
PHYSICAL REVIEW E 69, 021509 ~2004!
Structural changes and viscoplastic behavior of a generic embedded-atom model metal
in steady shear flow
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We study equilibrium and nonequilibrium properties of a simple ‘‘generic embedded-atom model’’~GEAM!
for metals. The model allows to derive simple analytical expressions for several zero-temperature constitutive
properties—in overall agreement with real metals. The model metal is then subjected to shear deformation and
strong flow via nonequilibrium molecular dynamics simulation in order to discuss the origins of some quali-
tative properties observed using more specific embedded-atom potentials. The ‘‘common neighbor analysis,’’
based on planar graphs is used to obtain information about the transient structures accompanying viscoplastic
behavior on an atomic level. In particular, pressure tensor components and plastic yield are investigated and
correlated with underlying structural changes. A simple analytical expression for the isotropic pressure at finite
temperatures is proposed. A nonequilibrium phase diagram is obtained by semianalytic calculation.
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I. INTRODUCTION

An understanding of the processes accompanying pla
deformation of solids is of fundamental interest to mate
science. Crystalline materials and metals, in particular,
form when subjected to stress. After reaching a maxim
~yield! stress, the material does not return to its origin
shape when relieving external forces. The extent of struct
change depends on the magnitude and rate of deforma
For small and slow deformations cooperative motions
atoms—and the displacement of full layers—are observ
Irreversible plastic deformation at low shear rates is usu
described through the motion of microscopic defects, suc
dislocations, voids, microcracks, and grain boundaries@1–5#.
When subjected to steady shear, however, the system un
goes significant structural transformations on a range
length scales, as known from atomic force microsco
~AFM!. Tribology has approached the microscopic lev
@6–10#, but AFM does not operate at the high speeds nee
to investigate a strong flow regime which will be also inve
tigated in this work. Along with its bulk properties, meta
reveal still incompletely resolved surface phenomena, e
during dry solid friction, wear, and abrasion@11–13#. Dry
solid friction of two metal bodies involves the formatio
growth, and disappearance of a number of small con
zones~asperities, area typically of the order of 10mm2 while
occupying 0.1% of the visible area!, in which friction forces
are thought to build up@14–16#. Low energy electron dif-
fraction experiments proved the existence of crystal str
tures at the sliding surfaces that are aligned with the sh
direction in abraded material@17#. The observed structura
changes, originated by large relative speeds in the sur
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layers—at a moderate overall speed—may propagate
several thousand crystal lattice constants@11–13,17#. Thus,
the frictional force—the shear stress integrated over the
ume of the asperities—must be considered as inhomo
neous with respect to density, velocity, and temperat
fields. An understanding of the physical mechanisms in
mentioned strong nonequilibrium situations is relevant
several phenomena including the processes inside the ea
crust @18#, high velocity deformations, and breaking of me
als at high velocities and impacts@19,20#.

In this work, we adopt the embedded-atom method@20–
23# to model metals and to investigate microscopic origins
the observed macroscopic behavior. This method takes
account that energy of atoms in metals depends on lo
electron density, resulting in forces that are many body
character. Simulation provides us with the time-depend
positions and momenta of atoms in the system and thus
lows for a detailed structure-relationship analysis~for ex-
ample, by using planar graphics@24#!. A particularly simple
choice of model, the ‘‘generic embedded-atom mod
~GEAM!, will be shown to reproduce the main zero
temperature constitutive properties of real metal by varyin
set of basic model parameters. It is characterized by a
model parameters, the strength of the embedding funct
the position of the minimum, and the cutoff radius of a
interatomic binary potential, thus allowing for a systema
analysis of the influence of constitutive properties on
structure and mechanical behavior of metals. The parame
independently adjust several constitutive properties~elastic
coefficients, vacancy formation, and cohesive energy! such
that we can adjust them through analyzing correspond
properties of real metals. In particular, only the ‘‘quadra
term’’ in the embedding functional contributes to the elas
coefficients, which include response to volume changing
formation~bulk modulusB, C11, andC12) since they depend
on the second derivative of the cohesive energy. We simu
shear flow of the model metal within a single asperity, a
-
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length scale where local properties, e.g., temperature
density of the macroscopic body can be considered grad
free. For the case of sliding friction we simulate a cont
zone at a relative motion inx direction, with a load and shea
gradient iny direction. The value of penetration hardness i
good estimate for the typical pressure in the contact area
the case of rough surfaces and moderate loads@14#. Recent
work @25–27# on friction between a rolling wheel and a ra
combines plastic deformation, friction, and heat genera
effects with Hertzian calculations of stress distribution. T
study reveals information about the feedback effects of te
perature on shear stress and shear on structure, neith
which are included in the aforementioned work on rolli
friction. The simulation allows to measure the influence
initial crystal orientation on transient flow behaviors, the fo
mation of shear bands and dislocations, and the general
dependence of metal flow behavior in its viscoplas
~strong! flow regime. We present semianalytic calculations
the nonequilibrium phase diagram, structure, and shear s
of the systems with fcc, bcc, and fluid~molten state! station-
ary configurations. Special attention is paid to the effect
temperature on the structural behavior. Further, we desc
the evolution of isotropic pressure, as well as bulk and sh
moduli with temperature for different densities. A simple a
proximate expression for isotropic pressure will be obtain

Two recently developed grid-free computer simulati
techniques, smooth particle applied mechanics@28–30# and
dissipative particle dynamics@31#, offer the potential for
modeling metals on a micrometer scale~‘‘mesoscale’’!.
These methods allow us to study the impacts, high velo
deformations, formation of contact zones, and processes
side contact zones during dry friction of two metal block
However, they rely on expressions for thermomechan
properties of model metals as input. One of the goals of
work is to provide these expressions based on a generic
ab initio motivated model.

This paper is organized as follows: in Sec. II A we intr
duce the embedded-atom method and present expression
the pressure and elastic modulus tensors. In Sec. III
model, its format, some of its static properties, and refere
values are given. Implementation details are discusse
Sec. III C. The remaining sections analyze the elastic beh
ior ~Sec. IV!, the mechanical behavior of a shear flow sim
lation ~Sec. V!, and the nonequilibrium structure of th
model metal~Sec. VI! subjected to steady shear.

II. THE EMBEDDED-ATOM METHOD

We consider a model metal composed ofN atoms at ther-
mal equilibrium at temperatureT located at positionsr i , i
51,2, . . . ,N contained in a volumeV. The potential is the
sum of two contributions to the total potential energyE: a
conventional binary interaction term through a two-body
teraction potentialU and a term stemming from an embe
ding functionalF, which models the effect of the electron
‘‘glue’’ between atoms@21,22#:

E5(
i 51

N FF~r i !1(
j . i

N

U~r i j !G , ~1!
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where r i j denotes the norm of the relative vectorr i j 5r i
2r j between atomsi andj. The embedding functionalF has
to be a nonlinear function of the~local! embedding densities
r i of atomsi 51, . . . ,N. The local embedding densityr i is
constructed from the radial coordinates of surrounding ato
and requires the choice of a weighting functionw(r ),

r i5(
j Þ i

w~r i j !1w~0!. ~2!

Here, w(0) is the local embedding density of a solita
atom. The~effectively many-body! model potentials intro-
duced above serve to model a variety of metal propert
The potential contributions to the pressure tensor and
elastic moduli can be obtained from the terms of first a
second order in the expansion of the configurational free
ergy with respect to the Lagrangian strain tensorsmn , de-
fined through particle displacement written asr n

i →r n
i

1r m
i smn . The Greek subscriptsm,n stand for Cartesian com

ponents associated with thex,y,z directions. This expansion
is obtained from the standard expression for the configu
tional Helmholtz free energybFpot52 ln * exp(2bE) drN

with b[1/(kBT).

Pressure and elastic modulus tensors

The total pressure tensor is a sum of kinetic and poten
contributions. The potential part of the pressure is evalua
as aN-particle average according to@32#

Vpmn
pot5^Fmn&, Fmn5(

iÞ j
fmn

i ~r i j !. ~3!

The symbol( iÞ j denotes a double summation over pa
i j of ~different! particles, the angular brackets indicate
ensemble or time average, and the second rank tensorf i ( i
P1, . . . ,N) is given by

fmn
i ~r i j !5r m

i j S 1

2
“n U~r i j !1

]F~r!

]r U i“nw~r i j ! D , ~4!

where“nw(r )5r 21 r n ]w(r )/]r as for any function with
spherical symmetry, i.e., whenw(r )5w(r ).

The kinetic part of the pressurepkin is obtained from pe-
culiar velocity of particles,ci5 ṙ i2v(r i), where v(r i) de-
notes the~macroscopic! flow velocity on position of particle
i,

Vpmn
kin5K (

i
mcm

i cn
i L . ~5!

The scalar~isotropic! pressurepiso is the trace of the tota
pressure tensor divided by the spatial dimension,piso

5pmm/3. The symmetric traceless part ofpmn is associated
with the shear stress and normal stress differences. The
tisymmetric part of the pressure tensor vanishes for struct
less particles with spherical interaction.

The response of the material to deformationsmn is char-
acterized by the elastic modulus tensorGlk,mn , defined by
9-2
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linear relation slk5Glk,mnsmn , where slk52(plk
pot,def

2plk
pot,0) is the negative difference between the potential c

tribution to the pressure tensor in the deformed stateplk
pot,def

and its corresponding valueplk
pot,0 in the undeformed state

The elastic modulus tensor can be decomposed into B
Green and fluctuation contributions,Glk,mn5Glk,mn

BG

1Glk,mn
flct @32,33#, with

VGlk,mn
BG 5K (

iÞ j
flk,mn

i ~r i j !L
0

1
1

3
^Fmm&0dlkdmn , ~6!

VGlk,mn
flct 52b@^FlkFmn&02^Flk&0^Fmn&0#. ~7!

In Eq. ~6! we use the abbreviationflk,mn
i (r )

5r l“kfmn
i (r ). The subscript ‘‘0’’ in^•••&0 indicates a con-

figurational average to be evaluated in the unstrained s
Later, we will evaluate these expressions for ideal fcc a
bcc lattices. In the conventional ‘‘Voigt notation’’ the fou
indices~range 1–3! are replaced by two indices~range 1–6!.
In this notation one denotes elastic moduli of cubic cryst
and of the model with central interactions:C11[Gxx,xx ,
C12[Gxx,yy , andC44[Gxy,xy . The conventional symmetri
zation according to C44[(Gyx,yx1Gyx,xy1Gxy,yx
1Gxy,xy)/4 is not essential in this case. In this work, the ax
x,y,z correspond to the directions@100#, @010#, @001# in the
cubic crystal, i.e., to the deformation direction, its gradie
direction, and the direction normal to the shear deformat
plane, respectively. In systems with cubic symmetry, spa
anisotropy is reflected by the existence of a minimum an
maximum of the shear modulus. The modulusC44 is associ-
ated with a displacement in the@100# direction and a (010)
shear plane in a cubic crystal. This modulus stands fo
maximum resistance the system with fcc or bcc structure
offer to shear. The same systems, with a displacement
plied along the@11̄0# direction and the (111) shear plane
the crystal, have minimum shear modulus associated with
modulus C̃445(C112C12)/2. For an isotropic system,C44
equals the orientationally averaged shear modulusG. As a
component of the elastic modulus tensor, the shear mod
can be written as a sum of a Born-Green~usually positive!
and a fluctuation~usually negative! contribution, G5GBG

1Gflct. The Born-Green contribution is written as a line
combination of the extremal contributions to the shear mo
lus, precisely,

GBG[
3C4412C̃44

5
. ~8!

The fluctuation contribution to the average shear modu
becomes

VGflct52
b

10
@6^Fxy

2 &01^~Fxx2Fyy!
2&0#. ~9!

The response to a volume changing deformation of
isotropic solid can be inferred from the~isothermal! bulk
modulus or compression modulusB[n(]piso,pot/]n)T ,
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wheren5N/V is number density. The Born-Green comp
nents of the bulk and shear moduli are related in cubic cr
tals @34,35# via a modified Cauchy relation valid for th
embedded-atom method of the form~1! through

BBG5
5

3
GBG12 ppot1

1

9V K (
i

]2F
]r2U

i

S (
j Þ i

r i j
]w

]r U
i j
D 2L

0

.

~10!

The fluctuation contribution to the bulk modulus is

VBflct52
b

9
@^FmmFmm&02^Fmm&0

2#, ~11!

and the total bulk modulus isB5BBG1Bflct.

III. THE ‘‘GEAM’’ MODEL POTENTIALS

For the binary potential functionU we use a radially sym-
metric short-ranged attractive~SHRAT! potential@36,37#:

U~r !5f0r 0
24@3~r cut2r !424~r cut2r min!~r cut2r !3#,

~12!

for r<r cut, andU(r )50 otherwise, with an energy scalef0,
a length scaler 0, an interaction ranger min , and a cutoff
radiusr cut. The well depth of the two-particle~binary inter-
action! potentialU is 2U(r min)5f0r0

24(rcut2r min)
4. This for-

mat of the potential has been recently used as the effec
two-particle interaction in the embedded-atom model me
@38–40#, and to model thermophysical properties
fluids and solids@36#. The SHRAT potential has a finite
value at r 50, i.e., U(0)5f0r 0

24r cut
3 (4r min2rcut). For

temperatures below 0.1f0 /kB—due to the Boltzmann facto
exp@2U(0)/kBT#—the fraction of particles that reach zer
distance is smaller than 10251 for the choicer cut51.6r 0 ,
r min521/6r 0. We use the normalized Lucy’s weight functio
in the definition of the embedding density for reasons d
cussed in Ref.@38#, i.e.,

w~r !5w0S 113
r

r cut
D S 12

r

r cut
D 3

, ~13!

for r<r cut, and w50 otherwise, with a prefactor obtaine
by normalizing the weight function, w05w(0)
5105/(16pr cut

3 ). The embedding potential in polynomia
form is

F~r!5f0 (
k52,4, . . .

Fk@~r2rdes!
k2~w02rdes!

k#r 0
3k ,

~14!

whererdes is the desired embedding number density andFk
are embedding strengths, being part of the model. Odd te
in the sum are excluded since their contribution would
always repulsive in nature, the linear term (k51) could be
adsorbed in a modified pair potentialU. The desired density
in this model equals roughly,rdes5r 0

23, the embedding den
sity and particle number densityn[N/V5r 0

23. Polynomial
9-3
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TABLE I. The values of constitutive properties and their ratios for Cu, Ni, Ag, Au, Fe, and the model metal GEAM (rdes,F2 are equal
to unity and all other parameters are zero!. The top values are experimental data from Refs.@44–47#, and the two lower values are calculate
for input parameters in the first four columns. The model parameters for the metals are obtained by linear optimization of r
constitutive properties using experimental data.

Metal F2 F4 r cut

rmin

21/6 n Ecoh B G

nEcoh

B

Ev1

Ecoh

G

B A

Cu 85.9 nm23 3.50 eV 142 GPa 59.3 GPa 0.339 0.366 0.418 3.1
~fcc! 0.42 0. 1.010 1.00 0.997 0.419 2.889 1.158 0.145 0.897 0.401 3

0.42 8.5 1.010 1.00 0.997 0.972 2.909 1.158 0.333 0.412 0.398 3
Ni 84.6 nm23 4.45 eV 183 GPa 94.3 GPa 0.329 0.360 0.513 2.4
~fcc! 0.2 0. 1.017 1.02 0.957 0.366 2.408 1.202 0.145 1.034 0.499 2

0.2 6.5 1.017 1.02 0.957 0.839 2.468 1.203 0.325 0.838 0.487 2
Ag 58.0 nm23 2.95 eV 101 GPa 33.5 GPa 0.271 0.373 0.331 2.8
~fcc! 0.7 0. 1.006 1.00 0.994 0.486 3.609 1.214 0.134 0.793 0.336 2

0.7 8. 1.006 1.00 0.994 0.982 3.621 1.214 0.270 0.415 0.335 2
Au 58.1 nm23 3.81 eV 174 GPa 30.7 GPa 0.204 0.236 0.177 2.8
~fcc! 1.3 0. 0.988 0.94 1.052 0.281 4.890 0.842 0.125 0.514 0.172 2

1.3 10.2 0.988 0.94 1.052 1.083 5.562 0.841 0.204 0.295 0.151 2
Fe 84.6 nm23 4.29 eV 169 GPa 86.8 GPa 0.344 0.417 0.515 2.7
~bcc! 0.2 0. 1.17 1.08 0.868 0.417 1.572 0.772 0.252 1.091 0.491 2

0.2 1.1 1.17 1.08 0.868 0.417 1.667 0.768 0.342 0.724 0.491 2
GEAM 72.0 nm23 1.91 eV 179 GPa 52.7 GPa
~fcc! 1.0 0. 1.00 1.00 0.993 0.552 4.442 1.309 0.123 0.718 0.295 2
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format of embedding functional is computationally less e
pensive than standard logarithmic form@20–22#. Also, the
ratio between cohesive energyEcoh ~or energy per particle!
and B can be systematically changed without influence
values of other constitutive properties of the system,
Table I. In the following section~Sec. III A! a property of
polynomial format, to give simple analytical expressions
many constitutive properties, will be used to explain orig
of well-known properties of embedded-atom potential@22#.

We investigate a generic embedded-atom model m
with a minimum of the binary potential located at the d
tancer 5r min521/6 r 0'1.12r 0 as for the Lennard-Jones po
tential, with a cutoff distancer cut51.6r 0, and F251, and
Fk50 for k.2. The hereby specified metal will be denot
as GEAM. For GEAM, the well depth of the two-partic
potential U is therefore2U(r min)'0.05f0. Model param-
eters for Cu, Ni, Ag, Au, Fe, and the GEAM model metal a
given in Table I; parameters for the real metals are obtai
by linear optimization using experimental data~ratios of the
constitutive properties! also given in the table.

A. Basic properties

The energy per particle can be calculated from Eq.~1! for
particles, which occupy ideal lattice sites. The result
curves are displayed in Fig. 1 for GEAM with (F251) and
also without (F250) the embedding contribution. The de
pendence of energy per particle from density is presen
and the dashed curves show results for particles place
bcc lattice sites. The fcc and hcp structures are energetic
equivalent for n1/3r cut,1.83. For densities close ton
5r 0

21/3 ~or n51 in reduced units, cf. Sec. III B! the mini-
02150
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mum energy is lower in fcc solids. In order to describe t
influence of model parameters on some constitutive prop
ties of ideal fcc and bcc structures we will consider a st
point with vanishing~total! isotropic pressure and fix th
binary potential well depth to the above GEAM value. T
shape of the binary potential is controlled by changing
valuesr min andr cut. The size ofr cut changes the strength o
contributions to the embedding density. Smallerr cut means
smaller contribution of neighbors,( iÞ jw(r i j ), in Eq. ~2!.
The corresponding parameter in other embedded-atom m
els, cf. Refs.@22,23#, is the nearest neighbor equilibrium dis
tance.

FIG. 1. Cohesive energy or energy per particle vs density~both
in LJ units! at r cut51.6r 0 ,r min521/6r 0 ~generic embedded-atom
model GEAM! for ideal fcc and bcc lattices with (F251) and also
without (F250) the embedding functional.
9-4
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FIG. 2. Cohesive energyEcoh, shearG and bulkB moduli, anisotropy ratioA, and densityn for the case of vanishing pressure tensor. A
quantities are in standard LJ units. Values for fcc~solid curves! and bcc~dashed curves! structure are presented.~a! Effect of cutoff radius
r cut , position of the potential minimumr min for F251 ~GEAM!. ~b! Effect of cutoff radiusr cut and embedding strengthF2 for r min

521/6r 0 ~GEAM!. ~c! Effect of r cut ,r min (F251) on the anisotropy ratioA. Areas~bold line! where fcc and bcc structures are energetica
favored are also shown. For cubic structures one hasA52 if interactions with the first nearest neighbor shell only are present; ‘‘II sh
denotes the separation line. The lineC11.uC12u separates the regimes where bcc and fcc structures are mechanically unstable.~d! Effect of
r cut ,F2 ~for r min521/6r 0) on the bulk modulusB and zero-pressure densityn.
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In the following, elastic coefficients, pressure tensor, a
related quantities are evaluated from the expressions give
the preceding section in the limit of low temperatures, wh
particles occupy ideal lattice sites.

The cohesive energyEcoh[E/N, or energy per particle
depends strongly on the embedding part of the model po
tial, see Figs. 2~a! and 2~b! for a quantitative analysis. Th
main contribution of the two-particle interaction toEcoh
stems form the first neighbors. At zero pressure, the
neighbors are near the minimum of the binary potential;
resulting density depends only on the position of the m
mum of the potential@Fig. 2~d!#. Since the well depth of the
two-particle potential is held constant, the cohesive ene
does not depend on the position of the potential minimu
02150
d
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The vacancy formation energyE1v is the minimum energy
needed to move an atom from the bulk onto the surface
the crystal@20,22#. In order to perform a systematic analys
pf E1v parameter dependence, relaxation of structure aro
vacancy is not considered. The dominant contribution
EAM to the unrelaxed vacancy formation energy stems fr
the binary interaction potential. The unrelaxed vacancy f
mation energy depends weakly on the embedding part of
potential and the position of the cutoff radius, cf. Table I.
depends indirectly—through zero-pressure density—on
position of the potential minimum. Compared to other co
stitutive properties of EAM metals, the unrelaxed vacan
formation energy changes slowly with a change of all mo
parameters. Other ground state defect energies of the m
9-5
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STANKOVIC, HESS, AND KRÖGER PHYSICAL REVIEW E69, 021509 ~2004!
metal, e.g., the surface formation energy, can be also ca
lated from Eq.~1!.

Recent studies, Refs.@41,42#, indicate that there is no
straightforward comparison between vacancy formation
surface formation energies calculated with EAM and exp
mental data. Difference between electronic structure at a
face level and in bulk is not considered by EAM, thus EA
should give in case of metal with high electronic dens
~Pt,Pd! noticeably lower vacancy formation energies fro
experiment.

The elastic coefficients—bulk modulusB, ~average! shear
modulus G, C44, and the Cauchy pressureC̃445(C11
2C12)/2—depend on the second derivative of the free
ergy for a nearest neighbor model, cf. Eq.~6!. The second-
order term@k52, Eq. ~14!# in the embedding functional is
most important for the values of the elasticity coefficien
which include response of material on volume chan
(B,C11,C12) since the embedding density is usually ve
close to the desired embedding density, see Fig. 2~d!. Shear
moduli C44 and C̃44 in cubic crystals include only respons
to volume conserving shear deformation that do not cha
embedding density and consequently contribution of emb
ding functional to free energy. For this reason shear mo
depend only on two-body interaction parameters (r cut,r min),
see Figs. 2~a! and 2~b!. The same conclusion can be obtain
from symmetry analysis of Eq.~6! for cubic crystals. This
enables us to fit experimental values for the shear moduG
and bulk moduliB independently by varying strength ofF2
term. Other order terms of embedding functional may
considered to obtain an improved quantitative agreement
tween model behaviors and experimentally observed be
iors, in particular with respect to the ratios between ela
coefficients and the cohesive energy, cf. Table I. Due to
~10!, the difference between bulk and shear modulus is
proximately

~3B25G!'
nF2

3 S (
j Þ i

r i j
]w

]r U
i j
D 2

~15!

near the zero-pressure density in an ideal cubic crystal.
ratio G/B<3/5 decreases with increasing second-order te
in the embedding functional.

The so-called ‘‘anisotropy ratio’’A5C44/C̃44 of a cubic
material is the ratio of the extremal values of the sh
modulus, maximumC44 and minimum Cauchy pressureC̃44.
It depends on the shape of weighting function and the tw
particle potential. It does not depend on the embedd
strength (F2). The anisotropy ratio isA52 in cubic crystals,
when only interactions with nearest neighbors are pres
according to Cauchy relations. In bcc structure the Cau
pressure falls with increasing cutoff radius and the anis
ropy ratio rises. If the Cauchy pressure becomes nega
the system is mechanically unstable for zero applied str
see Fig. 2~c!. For the mechanical stability analysis in case
nonzero stresses one should use modified stability crite
see Ref. @43#. Even when disregarding the higher ord
terms, the embedded-atom potential~14! predicts well the
anisotropy ratios of both fcc and bcc metals. Higher or
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terms (F4 ,F6 , . . . ) can beconsidered to obtain a quantita
tively improved description~Table I! predominantly concern-
ing the cohesive energy. Other constitutive properties s
mostly unchanged upon considering these higher or
terms.

B. Reference values

To compare nonequilibrium molecular dynamics~NEMD!
simulation results with experimental data, we relate const
tive properties of our model with experimental data for re
metals in Table I. The last four columns of this table give t
characteristic ratios of constitutive properties for four f
metals~Cu,Ni,Ag,Au! and one bcc metal Fe, together wi
the same ratios for corresponding model metals obtained
linear optimization of model parameters; values for GEA
are also listed. The reference values for dimensionless m
quantitiesQdimless can be computed from experimental~top
number! and calculated values listed in middle section
Table I. The determined model parameters and reference
ues are not unique in the sense that it is possible to
similar sets which would as well resemble the properties
real materials. Concerning reference values used to tran
between dimensionless simulation quantities and experim
tal values, we should discuss them shortly. Any measura
quantityQ with a dimension@Q# specified in SI units kg, m,
and s is made dimensionless by a reference quantity

Qref5ma1g/2r 0
b1gf0

2g/2 for @Q#5kgambsg, ~16!

such thatQ5QdimlessQref ; quantitiesm, r 0, andf0 provide
the scales via the interaction potential~12! and the equations
of motion. The reference values for lengthr, number density
n, energykBT ~and defect energies!, temperatureT, time t,
shear rateġ, pressureP, and the elastic moduli in terms o
the simulation parameters are thereforer ref5r 0 , nref5r 0

23,

eb,ref5f05kBTref , t ref5r 0 (m/eb,ref)
1/2, ġ ref5t ref

21 , and Pref

5f0r 0
235nrefeb,ref. For Cu, e.g., one obtains reference va

ues f053.61 eV andPref[38 GPa, r 052.26 Å, andnref
586.2 nm23 from Table I. Atomic mass of copper ismCu
51.06310225kg and the reference time is estimated ast ref
50.97310213 s. By choosingTref5f0 /kB540 kK, Pref
540 GPa one obtainsf053.45 eV, nref572.5 nm23, and
r 052.4 Å for GEAM.

The predicted values of the vacancy formation ener
elastic anisotropy, and the bulk modulus are within the
pected ranges for fcc and bcc metals. Since both density
vacancy formation energy depend strongly on the position
the potential minimum, there is no unique way to choo
model parameters such that both density and vacancy for
tion energy precisely match values for a given real metal,
Table I and Figs. 2~a! and 2~b! for possible choices.

C. Implementation of the model

The equations of motion in the conducted NEMD sim
lation are integrated by a velocity-Verlet algorithm. A cub
simulation box with constant volume and Lees-Edwards
riodic boundary conditions are used to simulate shear de
9-6
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STRUCTURAL CHANGES AND VISCOPLASTIC . . . PHYSICAL REVIEW E 69, 021509 ~2004!
mation. Details about the implementation can be found
Refs.@39,48–51#. The force acting on particlei, directly ob-
tained from Eq.~1!, reads

Fi52(
j Þ i

F ]U
]r U

i j

1S ]F~r!

]r U
i

1
]F~r!

]r U
j
D ]w

]r U
i j
G . ~17!

A suitable integration time step isDt/t ref50.01 for the
chosen range of temperatures and densities. The temper
is kept constant by rescaling the magnitudes of the pecu
particle velocities which corresponds to a Gaussian c
straint of constant kinetic energy in the limitDt→0.

For the case of a model metal under steady shear de
mation~or flow!, a relative motion of periodic images in th
flow ~x! direction is performed, with a shear gradient in they

direction. The flow simulation introduces the shear rateġ,
given by ġ5]vx /]y, as a further independent variabl
While a linear flow profile is observed at moderate rates
higher shear rates and during the transition towards a ste
state, parts of the system move as blocks. To allow sim
tions of pluglike flow, in this paper is used a ‘‘profile unb
ased thermostat,’’ which calculates the mean peculiar vel
ties self-consistently. The details of this temperature con
method are given elsewhere, see Refs.@52,53#. Alternatively,
shear flow can also be generated by modifying the equat
of motion with a Sllod algorithm@54,55#.

The values of the shear stress components are obtaine
extracting their averages once the system has reached
stationary state. This corresponds to the statistical ave
typically over a periodDt/t ref5800 in system of 2000 par
ticles, the configurations are sampled after every 10 t
units. The temperature was increased stepwise everyDt/t ref
52000. The results for pressure tensor components fo
number of parameters are compared with data extracted
NEMD simulations of larger systems (N543 000) and runs
Dt/t ref54000 to test convergence to steady state. The st
slip motion is observed only in intermediate state and i
not observed after first 1000 time units of the simulatio
System size effects on total energy, pressure tensor com
nents, and their fluctuations are not observed. Yield st
and frequency of defects formed in steady state shear reg
depend through energy needed to form a defect on the
tem size, see Ref.@56#. Thus, it is important to use a larg
number of particles (N.5000) to obtain relevant informa
tion about value of yield stress and stationary state struc
of system.

For our systems, the total simulated physical time will
of the order of 1021021029 s which is smaller than the
minimum ‘‘lifetime’’ of an asperity. The minimum lifetime,
in a process of solid friction, is estimated by the size of
average asperity (10mm) divided by a high velocity, e.g.
100 m/s in case of thread breaking@57–59#. Concerning both
length and time scales, the simulated systems may repre
only a fragment of an asperity. For this reason, the proper
of the system such as overall density, pressure, and temp
ture are taken to be constant within the simulation cell. T
simple model metal is explicitly determined by the set
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model potentials and solved without approximations w
computational effort of orderN.

IV. EQUILIBRIUM PROPERTIES

When material is subjected to deformation or an incre
of temperature, it responds with changes of its free ene
and pressure. At low temperatures the particles are nea
their positions in an ideal crystal. The isotropic ‘‘cold’’ pres
surepcold(n) is calculated by inserting distances of near
neighbors~for an ideal lattice! into Eq.~3!. A modification of
the known expression for the cold pressure has been rece
used to model the isotropic pressure at finite temperatures
the case of the SHRAT potential used here, see Ref.@36#.
The adapted formula for the pressure takes into account
with increasing temperature particles approach each o
more closely, and reads

psolid~n,T!5nkBT1 1
2 $pcold@n1sF~n,T!#

1pcold@n2sF~n,T!#%. ~18!

We observe that the factorsF(n,T) depends on the
strength of the embedding functionalF ~here onlyF2 is con-
sidered! and also on the type of crystal structure as follow

sF
fcc~n,T!'A~5.2521.25F2!

kBT

e2
,

sF
bcc~n,T!'A~4.510.5F2!

kBT

e2
. ~19!

We have sF
fcc(n,0)5sF

bcc(n,0)50 and e25]2Ecoh/]n2.
Equation~19! improves the corresponding expression giv
in Ref. @36#. Though one could discuss further corrections
the expression forsF(n,T), the proposed Eq.~19! shows
good agreement with simulation results as demonstrated

FIG. 3. Pressure as function of temperature~in standard LJ
units! for different model parameters, cutoffr min and minimum of
the potentialr min . Molecular dynamics~MD! simulation results for
piso are denoted with1 ~bcc configuration! and3 ~fcc!. The curves
represent the approximate expression for the pressure, Eqs.~18! and
~19!. Global density in the system isn51.00.
9-7
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STANKOVIC, HESS, AND KRÖGER PHYSICAL REVIEW E69, 021509 ~2004!
Fig. 3. This figure presents equilibrium molecular dynam
~MD! results for the heating of the EAM metal~at n
51.00) for different model parameters. The temperature
increased stepwise betweenT50.006 and 0.04 (DT50.002
each 1000 time units!. In Fig. 3, MD results forpiso are
denoted by symbols, and lines stem from the analysis ba
on the above expressions~18! and ~19!. The system can
withstand tension due to internal attraction, when the pr
sure is negative. This is a consequence of the presenc
boundary conditions at fixed volume. For the large nega
pressures~model parameters:r min50.975321/6, r cut51.56,
F251) holes in the system are created, and the system
not reach a stable state within the simulation time. For

FIG. 4. Shear modulus (G), bulk modulus (B), and their Born-
Green contributions vs temperature for densitiesn51.00,1.02 for
GEAM in dimensionless LJ units, obtained via nonequilibrium m
lecular dynamics~NEMD!. The curve for bulk modulus (Bapp) is
calculated inserting the approximate expression for pressure,
~18! and ~19! into the definition of bulk modulus.

FIG. 5. Shear stress as function of deformation for three sh

rates ġ50.001, 0.005, and 0.01 at two temperaturesT50.01
~thicker curve! andT50.04~thinner curve! of GEAM, obtained via
NEMD. The starting configuration is the ideal fcc structure at d
sity n51.00 with N543 000 particles. The shear started att50.
Shear direction is the@100# direction in crystal, and shear plan
coincides with the (010) crystal plane. The coefficientC44 is ob-
tained via MD simulation. All quantities are given in LJ units.
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same system, melting is observed near the temperatuT
50.035.

The isothermal bulk modulus and shear modulus de
mine the elastic properties of an isotropic solid. Using t
approximate expression for the isotropic pressure@Eqs.~18!
and~19!#, an approximate expression for the bulk modulus
obtained directly. It is shown in Fig. 4 for a range of tem
peratures and densities where the system is solid. The el
moduli decrease with increasing temperature. At higher te
peratures the fluctuation contribution to the shear modulu
of the same order of magnitude as the Born-Green contr
tion. In the molten state the shear modulus vanishes.

V. MECHANICAL PROPERTIES DURING STEADY SHEAR

A. Plastic yield

Representative results of the NEMD simulation conce
ing elastic response and plastic yielding of the solid GEA
are presented in Fig. 5. The system responds with grow
shear stress (2Pxy) to an increasing shear deformationg

5ġt ~constant shear rateġ) switched on att50. In this
figure, shear stress is plotted as function of shear deforma
for an initially prepared fcc GEAM metal at temperatur
T50.01,0.04 and three different shear ratesġ50.001, 0.005,
and 0.01~reduced units!. The axesx,y,z correspond to the
directions@100#, @010#, @001# in the initial crystal structure.
It is seen that the yield deformation does not depend on
shear rate forT50.01. This may be expected in view o
Lindemann’s criterion which says that a crystal will me
when the amplitude of vibration (x0) of atoms exceeds abou
one-tenth of the lattice constants. The smaller values of
yield deformation at high temperatureT50.04 and ġ
50.001 can be also explained by this criterion. If we assu
a harmonically oscillating motion of atoms, we obtain t
relation kT5 f x0

2/2 between temperature and the amplitu
of vibrations, wheref stands for an effective spring coeffi
cient between an atom and its neighborhood. The coeffic
f can be related to elastic moduli, see Ref.@60#, and it falls
with temperature. High temperatures and a small spring
efficient result in a large amplitude of oscillations and
small yield deformation.

The plastic behavior following the yield point, howeve
depends on shear rate. At high rates~and high temperatures!
defects are formed immediately after a yield stress
reached. This results in a slowdown of the relaxation of
cumulated stress at high shear rates. Under these condit
soon after the yield point has been reached~here at g
50.1), shear-induced melting is observed. During this int
mediate state~inhomogeneous melting!, a layer of liquid
metal is formed between two blocks of the solid metal, a
the blocks are moving at constant speed, see upper left c
section in Fig. 10. Actually, the periodic simulation cell co
tains 34 layers of particles and an effective shear rate at
position of the layer is;34ġ—just at startup of flow. For
this reason, for systems at temperatures near the me
point (T50.04) and at high shear ratesġ50.005,0.01 the
system partially melts soon after the shear commenced

-
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STRUCTURAL CHANGES AND VISCOPLASTIC . . . PHYSICAL REVIEW E 69, 021509 ~2004!
Ref. @61#, a similar behavior is observed during sliding of
tetrahedral tip~Cu! over a Ni substrate via simulation. Th
stick-slip motion is observed, with abrupt structural tran
tion of the tip layer closest to the substrate between two s
in which Cu (110) surface transformed into (111) surface
match (111) surface structure of Ni substrate. Two comp
sons with inhomogeneous melting in our system can
made.

~i! We also observe regions in intermediate shear reg
~before stationary state structure is formed, Fig. 5!, where
motion is converted to the strain energy. A part of stra
energy is spent on the structure change~melting! of the struc-
ture between the blocks and the rest is dissipated throug
the system.

~ii ! The structure of fluid at interface tends to match t
interface surface structure@61,62#. The observed melting is a
result of two opposed mechanisms, blocks have fcc (1
surface structure but the system tends to form fcc (1
structure in this plane~see Sec. VI!.

The measured yield stress decreases considerably
temperature, since particles at comparatively high temp

TABLE II. Coefficients in approximate expressions for she
stress,2pxy5aTT1c, in Figs. 6 and 7 for different values o
model parametersr cut , r min , andF2 ~all other parameters are zero!.

rmin

21/6

r cut

1.6 F2 ġ aT c

1. 1. 0. 0.001 20.34(6) 0.037~1!

1. 1. 0.5 0.001 20.47(6) 0.039~2!

1. 1. 1. 0.001 20.44(5) 0.045~1!

1. 1. 1. 0.010 20.37(5) 0.040~1!

1.025 0.95 1. 0.001 20.5(2) 0.092~5!

1.025 1.05 1. 0.001 20.64(7) 0.055~2!

FIG. 6. Shear stress vs temperature. Symbols denote ave
from the NEMD simulation of GEAM with different densities fo

two shear rates ġ50.001,0.01 (F251) and for F250 (ġ
50.001). All quantities are expressed in LJ units. Curves are
tained by linear regression analysis of the simulation results. E
mated error ranges~standard deviation! have similar size for all data
points, for this reason they are plotted only atT/Tref50.08.
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tures can cross the potential barrier and enter the next po
tial minimum faster.

B. Rheological properties for stationary shear flow

For a planar Couette flow the symmetric traceless pr
sure tensor~which equals the negative stress tensor! has only
three independent componentsp1,2,0 , a shear pressurep1

[Pxy or shear stress2Pxy , and two normal pressure differ
ences:p2[(Pxx2Pyy)/2, p0[@2Pzz2(Pxx1Pyy)#/4. We
calculate~via NEMD! the pressure tensor over the range
temperatures T50.008, . . . ,0.06, for densities n

50.98, . . . ,1.08, and for two shear ratesġ50.001,0.01.
These simulations are performed with 1000, 2000, a
43 000 particles.

In order to discuss the relationship between shear st
and temperature for two shear rates we test a simple lin
relationship between them, where the coefficients are
tained via regression. Within statistical errors and for t
range of chosen densities, we did not detect an effec
density on the friction pressure. The resulting approxim
expressions are given in Table II. The regression curves
shear stress (2p1 or 2Pxy) together with the simulation
data are presented in Fig. 6. Data are plotted for two sh
ratesġ50.001 ~solid curve!, ġ50.010 ~dashed curve! and
ġ50.001,F050 ~dotted curve!. The shear stress decreas
with increasing temperature. This is so, because atoms h
large kinetic energies and can move uncorrelated and
from their equilibrium positions as compared to atoms in
layer plane. For the same reason, the observed shear s
decreases with increasing shear rate. At a higher shear
more defects are produced and the ordering of atoms
hexagonal layers is weakened, see the insets of Fig. 10.
embedding contribution reduces density fluctuations, mak
atoms more bounded into layer structure, thus shear st
decreases with decreasing influence of embedding contr
tion, cf. Table II and Fig. 6. The simulated values of the tw
normal pressure differencesp2,0 are found to both vanish

r

ges

-
ti-

FIG. 7. Shear stress as function of temperature~in standard LJ
units! for different model parameters, minimumr min and cutoff ra-
dius of the potentialr cut . Symbols denote averages from the NEM

simulation at shear ratesġ50.001. Curves are obtained by linea
regression analysis of the simulation results.
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STANKOVIC, HESS, AND KRÖGER PHYSICAL REVIEW E69, 021509 ~2004!
within the precision of our data. In Fig. 7, the data are p
sented for three systems: GEAM~with fcc ground state
structure and shear moduliG51.31), for model parameter
r min51.025321/6, r cut51.68, F251 ~bcc, G51.33) and
r min51.025321/6, r cut51.52, F251 ~fcc, G52.39). Since
the shear stress and moduli have the same origin in shap
two-body interaction potential, the observed shear stress
creases linearly with increase of the shear moduli. The
pendencies of shear stress on temperature and shear ra
particularly important when the metal is subject to sev
stresses or nonuniform heating, e.g., as result of thr
breaking@57–59#.

In a liquid metal, atoms are quite free to move and
system exhibits a comparable small resistance to the s
flow, cf. the enclosed points in Figs. 8~a! and 8~b!. This
means that if the model metal stays crystalline~during shear!
it mostly reduces energy per particle rather than reduc
resistance to shear. Thus, the observed reordering of the
tal structure under shear has little in common with t
mechanism responsible for an ordering transition
accompanied by shear thinning—observed in fluids@63#. The
present transition is similar to an ordering phenomenon
served experimentally and predicted theoretically for coll

FIG. 8. Shear stress2pxy vs the isotropic part of the pressur

for two shear rates:~a! ġ50.001 and~b! ġ50.01. Symbols indicate
results from NEMD simulations of GEAM for different densitie
and temperatures. All quantities are given in LJ units. Data po
where the system is molten are encircled with a line.
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dal crystals in solid state@65#. However, in colloidal crystals
the shear stress rises at the melting transition@63–65#. The
structure in a colloid is formed to reduce the resistance
shear. Only if the shear rate and the temperature are s
ciently low, the system can reduce the potential energy
forming periodic crystal structures. In metals the interact
between atoms is stronger than in colloids and the mec
nism which tries to reduce the potential energy of the sys
is dominant. The data points in Fig. 8 stem from NEM
simulations at different densities, shear rates, and temp
tures.

The equilibrium and nonequilibrium values for the isotr
pic pressure are shown in Fig. 9 as function of temperaturT
and densityn. The symbols mark the computed pressure
the system under shear. The curves represent the evolutio
the isotropic pressure during melting of a bcc system~dashed
curve! and a fcc system~solid curve! without shear. The
increase of pressure at high temperatures indicates the o
of a shear-induced melting@66#. For the high densities (n
51.02,1.04), the observed structure in the system is ma
of bcc type, resulting in an isotropic pressure smaller th
the one for the corresponding fcc structure.

In case of dry solid friction between two blocks made
the same material, the load is related to the isotropic pres
inside the interface~asperity!. Except in case of polished
surfaces, all asperities will be in state of incipient flow, s
Ref. @14#. The simulation cell can be regarded as contain
a typical part of such an interface. The typical value of t
isotropic pressure should be therefore estimated from
penetration hardness, which is defined as the ratio betw
load N and contact areaA at the onset of plastic flow. Fo
most metals, the penetration hardness lies in the ra
0.005–0.025@reduced Lennard-Jones~LJ! units# @14,15#.
From simulation data in Fig. 9 it is visible that with and als
without shear one can consider the penetration hardness
good estimate for the average isotropic pressure within

ts

FIG. 9. Effect of temperature on the isotropic part of the pr
sure of the system under shear. Symbols indicate results f
NEMD simulation of GEAM at different densities, number of pa
ticles, temperatures, and shear rates. The curve for isotropic p
sure comes from the molecular dynamics simulations of melting
different densities for bcc and fcc structure~without shear!. All
quantities are given in standard LJ units.
9-10



r-
-
r

s

e
.
l

d
n

f
-

ar
-
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FIG. 10. Snapshots ~via
NEMD! visualizing the evolution
of the GEAM crystal subject to
steady shear deformation at diffe
ent times. All quantities are ex
pressed in LJ units. The numbe
of particles is N543 000, tem-
perature T50.02. Each slice is
one length unit wide. Snapshot

for two different shear ratesġ
50.001,0.01 and densitiesn
51.00,1.02 are presented. Th
type of local structure is indicated
The start configuration is the idea
fcc structure, shearing started att
50. The directions of shear an
gradient directions are indicated i
upper right picture. The insets
contain the angular distribution o
closest neighbors, where the rep
resentation is such that the she
direction projects at points de
noted with 3 and the plane nor-
mal to flow gradient direction
projects on a line~of length 2p)
connecting the3 points.
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asperity. The friction coefficient is defined as the ratio b
tween shear stress~integrated over the volume of an asperit!
and the load. Under the assumption for sufficiently hi
loads, e.g., large surfaces of asperities, that the isotr
pressure and the shear stress are homogeneous insid
asperity we obtain via NEMD a ‘‘macroscopic’’ friction co
efficient m in the range between 0.2 and 3, defined asm[
2pxy /piso. These values are comparable to the ones for
materials. With the available mesoscale methods, such
smooth particle hydrodynamics, which allow to simulate
surface containing several asperities it would be possibl
obtain improved values for the analog to the experiment
measured, macroscopic, friction coefficient. Such an inve
gation is outside the scope of the present paper.

The shear stress does not change as much as the iso
pressure does during variation of temperature and den
Even at large isotropic pressures abovepiso50.4, which is
realized in shock waves and impact experiments, the s
stress stays near its value at zero pressure. Strings of the
points, visible in the Fig. 8~b!, can be understood resultin
from partial melting of the system at high temperatures. P
tial melting is observed at the~larger! shear rateġ50.010, at
temperatures belowT50.04. Shear-induced melting is ob
served at temperatures aboveT50.04, see Fig. 12. We wil
further comment on this figure in the following section.
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VI. STRUCTURAL CHANGES DURING STEADY SHEAR

In the preceding section we demonstrated that shear s
rises before reaching the yield stress for a system subje
shear deformation. After reaching this stress, atoms ten
move into the next potential minima while the system
laxes, as is also reflected by oscillations in Fig. 5. If the sh
continues, significant structural changes appear in the
tem. Shear-induced structural local~re!ordering is followed
by changes in the streaming profile and by a buildup of lo
range order.

Figure 10 shows a time series for a subsystem of a cu
cell with N544 000 particles undergoing shear at two diffe
ent densitiesn51 andn51.02 and small and intermediat
ratesġ50.001 andġ50.01, respectively. The snapshots~in-
cluding structure analysis! show a cut of widthDr 51 of the
full system, and the direction of shear is depicted in the
right snapshot. Another quantitative analysis of the evolut
of the crystal morphology for the same system with time
presented in Fig. 11. We used a common neighbor anal
method@24# based on planar graphs to extract informati
about structure from the NEMD data. The method is ba
on a suitable definition for ‘‘neighboring atoms.’’ The list o
the neighbors is used as an input for a pattern recogni
which resolves fcc, bcc, hcp, as well as icosahedral struc
~ico!. The ico structure preferably occurs in amorphous s
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STANKOVIC, HESS, AND KRÖGER PHYSICAL REVIEW E69, 021509 ~2004!
ids. The ratio between all atoms which are found to belong
a structure~central atom plus its neighbors, no double cou
ing! and total number of atoms in the system is taken
measure of the amount of certain crystal structure. For
model all three crystal structures are observed. At high sh
rates (ġ50.01), the icosahedral structure is observed in
intermediate state, see Fig. 11.

At the shear rateġ50.001, after the yield stress had be
reached, a sudden increase in the amount of hcp structu
observed from Fig. 11, the crystal planes shear oblique to
shear direction and form a defect. The defect is visible in
cross section shown in this figure fort5500 as the area
where both hcp and fcc structures are present. The gene
defect blocks flow and induces a further increasing sh
stress. Particles gain kinetic energy by randomly mov
away from the defect. As a result, the system melts loca
This causes the appearance of gradual rearranged
around the defects in the system. To make this more vis
we also provide the angular distribution of directions to n
neighbors in the insets in Fig. 10. The shear direction
marked with two crosses (3) in the insets, and the plan
normal to flow gradient projects on a line~not drawn! con-
necting the crosses. During this structural transition tw
dimensional densely packed layers are formed where
shear direction is in parallel with the nearest neighbor dir
tion at t53000 in Fig. 10, visible as strings of particles.
the stationary state the distance which the particles cross

FIG. 11. Transient behavior of the relative volumes occupied
fcc, bcc, and hcp structures, together with the volume occupied
the amorphous icosahedral structure~ico!, obtained via NEMD, for

GEAM at two shear ratesġ50.001,0.01 and densitiesn
51.00,1.02. The bold curve~cry! represents relative volume occu
pied by the three crystalline structures together. Domains with
ferent crystal structures can overlap, thereby the total amoun
crystallinity ~cry! is not a sum of relative volumes occupied by fc
bcc, and hcp structures. Time is given in standard LJ units and
number of particles isN543 000, temperatureT50.02. Starting
configuration is the ideal fcc structure, shearing started att50.
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tween two minima is the smallest possible in the syste
This reduces the probability for creating new defects. T
densely packed layers are stacked along the gradient d
tion to maximize the distances between particles as t
shear past each other and reduce resistance to shear. F
fcc structure the most densely packed planes correspon

the (111) plane and the shear direction to the@11̄0# direc-
tion. The corresponding plane and direction in a bcc struct
are (110) and@111#, respectively.

Shear deformation inherently generates defects since
oms can move oblique to the shear direction to reach so
close-by energetically preferred states and therefore pre
the shear stress from relaxing. The formation and evolut
of the defects is observed and discussed. Even when sta
ary flow is reached, shear in direction oblique to shear fl
is observed resulting in deviations from stationary shear fl
profile.

The boundary condition imposes a further constraint
the newly formed crystal structure. Crystal planes tend
contain a multiple of unit crystal cells between the boun
aries of the system. This results in a small deviation betw
densely packed planes and plane normal to the flow grad
which may increase the probability for the appearance
defects. We studied several system sizes to make sure
the presented results are not artificially driven by finite s
effects.

For ġ50.01 the structure of the system changes betw
randomly close packed~fcc and hcp! and bcc; see Fig. 11
The total amount of crystallinity is almost constant. We o

y
y

f-
of

he

FIG. 12. Structural phase diagram of GEAM in the temperatu

density plane for two shear ratesġ50.001,0.01. The bold dashe
curve separates the densities and temperatures where at low

rates (ġ50.001) bcc or fcc structure is dominant. The area wh
system is mechanically unstable due to internal attraction is e
mated by inserting Eqs.~18! in condition piso50. Upper three
~solid! curves show melting temperatures with and without shea
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serve that the bcc structure is produced by a volume cons
ing Bain transformation@67# of parts of the fcc structure
This process is reversible. The reason for such a behavio
the system is that the system cannot globally adjust itse
accommodate deformation. Therefore, density fluctuati
arise. The fcc and hcp structures have the same energy
particle in the limit of low temperatures and always occ
together as randomly close packed structures. Though
could expect to observe an identical amount of fcc and
structures, in our simulations the fcc structure shows up to
dominant. The explanation should be that the hcp struc
allows shearing only in a single plane and that it is le
resistant to defects, as compared to fcc. At higher dens
and temperatures the bcc structure becomes dominant.

Nonequilibrium phase diagram

The conditionpiso50 is used in Eq.~18! to estimate the
area of mechanical instability due to internal attraction
GEAM under shear in the nonequilibrium phase diagram,
Fig. 12. Cracks—several crystal constants wide—are
served for small densities and low temperatures. The c
stant volume condition prevents their growth. The upp
three ~solid! curves show melting temperatures with a
without shear. Shear-induced melting is observed at temp
tures aboveT50.04. In equilibrium, the system melts a
temperatures aboveT50.045. In this diagram the bold
dashed curve separates the densities and temperatures
at low shear rates (ġ50.001) bcc or fcc structures are dom
nant, cf. Fig. 11. In the limit of low temperatures the pr
ferred structure can be calculated directly from Eq.~1!. With
increasing temperature the bcc structure becomes dom
at densities where the fcc structure dominates at low t
peratures. The crystal structure formed under the influenc
shear exhibits a large shear stress compared to the one i
liquid metal. It appears that the crystal structure is formed
reduce the free energy of the system. The shear deforma
in this picture cancels the influence of the boundary con
tions. This fcc-bcc transition happens at pressures which
so high that they should usually be inaccessible for unc
fined metals.

At high temperatures the bcc structure is observed at d
sities, where the fcc structure dominates at lower temp
tures. This should be an important finding. Such a ph
transition in solid part of the nonequilibrium phase diagra
was assumed to exist in colloidal crystals@64,65#. Ab initio
calculations of solid phases in transition metals@67–69# sug-
gest that the observed high temperature bcc structure m
be stabilized by a lattice vibrational entropy contribution
the free energy. Molecular dynamics simulations were
cently used@70# to determine the vibrational entropy.

VII. CONCLUSIONS

The GEAM model potential introduced in Sec. III wa
used to study plastic deformation, yield, and steady shea
metals. We analyzed its mechanical behavior and the t
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sient local crystal structure. We showed that structural inf
mation can be related to the pressure tensor in order to
derstand the influence of different conditions~density, shear
rate, temperature! on the evolution of the components of th
pressure tensor after onset of shear. We offered express
for the pressure tensor, the elastic modulus tensor~Born-
Green and fluctuation contributions!, and average elasticity
moduli for particles interacting with the embedded-ato
model potential. We applied these expressions to fcc,
crystal structures and liquid model metals~they could be
applied as well to other crystal structures such as sim
cubic, hexagonal close packed, or diamond cubic!. The low
degree polynomial format of the potential yields a simp
dependency of the ground state constitutive properties
model parameters. In Table I we illustrate that the main c
stitutive properties of real metals are reproduced with a f
model parameters. Thermomechanical properties of
model have been calculated using MD simulation. An e
pression for the cold isotropic pressure was adapted to fit
simulation results for a wide range of model parameters
different temperatures and densities. In addition, the aver
of the bulk modulus has been determined from MD and co
pared to its counterpart calculated from an approximate
pression for the pressure. The analytic formula for the i
tropic pressure, Eq.~18!, can be used as a closure relatio
~constitutive relation! in the mesoscale simulation techniqu
@28–31# discussed in the Introduction. As demonstrated
Sec. VI, the isotropic pressure of the system is determined
the equilibrium pressure of the dominant structure when s
jected to steady shear. This finding extends the applicatio
the formula, Eq.~18!, to other systems under steady she
deformation.

We explored the influence of temperature on the val
for the yield deformation and the relaxation behavior of t
accumulated stress. The generation of defects, and the
melting of the system, prevents stick-slip motion at lo
shear, as observed earlier for the pure SHRAT fluid, cf. R
@36#. The plastic yield and friction stress have been analy
within asperities on the nanometer scale. Local densit
temperatures, and shear rates inside the asperity are
parameters for the NEMD simulations. The friction proce
itself is seen here as a combined effect of processes o
microscale~size of asperities! and a nanoscale. The mes
scale methods@28–31# are expected to overcome the ga
between the micrometer scale and the nanometer sc
These methods need a phenomenological model that
scribes the behavior of the pressure tensor components u
deformation. The results presented in this paper may serv
motivation for new models that incorporate structu
changes and their effect on the pressure tensor in a m
subject to shear deformation and flow.
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M.H. Müser, L. Wenning, and M.O. Robbins, Phys. Rev. Le
86, 1295~2001!.

@11# Z.N. Farhat, Wear250, 401 ~2001!.
@12# J.P. Hirth and D.A. Rigney, inDislocations in Solids, edited by

F.R. Nabarro~North-Holland, Amsterdam, 1983!, Vol. 6, p. 10.
@13# D.R. Wheeler and D.H. Buckley, Wear33, 65 ~1975!.
@14# B.N.J. Persson,Sliding Friction, 2nd ed. ~Springer, Berlin,

2002!.
@15# F.P. Bowden and D. Tabor,The Friction and Lubrication of

Solids, 2nd ed.~Clarendon Press, Oxford, 1954!.
@16# B.N.J. Persson, J. Chem. Phys.115, 3840~2001!; B.N.J. Per-

sson, F. Bucher, and B. Chiaia, Phys. Rev. B65, 184106
~2002!.

@17# V.D. Scott and T. Wilman, Proc. R. Soc., Math. Physic. En
Sci. 247, 353 ~1958!.

@18# J.-P. Poirier,Creep of Crystals~Cambridge University Press
Cambridge, 1985!.

@19# K. Kadau, T.C. Germann, P.S. Lomdahl, and B.L. Holian, S
ence296, 1681~2002!.

@20# B.L. Holian, A.F. Voter, N.J. Wagner, R.J. Ravelo, S.P. Ch
W.G. Hoover, C.G. Hoover, J.E. Hammerberg, and T
Dontje, Phys. Rev. A43, 2655~1991!.

@21# M.S. Daw and M.I. Baskes, Phys. Rev. Lett.50, 1285~1983!;
Phys. Rev. B29, 6443~1984!.

@22# R.A. Johnson, Phys. Rev. B37, 3924~1988!; 37, 6121~1988!;
39, 12 554~1989!.

@23# F.J. Cherne, M.I. Baskes, and P.A. Deymier, Phys. Rev. B65,
024209~2001!.
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