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ABSTRACT

The low degree polynomial embedded atom model is adapted to study the thermo-mechanical behaviour
and structure of model metals with non-equilibrium molecular dynamics simulations. The main
constitutive properties, e.g. elastic coefficients, cohesive energy and lattice constant, of real metals can
be reproduced by a set of basic model potentials as revealed by analytic considerations at zero
temperature. The model is used to study systematically the behaviour of qualitatively similar, but
quantitatively different systems under shear. The influence of elastic moduli and structure at finite
temperature on shear stress is discussed. Further, in the case of mismatch between preferred local and
the global embedding densities, formation of metallic sponges is observed. We analyze the time
evolution of the sponges for different values of cohesive and surface energies.
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1. Introduction

Metals have been subject of numerical simulations since the earliest availability of digital computers for
scientific computing. The embedded atom method was originated by Daw and Baskes [1] and views each
particle as “embedded” in host lattice of all other particles, complying with the fact that in real metals
conducting electrons are not localized about nuclei and total energy depends upon local electron density. A
particularly simple choice of model, the "generic embedded atom model" (GEAM), will be shown to reproduce
the main zero-temperature constitutive properties of real metal by varying a set of basic model parameters: the
strength of the embedding function, the position of the minimum and the cut-off radius. The model parameters
independently adjust several constitutive properties (elastic coefficients, lattice constant and cohesive energy)
allowing a systematic analysis of the influence of constitutive properties thermo-mechanical behaviour of
metals. In particular, only the ‘quadratic term' in the embedding functional contributes to the elastic coefficients
that include response to volume changing deformation (bulk modulus B, C;; and C,,) since they depend on the
second derivative of the cohesive energy. The nonequilibrium molecular dynamics (NEMD) simulations are
used to study the influence of temperature and shear rate on stress tensor in viscoplastic (strong) flow regime.

Crystalline materials and metals undergo significant structural transformations on a range of length scales when subjected
to steady shear flow [2,3]. Dry solid friction of two metal bodies involves the formation, growth, and disappearance of a
number of small contact zones (asperities, area typically of the order of 10pum? while occupying 0.1% of the visible area),
in which friction forces are thought to build up [4]. Low energy electron diffraction (LEED) reveals structural changes,
originated by large relative speeds in the surface layers -- at a moderate overall speed — may propagate over several
thousands crystal lattice constants [3]. Thus, the frictional force — the shear stress integrated over the volume of the
asperities — must be considered as inhomogeneous with respect to density, velocity, and temperature fields.
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Further, the proposed model for a bulk metal is used to obtain metallic sponges and porous metal structures with wide
range of porosities. We demonstrate an application of the model metal sponge to study diffusion of a gas of short ranged
attractive (SHRAT) particles in porous medium.
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Fig. 1 The binary interaction potential (a) used in the NEMD simulations (bold) is plotted together with a Lennard-Jones
(dashed, LJ) potential, both in dimensionless LJ units. The potential cut-off (r.,~h=1.6ry) and minima (rm,-n:rml«nu:f/ﬁ rg)
are model parameters. The Lucy weight function w(r) used to calculate embedding density (b).

2. Embedded atom model

The embedded atom model potential is the sum of two contributions to the total potential energy E: a
conventional binary interaction term through a two-body interaction potential U and a term stemming from an
embedding functional F, which models the effect of the electronic 'glue' between atoms localized about the
nuclei [1],

N N
E=Y(F(p)+ 2 UG") (1)
i=1 j>i

where N is number of atoms at positions r'=1,2,....N and /7 is the norm of the relative vector r’=r-r’ between atoms i and
j. The energy depends upon the local embedding density p;, resulting in forces between ions that are many body in
character, rather than simply pairwise additive. In our GEAM model for the binary potential function U we use a radially
symmetric short ranged attractive potential (Fig. 1a) [5]:

U(V) = ¢0r0_4 (3(rcut - 7")4 - 4(rcut - rmin )(rcut - 7")3) > < rcut (2)

and U(r)=0 otherwise, with an energy scale ¢, a length scale r,, an interaction range ry;,, and a smooth cut-off radius r,.
)* . This format of the

potential has been recently used as the effective two-particle interaction in the embedded atom model metal [5,6,7], and to
model thermophysical properties of fluids and solids [8]. The embedding potential in polynomial form for GEAM is:

k kv, 3k
F(p)=¢, sz((p-pdes) —(Wo =Paes) o 3)
k=2,4,...
where pges is the desired embedding number density and F) are embedding strengths, being part of the model. The local
embedding density p; is constructed from the radial coordinates of surrounding atoms and requires the choice of a
weighting function w(r), p; = Y ;x#w(r”)*w(0). For reasons discussed in [5,9] we use the normalized Lucy's weight function
(see Fig. 1b):

The well depth of the two-particle (binary interaction) potential Uis U (7. ) = —@,r, (7.

ut rmin

w(r)=w,(1+3r/r, 1-r/r,), r<r, 4)

with wy=w(0)=105/(16mnr.,). Throughout this work, we investigate the ‘basic' GEAM model metal for which the desired
density pdeS:ro'3 equals the particle number density n=N/V= 10 Fo=1., rmin=2"° 1y and ro,=1.6r, are fixed.

Like a Lennard-Jones potential, the GEAM will be used to study the behaviour of qualitatively similar, but
quantitatively different systems. To do that, we will exploit the property of its polynomial format, to allow systematical
varying of one constitutive property while other constitutive properties remain largely unchanged.

A A T A O A O A A A O A O A A
1302 Section 10: Computational Physics / Oral Contributions
A A A T A O T A O A A A O O A O A O O A



BPU-5: Fifth General Conference of the Balkan Physical Union, August 25-29, 2003, Vrnja¢ka Banja, Serbia and Montenegro

1.2}
i\-lil
1.02 =]
— 1.0 N
25 N
&4 e
tgl.ﬂﬂ ;‘
0.98 A A - B
0.96 3 N A
’ i 1 . -
(a) \} 4 A~ ool (b) \
154 157 160 163 L6 154 157 160 163 166

Yeut/T0 Teut/To

Fig. 2 Cohesive energy E.,, and shear modulus G for the case of vanishing pressure tensor. All quantities are in standard
LJ units. Line, that separates areas where bcc/fce structures are energetically preferred, is plotted. Values for fcc (solid
curves) and bee (dashed curves) structure are presented. (a) Effect of cut-off radius r.,, position of the potential minimum
Pmin fOr F2=1 (GEAM). (b) Effect of cut-off radius r.,, and embedding strength F', for r,,,,-,,:21/ 6r0 (GEAM).

The energy per particle can be calculated from Eq. 1 for particles, which occupy ideal lattice sites. In present model, face
centred cubic (fcc) and hexagonal close packed (hcp) structures are energetically equivalent for n™'”rr,<1.83. For
densities close to n”ry=1 the minimum energy is lower in fcc solids. In order to describe the influence of model
parameters on some constitutive properties of ideal fcc and bcc structures we will consider a state point with vanishing
(total) isotropic pressure and fix the binary potential well depth to the above GEAM value. Changing the values 1, and
e controls the shape of the binary potential. The size of r, changes the strength of contributions to the embedding
density. The corresponding parameter in other embedded atom models, cf. Refs. [9], is the nearest neighbour equilibrium
distance. In the following, elastic coefficients, pressure tensor and related quantities are evaluated from the expressions
given in the previous section in the limit of low temperatures, where particles occupy ideal lattice sites.

The cohesive energy E.,,=E/N, or energy per particle, depends strongly on the embedding part of the model potential; see
Fig.2a, b for a quantitative analysis. At larger values of r.,, body centred cubic structure (fcc) is energetically preferred
(Fig.2a). The main contribution of the two-particle interaction to E.y, stems form the first neighbours. At zero pressure,
the first neighbours are near the minimum of the binary potential; the resulting density depends only on the position of the
minimum of the potential. Since the well depth of the two-particle potential is held constant, the cohesive energy does not
depend on the position of the potential minimum, cf. Fig.2a. The cohesive energy depends stronger on embedding strength
parameters (F, k=2,4,...) then on size of cut-off radius r,.

The elastic coefficients - bulk modulus B, (average) shear modulus G, Cy44 and the Cauchy pressure (C;,-C;,)/2 depend on
the second derivative of the free energy for a nearest neighbour model [10]. The second order term (k=2, Eq. 3) in the
embedding functional is most important for the values of the elasticity coefficients which include response of material on
volume changes (B, C;;, Cy,) since the embedding density is very close to the desired embedding density. Shear, C,44 and
Cauchy pressure moduli in cubic crystals include only response to volume conserving shear deformation that do not
change embedding density and consequently contribution of embedding functional to free energy. For this reason shear
moduli depend only on two body interaction parameters (Ipin, Iew) S€€ Fig. 2a,b. This enables us to fit experimental values
for the shear moduli G and bulk moduli B independently by varying strength of F, term. Other order terms of embedding
functional (F}, k>4) may be considered to obtain an improved quantitative agreement between model behaviours and
experimentally observed behaviours, in particular with respect to the ratios between elastic coefficients and cohesive
energy.

3. Nonequilibrium molecular dynamics simulation method and reference values

The equations of motion are integrated with a standard velocity-Verlet algorithm with a force acting on particle i: F=—
Yi+(0D/0r i +(0F/0p; +OF/0p;)ow/or;;) obtained directly from eq. (1) by variation of energy. Suitable integration step is
At/t=0.01. A cubic simulation box with constant volume and Lees-Edwards periodic boundary conditions are used to
simulate shear deformation. The profile unbiased thermostat with rescaling of velocities (which corresponds to Gaussian
constraint) is used to control temperature. For more details on simulation method see Ref. [11].

To compare NEMD simulation results with experimental data, we relate constitutive properties of our model with
experimental data. Any measurable quantity Q with a dimension [Q] specified in SI units kg, m and s is made
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dimensionless by a reference quantity Q.=m"""’r* 7, for [Q]=kg"m®s’ such that $Q=QuimiessQ ref quantities m, r, and
¢ provide the scales via the interaction potential Eq. 1-4 and the equations of motion. The reference values for length r,
number density n, energy kgT, temperature T, time t, shear rate ¥ , pressure P and the elastic moduli in terms of the
simulation parameters are therefore 1.~ r, Ne=To ", Cre=P0= kpT e, trer= To(mm/ (1)0)1/2 and Pref(boro'3 =€fl. FOr Cu, e.g,
one obtains reference values §,=3.61eV and P,.=38GPa, r,=2.26A, and n,~=86.2nm>. Atomic mass of copper is
mCu:1.06-10'22kg and the reference time is estimated as t,=0.97-10"s. By choosing T,.~=40kK, P,.~40GPa one obtains
do=3.45eV, n=72.5nm" and r0=2.4A for GEAM.

4. Rheological properties of GEAM metal in stationary strong flow

For a planar Couette flow, which corresponds to stationary flow regime, the symmetric traceless pressure tensor
has only three independent components p. .o, a shear pressure p.=Py, or shear stress - Py, and two normal
pressure differences: P.=(Py- Pyy)/2, pi=2 P,~(Pxt Pyy))/4. We calculate via NEMD simulations with 43000
particles the pressure tensor over the range of temperatures T=0.008,...,0.06, for densities n=0.98,...,1.08, and
for two shear rates ¥ =0.001, 0.01.
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Fig. 3 Shear stress vs. temperature: a) Symbols denote averages from the NEMD simulation of GEAM with
different densities for two shear rates y =0.001, 0.01 (F,=1) and for F,=0 (y =0.001). b) Results for

different model parameters, cut-off r.., and minimum of the potential v,,,. All quantities are expressed in LJ
units. Curves are obtained by linear regression analysis of the simulation results.

In order to discuss the relationship between shear stress and temperature for two shear rates we test a simple
linear relationship between them, where the coefficients are obtained via regression. Within statistical errors
and for the range of chosen densities, we did not detect an effect of density on the friction pressure. The
regression curves of shear stress (-P; or -P,y) together with the simulation data are presented in Fig. 3a. Data are
plotted for two shear rates » =0.001, 0.010. The shear stress decreases with increasing temperature. This is so,

because atoms have large kinetic energies and can move uncorrelated and far from their equilibrium positions
as compared to atoms in a layer plane. For the same reason, the observed shear stress decreases with increasing
shear rate (Fig.3. left). At a higher shear rate more defects are produced and the ordering of atoms into
hexagonal layers is weakened [9]. The embedding contribution reduces density fluctuations, making atoms
more bounded into layer structure, thus shear stress decreases with decreasing influence of embedding
contribution. The simulated values of the two normal pressure differences p., are found to both vanish within
the precision of our data.

In Fig. 3b, the data are presented for three systems: GEAM (with fcc ground state structure and shear moduli
G=1.31), for model parameters: ry;;=1.0252", r,=1.68, F,=1 (bcc, G=1.33) and r1,,;=1.025-2"°, 1,,=1.52, F
Fy=1 (fcc, G=2.39). Since the shear stress and moduli have the same origin in shape of two-body interaction
potential, the observed shear stress increases linearly with increase of the shear moduli. The dependencies of
shear stress on temperature and shear rate are particularly important when the metal is subject to severe stresses
or non-uniform heating, e.g., as result of thread-breaking [3].
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t/t.~=100 t/t.=250 t/t.=500

Fig. 4. Equilibration of a GEAM metal sponge at T/T,,=0.04 (N=50000, n=0.25, pss=1, all in reduced units) obtained via
MD simulation. Initial configuration: fcc lattice (not shown). Snapshots taken at t/t,,=100 (left), 250 (middle) and 500

(right).

5. Diffusion in porous structures (sponges)

To create metallic sponge we introduce controlled mismatch between overall number density n=N/V=0.25 in
reduced units and desired (bulk, wall) embedding density pg.=1.0 of the GEAM metal. Evolution of a model
metal sponge is shown in Fig. 4. The model metal tries to microphase-separate such that the local embedding
embedding density approaches the desired value (pges). Surface tension in the GEAM metal tries to reduce
surface of the sponge and keeps the sponge walls connected. This results in decreasing porosity of the structure.
A comparison with systems, which are smaller/larger by factor 10-20, confirms that the sponge structure is
qualitatively independent of system size above N=~10000 particles under the current conditions.
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Fig. 5. Mean square displacement (average diffusion distance) of SHRAT particle gas inside of the GEAM matrix at
temperature T/T,,~0.01, for N=400,4000 SHRAT particles (left). Snapshot of the system with N=400 SHRAT particles at
t/tr=900 (right). The GEAM metal sponge is fixed at t/t,.~=250. , n/n,~=0.25 and Ngean=50000.

An example of GEAM metal sponge application is shown in Fig. 5. The sponge is filled with particles
interacting with each other through SHRAT potential (Eq. 2), and interaction between wall and gas particles is
repulsive with smooth cut-off at 1, (D(r)=(1)0ro'4(rmin—r)4, < Iy and O(r)=0 otherwise. Gas is thermostated
indirectly through the collisions with the sponge wall particles. Temperature of the particles at the sponge
surface is contolled by rescaling of their velocities [11], while positions of particles inside of the sponge are
fixed to stabilize the structure and prevent a change of its porosity during the simulation. In Fig. 5, molecular
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dynamics results are given at temperature T/T,=0.01 for dilute SHRAT gas with N=400, 4000 particles.
Collision (free flight) time, t.=110, in smaller system (N=400) is determined by typical pore diameter
R.o=24. For N=4000 collision time is shorter, t.,;=40, due to the SHRAT-SHRAT particle interactions. We
observe clusters of SHRAT particles formed during the simulation. For this reason at times larger then collision
time, the mean square displacement increases with curvature 0=0.86, 0.93 for systems with N=400, 4000
particles respectively. In systems where particles move randomly, one would expect a=1, according to Einstein
relation, <Ar*>=6Dt.

6. Conclusion

The embedded atom method has been applied to study thermo-mechanical behaviour of the model GEAM
metal. The constitutive properties (cohesive energy, lattice constant and elasticity coefficients) of real metals
are reproduced by a set of basic model parameters: position of potential minima, cut-off radius and strength of
embedding functional. Application of embedded atom method to simulations of shear flow of model metal and
dry solid friction is presented. Under the appropriate choice of simulation parameters (controlled mismatch
between desired embedding density and number density), the model turns out also to be applicable for studying
multiscale structure of porous media. The metallic porous structures are an ideal matrix to be filled with fluid,
and to study, e.g., transport and diffusion in porous materials.

Authors gratefully acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG) through special research
project (Sfb) 448 ‘Mesoskopisch strukturirte Verbundsysteme’.
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