic part of the pressure, nism which tries to reduce the potential energy of the system
for two shear ratega) y=0.001 andb) y=0.01. Symbols indicate is dominant. The data points in Fig. 8 stem from NEMD
results from NEMD simulations of GEAM for different densities simulations at different densities, shear rates, and tempera-
and temperatures. All quantities are given in LJ units. Data pointgyres.
where the system is molten are encircled with a line. The equilibrium and nonequilibrium values for the isotro-

pic pressure are shown in Fig. 9 as function of temperakure

within the precision of our data. In Fig. 7, the data are pre-and densityn. The symbols mark the computed pressure for
sented for three systems: GEANMwith fcc ground state the system under shear. The curves represent the evolution of
structure and shear moduli=1.31), for model parameters the isotropic pressure during melting of a bcc systdashed
Fmin=1.025x2Y6 r_..=1.68, F,=1 (bcc, G=1.33) and curve and a fcc systenisolid curve without shear. The
Fmin=1.025x2%6 r_ =152 F,=1 (fcc, G=2.39). Since increase of pressure at high temperatures indicates the onset
the shear stress and moduli have the same origin in shape of a shear-induced meltinfs6]. For the high densitiesn(
two-body interaction potential, the observed shear stress in=1.02,1.04), the observed structure in the system is mainly
creases linearly with increase of the shear moduli. The desf bcc type, resulting in an isotropic pressure smaller than
pendencies of shear stress on temperature and shear rate dre one for the corresponding fcc structure.
particularly important when the metal is subject to severe In case of dry solid friction between two blocks made of
stresses or nonuniform heating, e.g., as result of threathe same material, the load is related to the isotropic pressure
breaking[57-59. inside the interfacgasperity. Except in case of polished

In a liquid metal, atoms are quite free to move and thesurfaces, all asperities will be in state of incipient flow, see
system exhibits a comparable small resistance to the she&ef.[14]. The simulation cell can be regarded as containing
flow, cf. the enclosed points in Figs(é and &b). This  a typical part of such an interface. The typical value of the
means that if the model metal stays crystallidaring shear  isotropic pressure should be therefore estimated from the
it mostly reduces energy per particle rather than reducingenetration hardness, which is defined as the ratio between
resistance to shear. Thus, the observed reordering of the cryi®ad N and contact are& at the onset of plastic flow. For
tal structure under shear has little in common with themost metals, the penetration hardness lies in the range
mechanism responsible for an ordering transition—0.005-0.025[reduced Lennard-Jone@.J) units|] [14,15|.
accompanied by shear thinning—observed in flig&. The  From simulation data in Fig. 9 it is visible that with and also
present transition is similar to an ordering phenomenon obwithout shear one can consider the penetration hardness as a
served experimentally and predicted theoretically for colloi-good estimate for the average isotropic pressure within an

01 0 01 02 03 04 05 06 07 08

50
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Q o QRO n A
Oo%zé 2%83%882%%8%% =50
b
25030 Seises osle oS 0000000 )
E gggg.‘%é’s;ff %ﬁ%ki%gg%&s’%%ﬁ 088%% FIG. 10. Snapshots (via
B | Sosees6 0850 %@E%@ég%?%% e NEMD) visualizing the evolution
&l O§§§O§§§ -8@5%%8%%%%%0 of the GEAM crystal subject to
:f 88 ;Eé';:ggggog%s%g% aesashent steady shear deformation at differ-
g SRR O fec ent times. All quantities are ex-
.2 33581 3000883%’00% S IO hexp _ ;
3% 880%0 ReSinsc et 88@@ K> bec pressed in LJ units. The number
ISR [ssisasedt 388%8?3008800 oood)(A ico . .
R gﬁ.@?ﬁé&%&?@ﬁ%&g%%u non of particles is N=43000, tem-
perature T=0.02. Each slice is
16.5 SRR 2500 R o, T one length unit wide. Snapshots
05805 SO o e 3 2 for two different shear ratesy
=0.001,0.01 and densitiesn
=1.00,1.02 are presented. The
type of local structure is indicated.
The start configuration is the ideal
fce structure, shearing startedtat

=0. The directions of shear and
gradient directions are indicated in
upper right picture. The insets
contain the angular distribution of
closest neighbors, where the rep-
resentation is such that the shear
direction projects at points de-
noted with X and the plane nor-
mal to flow gradient direction
projects on a lingof length 2r)
connecting thex points.

-16.5155
-16.

0 o0,
3598

7=0.001, n=1.00

asperity. The friction coefficient is defined as the ratio be- VI. STRUCTURAL CHANGES DURING STEADY SHEAR

tween shear stregtegrated over the_ volume of an aSpe)”t.y In the preceding section we demonstrated that shear stress
and the load. Under the assumption for sufficiently high

. : rises before reaching the yield stress for a system subject to
loads, e.g., large surfaces of asperities, that the !sogrop| hear deformation. After reaching this stress, atoms tend to
pressure and the shear stress are homogeneous inside {6 e into the next potential minima while the system re-
asperity we obtain via NEMD a “macroscopic” friction co- |axes, as is also reflected by oscillations in Fig. 5. If the shear
efficient 1 in the range between 0.2 and 3, definedu@  continues, significant structural changes appear in the sys-
—Pxy/P"°. These values are comparable to the ones for regbm. Shear-induced structural lodaé)ordering is followed
materials. With the available mesoscale methods, such Qﬁ/ Changes in the Streaming prof"e and by a bu||dup of |0ng_
smooth particle hydrodynamics, which allow to simulate arange order.

surface containing several asperities it would be possible to Figure 10 shows a time series for a subsystem of a cubic
obtain improved values for the analog to the experimentallycell with N= 44 000 particles undergoing shear at two differ-
measured, macroscopic, friction coefficient. Such an investient densitiesm=1 andn=1.02 and small and intermediate
gation is outside the scope of the present paper. ratesy=0.001 andy=0.01, respectively. The snapshits-

The shear stress does not change as much as the isotropigding structure analysishow a cut of widthAr =1 of the
pressure does during variation of temperature and densityy|| system, and the direction of shear is depicted in the top
Even at large isotropic pressures ab@/®=0.4, which is  right snapshot. Another quantitative analysis of the evolution
realized in shock waves and impact experiments, the shegf the crystal morphology for the same system with time is
stress stays near its value at zero pressure. Strings of the d%’ésented in Fig. 11. We used a common neighbor analysis
points, visible in the Fig. &), can be understood resulting method[24] based on planar graphs to extract information
from partial melting of the system at high temperatures. Parapout structure from the NEMD data. The method is based
tial melting is observed at thigargen shear ratey=0.010, at  on a suitable definition for “neighboring atoms.” The list of
temperatures below=0.04. Shear-induced melting is ob- the neighbors is used as an input for a pattern recognition
served at temperatures aboVe-0.04, see Fig. 12. We will which resolves fcc, bece, hep, as well as icosahedral structure
further comment on this figure in the following section. (ico). The ico structure preferably occurs in amorphous sol-
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FIG. 12. Structural phase diagram of GEAM in the temperature-

FIG. 11. Transient behavior of the relative volumes occupied bydensity plane for two shear ratgs=0.001,0.01. The bold dashed
fcc, bee, and hep structures, together with the volume occupied bgurve separates the densities and temperatures where at low shear
the amorphous icosahedral struct(im), obtained via NEMD, for  rates ¢=0.001) bcc or fec structure is dominant. The area where
GEAM at two shear ratesy=0.001,0.01 and densities system is mechanically unstable due to internal attraction is esti-
=1.00,1.02. The bold curvéery) represents relative volume occu- mated by inserting Egs(18) in condition p'*°=0. Upper three
pied by the three crystalline structures together. Domains with dif{solid) curves show melting temperatures with and without shear.
ferent crystal structures can overlap, thereby the total amount of
crystallinity (cry) is not a sum of relative volumes occupied by fcc,

bce, and hep structures. Time is given in standard LJ units and thg[a W . is th lest ible in th ¢
number of particles iN=43 000, temperaturd =0.02. Starting ween two minima 1S the smallest possibie In the system.

configuration is the ideal fcc structure, shearing startei=dl. This reduces the probability for creating new defects. The
densely packed layers are stacked along the gradient direc-
ids. The ratio between all atoms which are found to belong tdion to maximize the distances between particles as they
a structure(central atom plus its neighbors, no double count-shear past each other and reduce resistance to shear. For the
ing) and total number of atoms in the system is taken agcc structure the most densely packed planes correspond to

measure of the amount of certain crystal structure. For oughe (111) plane and the shear direction to [mgo] direc-
model all three crystal structures are observed. At high shegjon. The corresponding plane and direction in a bee structure
rates (y=0.01), the icosahedral structure is observed in amare (110) and111], respectively.
intermediate state, see Fig. 11. Shear deformation inherently generates defects since at-
At the shear rates=0.001, after the yield stress had beenoms can move oblique to the shear direction to reach some
reached, a sudden increase in the amount of hcp structure ¢tose-by energetically preferred states and therefore prevent
observed from Fig. 11, the crystal planes shear oblique to ththe shear stress from relaxing. The formation and evolution
shear direction and form a defect. The defect is visible in theyf the defects is observed and discussed. Even when station-
cross section shown in this figure for=-500 as the area ary flow is reached, shear in direction oblique to shear flow
where both hcp and fcc structures are present. The generatgfobserved resulting in deviations from stationary shear flow
defect blocks flow and induces a further increasing sheaﬁrof"e_
stress. Particles gain kinetic energy by randomly moving The poundary condition imposes a further constraint on
away from the defect. As a result, the system melts locallyhe newly formed crystal structure. Crystal planes tend to

we also provide the angular distribution of directions to next .
neighbors in the insets in Fig. 10. The shear direction isdensely packed planes and plane normal to the flow gradient,

marked with two crossesx() in the insets, and the plane which may increase the probability for the appearance of

normal to flow gradient projects on a li@ot drawn con- defects. We studied several system sizes to make sure that

necting the crosses. During this structural transition twohe presented results are not artificially driven by finite size

dimensional densely packed layers are formed where th@ﬁeCtS:

shear direction is in parallel with the nearest neighbor direc- For y=0.01 the structure of the system changes between
tion att=3000 in Fig. 10, visible as strings of particles. In randomly close packefcc and hcp and bec; see Fig. 11.
the stationary state the distance which the particles cross bdhe total amount of crystallinity is almost constant. We ob-

021509-12



STRUCTURAL CHANGES AND VISCOPLASTT . .. PHYSICAL REVIEW E 69, 021509 (2004

serve that the bcc structure is produced by a volume consersgient local crystal structure. We showed that structural infor-
ing Bain transformatior]67] of parts of the fcc structure. mation can be related to the pressure tensor in order to un-
This process is reversible. The reason for such a behavior aferstand the influence of different conditiofiensity, shear
the system is that the system cannot globally adjust itself toate, temperatujeon the evolution of the components of the
accommodate deformation. Therefore, density fluctuationpressure tensor after onset of shear. We offered expressions
arise. The fcc and hcp structures have the same energy pfar the pressure tensor, the elastic modulus teriBarn-
particle in the limit of low temperatures and always occurGreen and fluctuation contributionsand average elasticity
together as randomly close packed structures. Though onmoduli for particles interacting with the embedded-atom
could expect to observe an identical amount of fcc and hcpnodel potential. We applied these expressions to fcc, bcc
structures, in our simulations the fcc structure shows up to berystal structures and liquid model metdthey could be
dominant. The explanation should be that the hcp structurapplied as well to other crystal structures such as simple
allows shearing only in a single plane and that it is lesscubic, hexagonal close packed, or diamond cubite low
resistant to defects, as compared to fcc. At higher densitiedegree polynomial format of the potential yields a simple
and temperatures the bcc structure becomes dominant.  dependency of the ground state constitutive properties on
model parameters. In Table | we illustrate that the main con-
stitutive properties of real metals are reproduced with a few
model parameters. Thermomechanical properties of our
Nonequilibrium phase diagram model have been calculated using MD simulation. An ex-

The conditionp™°=0 is used in Eq(18) to estimate the pression for the cold isotropic pressure was adapted to fit the
area of mechanical instability due to internal attraction ofSimulation results for a wide range of model parameters at
GEAM under shear in the nonequilibrium phase diagram, cfdifferent temperatures and densities. In addition, the average
Fig. 12. Cracks—several crystal constants wide—are opOf the bulk modulus has been determined from MD and com-
served for small densities and low temperatures. The corf@red to its counterpart calculated from an approximate ex-
stant volume condition prevents their growth. The uppe'€SSion for the pressure. The analytic formula for the iso-
three (solid) curves show melting temperatures with andTOPic pressure, Eq(18), can be used as a closure relation
without shear. Shear-induced melting is observed at temperégonstltutlve relatiopin the mesoscale simulation techniques
tures aboveT=0.04. In equilibrium, the system melts at [28—37 discussed in the Introduction. As demonstrated in
temperatures abovd =0.045. In tr;is diagram the bold Sec. VI, the isotropic pressure of the system is determined by
dashed curve separates the densities and temperatures whif €quilibrium pressure of the dominant structure when sub-
at low shear rates§(=0 001) b or fee structures are domi- jected to steady shear. This finding extends the application of

i R the formula, Eq.(18), to other systems under steady shear
nant, cf. Fig. 11. In the limit of low temperatures the pre-

. . deformation.
ferred structure can be calculated directly from Bg. With

increasing temoerature the b tructure becomes domin tWe explored the influence of temperature on the values
creasing temperature the bee structure becomes dominagy, , yield deformation and the relaxation behavior of the
at densities where the fcc structure dominates at low tem;

peratures. The crystal structure formed under the influence ccumulated stress. The generation of defects, and the local

-~ . elting of the system, prevents stick-slip motion at low
shear exhibits a large shear stress compared to the one in t Rear as observed earlier for the pure SHRAT fluid, cf. Ref
liquid metal. It appears that the crystal structure is formed t%} i Lo i

reduce the free energy of the system. The shear deformat 36]. The plastic yield and friction stress have been analyzed

i this pictur neels the influen f the boundar ndi. ithin asperities on the nanometer scale. Local densities,
n this picture cancels the infiuence of the boundary co temperatures, and shear rates inside the asperity are input
tions. This fcc-bec transition happens at pressures which a

hiah that th hould v be i ble f rr‘?arameters for the NEMD simulations. The friction process
zgedlgmeta?s €y should usually be Inaccessible Tor UNCoNGqait is seen here as a combined effect of processes on a

. . microscale(size of asperitiesand a nanoscale. The meso-
At high temperatures the bcc structure is observed at der&'cale meth(od$28—3]]pare eesxpected to overcome the gap
sities, where the fcc structure dominates at lower temper

) . Y %etween the micrometer scale and the nanometer scale.
tures. _Th|_s ShO.UId be an |mportant_f_|n(_j|ng. Such a IOhaS%hese methods need a phenomenological model that de-
transition in solid part of the nonequilibrium phase dI‘f:lgr'f:lmscribes the behavior of the pressure tensor components under

was assumed to exist in coI.I0|daI c.ryst@fsﬂfﬁﬁ. Ab initio deformation. The results presented in this paper may serve as
calculations of solid phases in transition me{&ig—69 sug- motivation for new models that incorporate structural

gest th"’.‘t. the observed hig_h temperature bee structure mig%anges and their effect on the pressure tensor in a metal
be stabilized by a lattice vibrational entropy contribution to

. : ) subject to shear deformation and flow.
the free energy. Molecular dynamics simulations were re-

cently used 70] to determine the vibrational entropy.
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