
TOWARDS MULTISCALE MODELING OF METALS VIA
EMBEDDED PARTICLE COMPUTER SIMULATION∗
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Abstract. The embedded atom method is adapted to study solid friction and the mechanical
behavior of a model metal which incorporates the effect of electronic glue in its structure. The
elastic properties of real metals are reproduced by a set of basic model potentials as revealed by
analytic considerations. A slightly modified version of a classical nonequilibrium molecular dynamics
computer simulation is employed to study the dynamics and structural changes of the model metal
undergoing a process of solid friction and an uniaxial compression in order to analyze, e.g., plastic
yield, transient friction coefficients, and the underlying structure. Under the appropriate choice of
parameters, the model turns out to also be applicable for studying multiscale structures in porous
metals.
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1. Introduction. In the early 1980s the theoretical investigation of hydrogen
embrittlement gave rise to a systematic modeling and simulation approach towards
generic models for metals. A fundamental understanding of the atomistic processes
involved in hydrogen embrittlement had been impossible, largely because of difficul-
ties in the theory of such complicated systems. Traditional monoscale approaches
such as ab initio techniques had proven to be inadequate, even with the largest su-
percomputers, because of the range of scales and the prohibitively large number of
atoms involved. The embedded atoms method overcomes the fundamental limitation
of past methods such as pair potentials and yet is practical enough for the calculation
of defects, surfaces, and impurities in metals on multiple scales. Ab initio methods are
still incapable of handling the large numbers of atoms required to represent fracture.
Even the capacity of one-electron methods [1] falls far short of the number of atoms
required to simulate fracture. The use of pairwise interaction greatly increases the
number of atoms that can be treated [2, 3] but requires a volume-dependent term
to represent the bulk compressibility of the electron gas [4, 5]. Volume dependence
restricts the use of pair potentials to situations where the volume is definable; it is
not restricted during fracture.

The quasi-atom theory [6, 7] (or effective medium) had been used successfully to
calculate the characteristics of hydrogen in metals. In [8, 9] the theory was generalized
to treat all atoms in a unified way [10, 11]. The method is called “embedded particle
method” because it views each particle as embedded in a host lattice consisting of all
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other particles. Such a view permits calculations employing an electron density, which
is always definable, and allows realistic treatment of impurities in structures that
include cracks, surfaces, impurities, and alloying additions [8, 9, 11]. The generalized
method is not significantly more complicated to use than pair potentials. It had been
used in a number of recent works; see, e.g., [12, 13, 14, 15, 16, 17, 18]. Solution of
the Schrödinger equation yields the electron density established by a given potential,
and the energy is a functional of that potential. Hohenberg and Kohn [19] show the
converse: the energy is a functional of the density, and the potential is determined
to within an additive constant by its electron density. Scott and Zaremba [6] proved
that the energy of an impurity in a host is a functional F of the electron density of
the unperturbed (i.e., without impurity) host. This statement is that the embedding
density of an impurity is determined by the electron density of the host before the
impurity is added. The embedded atoms method makes use of this by viewing each
atom in a system as an impurity in the host consisting of all other atoms.

The functional F is universal, independent of the host. Its form, however, is
unknown. A simple approximation would be to assume that the embedding energy
depends only on the environment immediately around the impurity [7], or, equiva-
lently, that the impurity experiences a locally uniform electron density [6]. This can
be viewed as either a local approximation or as the lowest-order term involving suc-
cessive gradients of the density. Then the functional is approximated by a function
of the electron density at the impurity site plus an electrostatic interaction Φ, and
the total energy is written as a sum over all individual contributions. Because the
functions F and Φ are not known in general, in [8, 9] experimental data had been
used to determine functions. Both functions are required to fit the elastic properties
such as the Cauchy discrepancy. In the early works [8, 9], F was taken from electron
gas computations provided in [20].

In this work we introduce a set of particularly simple and generic model potentials
motivated through semiempirical calculations which are expected to describe the me-
chanical properties of metals ranging from the nanometer scale (asperites) up to the
macroscopic scale (solid friction, metal foams). Our model is characterized by a few
model parameters such as reference energy, time, and length. Properties of the model
are obtained in terms of these reference values. Constitutive relationships between
stress and deformation obtained from our model serve to enter conventional solvers
when complex geometries are considered. It will be shown that elastic properties of
real metals are reproduced by the set of basic model potentials as revealed by analytic
considerations. The goal will be to analyze preliminary results of the novel model and
the range of its application in a qualitative fashion.

In this work we further demonstrate that—and show how—the proposed model
for a bulk metal can be used to study metal sponges and porous metal structures.
Metal sponges and foams show some potential for being produced with controlled
spatial variations in their density. This suggests employing them as graded materials
in space filling lightweight structures in analogy to cortical bone, a natural cellular
material, that displays increased density in regions of high loading. Most mechanical
and physical properties are affected by the porosity as well as the size of the pores
and at the same time by the thickness of the structured studs of the metal sponge.
The past few years have seen increasing interest in porous metallic materials, espe-
cially in foams made of aluminum or aluminum alloys. The stimulus for this lies in
recent process developments which promise materials with better quality and lower
costs. Moreover, the environment for the application of new materials of this type
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has greatly changed. Now higher demands for passenger safety in automobiles or
for easy materials recycling make metal foams and sponges attractive where, a few
years ago, the same materials would have been ruled out for technical or economical
reasons [21]. The mechanical performance of metal foams governs their utility in var-
ious applications, such as cores for ultralight sandwich panels/shells, as well as crash
or blast absorbing systems. Macroscopic stress/strain characteristics establish their
performance. Most important are the stiffness, the yield strength, and the “plateau”
stress at which the material compresses. Once these have been measured, continuum
mean-field constitutive relations can be implemented [22] for the study of structural
competitiveness; cf. [23] and references cited therein. Such homogenized treatments
are applicable to structures that encompass many cells. For structures embracing
few cells, recognition must be given to a material length scale that depends on the
microscopic mechanisms of deformation at the cell level. In order to clarify notation,
due to the generic choice of model potentials in the following, the spatial coordinate
of a “particle” may represent either the position of a “model nucleus” or the position
of a spatially localized number of nuclei. Positions of the electrons are not considered
explicitly; their motion will be effectively captured through the embedding density
and the embedding functional.

2. The framework. In order to study the mechanical properties of a model
metal, including solid friction, uniaxial compression, shear deformation of bulk metals,
and porous metal structures, we adapt the embedded atom method in the spirit of
Holian et al. [24]. The method, originated by Daw and Baskes [8, 9], resembles the fact
that in metals the conduction electrons are not localized about the nuclei; the energy
depends upon the local electron density, resulting in forces between particles that are
many body in character, rather than simply pairwise additive [25]. Accordingly, one
considers two contributions to the potential energy E of the whole system made up
of N particles. There is a conventional binary interaction term through a two-body
interaction potential Φ as a function of the distance between interaction sites and a
term stemming from an embedding functional F , which produces the effect of the
electronic “glue” between interaction sites:

Eb = N eb =

N∑
i=1


1
2

N∑
j �=i

eijΦ(r
ij) + F(ρi)


 ,(2.1)

where eb = Eb/N represents a “binding energy” per particle. The quantity F is
a nonlinear function of the (local) embedding density ρi of atoms i = 1, . . . , N . It
is constructed from the radial coordinates of surrounding particles and requires the
choice of a weighting function w(r):

ρi =
∑
j

wijw(r
ij) = w(0) +

∑
j �=i

wijw(r
ij),(2.2)

where rij ≡ ri − rj is the relative position vector between particle coordinates ri

and rj . For the study of bulk metals the coefficients eij and wij are irrelevant and
set to unity. For the case of solid friction, where two metals are in contact, they
become relevant and model the properties of the interface (contact zone). They allow
us to specify the strength of interaction between particles belonging to the same and
to different materials; i.e., we have wij = waa = wbb =fixed for particles i, j of the
same metal, and wij = wab =fixed for a pair of “different” specimen i, j. The same
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Fig. 1. Left: The binary interaction potential used in the nonequilibrium molecular dynamics
(NEMD) simulations is plotted together with a Lennard–Jones (LJ) potential, both in dimensionless
LJ units; i.e., r stands for r/r0. The potential cutoff h is a model parameter. Right: The (normal-
ized) Lucy weight function w(r) vs. distance r in LJ units is used to calculate embedding densities
for all atoms. These densities enter the embedding (“glue”) functional F .

potentially applies to eij . If not explicitly specified, we have wij = eij = 1 in the
following.

Parts of F linear in ρi can be combined with the original repulsive two-particle
potential to an effective potential Φ used here which also has an attractive part.
Corrections can be included in (2.1) for involving gradients of the density [6]; these
do not modify the form of (2.1). It is implicitly assumed that the electron density is
given by a linear superposition of the electron densities of the constituent atoms [26].
Ground-state properties of the solid can be calculated from (2.1) in a straightforward
way (e.g., by using the conjugate gradients technique).

3. Particular choice of model potentials. A simple choice for the model
functions Φ, w, and F leads to our generic model metal, denoted as EMB in the
following. For the binary potential function Φ we use a radially symmetric short
ranged attractive (SHRAT) potential Φ(r),

Φ(r) = φ0 r
−4
0

[
3(h− r)4 − 4(h− rmin)(h− r)3

]
,(3.1)

for r ≤ h and Φ(r) = 0 otherwise, with an energy scale φ0, a length scale r0, and
an interaction range h. The minimum of the potential (see Figure 1) is located at
the distance r = rmin = 21/6 r0 ≈ 1.123 r0 as for a LJ potential, and the well depth
of the potential is −Φ(rmin) = φ0 r

−4
0 (h − rmin)

4. Properties of the (pure) SHRAT
model system in its gaseous, (metastable) liquid, and solid states have been computed
recently by molecular dynamics and compared with analytical calculations in [27]. The
elastic behavior of the SHRAT model has been characterized by the bulk and shear
moduli, and their corresponding Born–Green and fluctuation contributions. Stick-
slip behavior, and the detailed elastic response and plastic flow of the model solid has
been analyzed, and the transition from the elastic to the plastic behavior has been
approximately described by a generalized Maxwell–Kelvin–Voigt model for the stress
tensor [27].

For reasons discussed in [24, 28] we use the normalized Lucy’s weight function
(see Figure 1) in the definition (2.2) of the embedding density; i.e.,

w(r) = w0

(
1 + 3

r

h

)(
1− r

h

)3

(3.2)
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Table 1
Reference values for a set of metals, including the model metal EMB (all parameters n, ρdes, F0

are equal to unity), together with reported values for the elastic modulus E, the shear modulus G,
and the elastic anisotropy cani ≡ 2c44/(c11 − c12); the coefficients cij denote Voigt moduli [36].

Metal nref Tref Pref E G cani
Ag 59.4 nm−3 34.3 kK 28 GPa 101 GPa 38 GPa 2.99
Cu 85.5 nm−3 40.6 kK 48 GPa 156 GPa 59 GPa 3.19

EMB 72.5 nm−3 40.0 kK 40 GPa 260 GPa 95 GPa 2.56
Fe 85.2 nm−3 49.8 kK 59 GPa 232 GPa 94 GPa 2.32
Ni 92.0 nm−3 51.8 kK 65 GPa 239 GPa 101 GPa 2.39

for r ≤ h with a prefactor obtained by normalizing the weight function, w0 = w(0) =
105/(16πh3). The particular simple parabolic embedding potential for EMB is

F(ρ) = F0 φ0 r
6
0

(
(ρ− ρdes)

2 − (w0 − ρdes)
2
)
+ . . . ,(3.3)

where ρdes is the desired embedding number density and F0 is the embedding strength;
the dots denote higher-order terms in (ρ − ρdes) which may be considered in order
to obtain more than a qualitative agreement between theory and experiments with
respect to the quantities listed in Table 1. Other forms for the embedding functional
had been used; cf. [11]. Throughout this work we investigate the “basic” model metal
for which particle number density n ≡ N/V = r−3

0 , interaction range h = 1.6 r0, and
the temperature kBT = 0.01φ0 are fixed. For the study of bulk metals the desired
embedding density equals the particle number density, i.e., ρdes = n; for the case of a
metal sponge we choose ρdes > n.

4. Scaled quantities and elastic properties of EMB. To compare with
experimental data one has to estimate reference values for dimensionless simulation
quantities Qdimless. For any measurable quantity Q with a dimension specified in SI
units kg, m, and s one has Q = QdimlessQref and

Qref = mα+γ/2rβ+γ
0 φ

−γ/2
0 for [Q] = kgαmβsγ ,(4.1)

where m, r0, and φ0 provide the scales via the binary interaction potential (3.1) and
the equations of motion. The reference values for length r, number density n, energy
kBT (and binding energy per particle eb), pressure P , and the elastic moduli in terms
of the simulation parameters are therefore rref = r0, nref = r−3

0 , eb,ref = φ0 = kBTref ,
and Pref = φ0r

−3
0 = nrefeb,ref . On the other hand, reference values for real masses

mref , densities nref , and binding energies eb can be inferred from the literature; see

Table 1 for sample values. For Ag, e.g., one obtains model parameters r0 = n
−1/3
ref =

2.56 Å, φ0 = 47.4 × 10−18 J, and m = 1.790 × 10−21 kg. The values for the moduli
of the model metal EMB at n = 1 and F0 = 1 are obtained from deformations of a
perfect fcc crystal. For plots of the binding energy and pressure for perfect fcc and
bcc lattices, see Figure 2. By choosing Tref = φ0/kB ≡ 40 kK, Pref ≡ 40GPa one
arrives at nref = 72.5 nm−3 and r0 = 2.4 Å. For m = 1.790 × 10−25 kg the reference
time is tref = r0 (m/eb,ref)

1/2 = 1.3 × 10−13 s for EMB. The squared reference time
for the model system tref therefore scales linearly with the mass of a particle or an
agglomerate of particles, if the agglomerate is considered as reference unit, and may
be of the order of seconds concerning the adapted model for porous metal structures
to be discussed below. The behavior of a particular material can be described in detail
by considering an additional model parameter in (3.3), but this is not done here. The
values of the elastic anisotropy and the shear modulus are within the expected ranges
for fcc metals; the elastic modulus is slightly higher for EMB.
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Fig. 2. The binding energy eb per particle (left) and the hydrostatic pressure (right) vs. density
(both in LJ units) at h = 1.6 for ideal fcc and bcc lattices and two different amplitudes of the
embedding functional: F0 = 0 and F0 = 1.

5. Numerical solution. The force acting on particle i is obtained by variation
of the energy δEb = Fiδr

i of (2.1) and yields

Fi = −
∑
j �=i

(
eij

∂Φ

∂rij
+

(
∂F
∂ρ

∣∣∣
i
+
∂F
∂ρ

∣∣∣
j

)
∂w

∂rij

)
,(5.1)

where ∂F/∂ρ|i is evaluated with embedding density ρi. The equations of motions
were integrated by a velocity-Verlet algorithm with the force (5.1). The parameters
h, T, ρdes and the average particle density n = N/V are fixed by the model. The in-
fluence of the embedding functional F is estimated by varying its strength F0. A flow
simulation introduces further independent variables, which describe the geometry and
strength of flow. For details of a NEMD simulation algorithm, the implementation of
Lees–Edwards boundary conditions and periodic images, the homogeneous tempera-
ture control under shear and elongational flows, and evaluation of the stress tensor,
see, e.g., [29, 30, 31, 32]. The simple model metal EMB is explicitly determined by
the set of model potentials and solved without approximations with computational
effort of order N .

6. Viscoplastic behavior of EMB. When metal is subjected to stress, it re-
sponds by deforming. If only small stresses are applied, then the material returns
to its original shape when the stress is relieved. In this regime, metals are elastic;
if, however, the stress exceeds a threshold, then the metal suffers permanent plastic
deformation. Usually, the kinematics of a three-dimensional continuum, the thermo-
dynamics of materials, and the physics of microscopic defects enter the description
of plastic phenomena. A principal feature of plastic behavior is irrecoverable defor-
mation. On a microscopic level, this behavior is caused by defects in the atomic
formation of dislocations, dislocation pileup at grain boundaries, polycrystallinity,
and anisotropy. A general thermodynamic treatment of phenomenological models has
been given, e.g., by Green and Naghdi [33, 34].

Here we report about results obtained by the complementary approach. NEMD
computer simulations are performed to study the dynamics and structural changes
of the model metal EMB undergoing elongation and shear deformation. The results
for the case of shear deformation reveal the influence of initial crystal orientation
on transient flow behaviors, the formation of shear bands and dislocations, and the
general rate dependence of metal flow behavior in the viscoplastic (strong) flow regime.
A profile unbiased temperature control mechanism [35] is used here.
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Fig. 3. Snapshots (including structure analysis) of an EMB metal subjected to simple shear
deformation at shear rate γ̇, particle number density n, and time t (all in reduced units). The
snapshots show a cut (width �r = 1) of the full system; the direction of shear is depicted in the top
right snapshot. Structure recognized by the method presented in [40] is encoded as follows: fcc (open
spheres), bcc (diamonds), hcp (hexagon within sphere, or bold sphere), and isotropic (filled sphere).
Shear induced breakup of structure is observed. For example, at the highest density a polycrystalline
conformation with rotating entities is observed (and finally a bcc dominated structure), whereas for
smaller densities a more homogeneous evolution (towards fcc) is visible from the plots.

6.1. Shear flow. Figure 3 shows a time series for a subsystem of a cubic cell
with N = 44000 particles undergoing shear at two different densities n = 1 and
n = 1.02 and small and intermediate rates γ̇ = 0.001 and γ̇ = 0.01, respectively. The
snapshots (including structure analysis) show a cut (width �r = 1) of the full system;
the direction of shear is depicted in the top right snapshot. Structure is recognized by
the method presented in [40]. The top left and centered graphs correspond to an equal
amount of deformation γ̇t; the left column is for a system with shear rate by a factor
10 larger than for the remaining columns. The right column is for a density slightly
larger than for the left columns. Shear induced breakup of structure is observed. For
example, at the highest density a polycrystalline conformation with rotating entities
is observed (and finally a bcc dominated structure), whereas for smaller densities a
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Fig. 4. NEMD snapshots of the model metal EMB (N = 16400 particles, n = ρdes = F0 = 1)
indicating the type of local structure at t = 2000 after start of steady shear flow with shear rate
γ̇ = 0.01 (flow, gradient, and vorticity direction are specified in the figure). The start configuration
is a fcc lattice. Cross-sections of the system are presented, one length unit wide. The method to
analyze fcc, bcc, hcp, and icosahedral structure is described (and software is provided) in [40]. In
the bottom part of the figure the structure factor (see, e.g., [30]) for the same system, projected onto
two specified planes, is plotted.

more homogeneous evolution (towards fcc) is visible from the plots.

A structural analysis and structure factors for a sample snapshot at density n = 1
and shear rate γ̇ = 0.01 are provided by Figure 4. The transient shear stress for this
sample exhibits an overshoot at tγ̇ ≈ 5 before reaching a stationary value at tγ̇ 	 50.

6.2. Uniaxial compression. The model metal has been uniaxially compressed
at constant elongation rate ε̇ = 0.01. Two snapshots are given in Figure 5. Dur-
ing compression the number of layers decreases. We observe spontaneous symmetry
breaking; see the inset (top view) of Figure 5. The often quoted “theoretical value” for
the critical penetration hardness σc should be σc = cG with the shear modulus G and
c = cth = 1/10. The experimentally observed factor is smaller, cexp = 10−3 − 10−2.
Our preliminary result is csim ≈ 1/50 being estimated from the simulated normal
stress σyy.
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t=10 t=90x

y

Fig. 5. NEMD snapshots of EMB (N = 16800, n = ρdes = F0 = 1) at times t = 10 and t = 90
after incession of uniaxial elongational flow (with rate ε̇ = 0.01 in the y-direction) of an ideal fcc
lattice.
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Fig. 6. Schematic drawing of two metals in contact (load N ≡ Fnorm, friction force F ≡ Freib)
where the relative velocity v is given. Shear stress is buildup within a small amount of contact zones
(asperites).

7. Solid friction. The understanding of friction between two solid surfaces can
be traced back to the experiments and descriptions offered by Leonardo da Vinci and
Charles Coulomb [36]. Accordingly, sliding two bodies in the presence of solid-solid
contacts (cf. Figure 6) requires a friction force F whose magnitude is proportional
to the load N ⊥ F normal to the interface; i.e., F = µN with a dimensionless
friction coefficient µ. Since the magnitudes of the friction force is independent of the
apparent contact area A between the bodies, the established picture is that the shear
stress is buildup within a small amount of contact zones (asperites). Their effectively
interacting area �A is increasing during a load-induced plastic flow. Typically, the
contact zones occupy a small part of the total area, e.g., �A = 10−4A, and the area
per contact zone is of the order of (10µm)2.

For the case of sliding friction we simulate a contact zone at relative motion in
the x-direction, with a load and shear gradient in the y-direction; i.e., the load is
related to a normal pressure pyy, also called penetration hardness σc ≡ pyy = N/A,
at the onset of plastic flow. The shear stress τxy = F/�A or, alternatively, the shear
component of the friction pressure tensor pxy = −τxy, is “measured.”According to the
“friction rule” F = µN introduced above, one therefore has τ = µσc or pxy = −µ pyy
inside contact zones.In order to simulate an interface, we extended the model for
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Fig. 7. NEMD snapshots of EMB (N = 16800, n = ρdes = F0 = 1) at times t = 20, t = 150,
and t = 2000 after incession of shear flow with shear rate γ̇ = 0.01 of two commensurate ideal fcc
lattices in contact, modeling the process of solid friction. The interfacial parameter wab = 1.5. The
figure shows only a part (two-dimensional cut with thickness 3 in reduced units) of the whole system.
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Fig. 8. Left: The transient friction coefficient µ of the model metal EMB at n = 1 vs. time for
four different settings: (a) F0 = 0, eab = 1.5, (b) F0 = 1, eab = 1.5, (c,d) F0 = 1, wab = 1.5. The
simulation runs (a)–(c) were started from an ideal fcc lattice; run (d) was started from an equilibrium
(prerelaxed) sample. The results have been averaged over 10 independent initial configurations—with
respect to the initial distribution of velocities for cases (a)–(c). The results reveal the influence of
the interface and the initial condition on the friction behavior. Right: Influence of the interfacial
parameter wab on the friction coefficient of EMB.

specification of the strength of interaction between particles i, j belonging to the
same and to different materials; i.e., we introduce two factors eij and wij in front of
Φ(rij) and w(rij) in the EMB model equations (2.1)–(2.2). The default values inside
the bulk are eij = wij = 1. For two perfect fcc metals blocks with 2056 particles
(and periodic boundary conditions in the plane) undergoing solid friction at constant
overall shear rate, see Figure 7. Notice that at times t = 20 and t = 2000, 16 and
14 layers of particles are observed, respectively, due to the reorganization of initially
100 oriented crystal to its final (preferred 111) orientation. The simulated transient
behavior of the friction coefficients for four model metals is plotted in Figure 8 (left);
it covers experimentally observed behavior [37, 38, 39]. For the presented data the
total simulation time was of the order of 10−10 − 10−9s and hence smaller than the
minimum “lifetime” of a contact zone 10−7s, to be determined by the typical size of a
zone (10µm) divided by a high velocity, e.g., 100 m/s. The dependence of the friction
coefficient on wab is analyzed in the right-hand side of Figure 8.
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t=40 t=5000

Fig. 9. Equilibration of an EMB metal sponge at T = 0.01 (N = 2048, n = 0.3, ρ0 = 1)
obtained via molecular dynamics. Initial configuration: fcc lattice (not shown). Snapshots taken at
t = 40 (left) and t = 5000 (middle). A hole formed inside the sponge is visible in the projection.

8. Porous metal structure. A variation of the model potentials introduced
above serves to study metal sponges, as will be demonstrated in this section. See [21]
for an introduction to this field. The modification concerns the controlled mismatch
between preferred local and the global embedding number densities. In order to
model a porous metal we choose (bulk, cell wall) density ρdes = 1 (reduced units)
larger than the overall number density n ≡ N/V = 0.3; the cut-off radius h of Φ
is set to h = 1.6, and the temperature is fixed to T = 0.01. This setting allows
for the study of the microscopic foundation of (i) the cell shape and diameter, cell
wall thickness, further structural parameters, and the formation dynamics of cellular
metals, and (ii) the mechanical (elastoplastic) behaviors of metal foams, in order to
correlate them with the foam (sponge) structure, e.g., porosity, inhomogeneity, cell
size for given foam and bulk densities of a chosen model metal. If ρdes > n for given
particle density n, the model metal tends to microphase-separate such that the local
embedding density approaches the desired value. As a result, holes surrounded by
metal are formed which keep connected, caused by the properties of the glue, and the
surface tension seems to be high compared to a simple LJ fluid at same parameters; cf.
Figure 9 for the formation (equilibration) step of a EMB model sponge. A result for
a larger system consisting of 1.048.576 particles is shown in Figure 10. A comparison
with systems which are smaller by a factor 10–20 confirms that the sponge structure is
quantitatively independent of system size aboveN ≈ 10000 particles under the current
conditions. Three pictures out of an animation for a nonequilibrium sponge (subjected
to shear) are shown in Figure 11. The series illustrates the effect of the implemented
embedded particle potentials on the gluey attributes of EMB compared with a simple
LJ fluid. Another illustrative example is shown in Figure 12 for a freestanding EMB
sponge subjected to finite strain. One of the open questions concerns the self-similarity
of structures upon changing system size, the mechanical properties of the sponge as
the function of density. In applications, foams are usually produced with 0.05–0.20
porosity. For our model metal, the porosity is roughly equal to the ratio between
particle density and desired embedding density n/ρdes. Our preliminary studies on
large systems such as in Figure 10 reveal that for given bulk density ρdes, total volume
V , and foam density n, the ratio between cell wall thickness s and cell diameter
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Fig. 10. Metal sponge at rest (left) consisting of 1.048.576 particles after an equilibration
period of 50 reduced time units (initial configuration: perfect fcc lattice). Parameters: temperature
T = 0.01, preferred local embedding number density ρ0 = 1, and overall particle number density
n = 0.3. Plotted are all particles located within a common layer of width 3% of the full simulation
cell.

d 	 s behave as s/d ≈ n/(3ρdes). For the number density p of pores we simply have
p ∝ d−3 ∝ (n/sρdes)

3. It remains to be shown how these relations alter in the course
of the dynamics of the formation step.

9. Conclusion. The embedded atom method has been adapted to study solid
friction and the mechanical behavior of the model metal EMB. The elastic properties
of real metals are reproduced by a set of basic model potentials. NEMD computer
simulations are performed to study the dynamics and structural changes of the model
metal undergoing elastoplastic shear, a process of solid friction, and an uniaxial com-
pression, in order to analyze plastic yield and transient friction coefficients, where the
stress during sliding is built up within asperites on the nm scale. Longer simulation
runs are needed to determine values for the penetration hardness with high precision
and to analyze the relationship between stress and deformation. It was also demon-
strated that a variant of the model metal serves to study large scale metal foams and
porous metal structures.
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Fig. 11. EMB metal sponge with N = 2048 particles, at temperature T = 0.01, particle number
density n = 0.3, and embedding density ρ0 = 1 > n, subjected to shear deformation with rate
γ̇ = 0.01. Snapshot taken at time t = 20, 100, 500 (from left to right).

Fig. 12. Zoom into the system shown in Figure 10 in a nonequilibrium situation. Metal
sponge at rest (left, subsystem consisting of 55296 particles) and subjected to finite shear (tγ̇ = 2)
deformation (right) obtained via molecular dynamics (same particles).

REFERENCES

[1] C. F. Melius, C. L. Bisson, and W. D. Wilson, Quantum-chemical and lattice-defect hybrid
approach to the calculation of defects in metals, Phys. Rev. B, 18 (1978), pp. 1647–1657.

[2] R. A. Johnson, Relationship between two-body interatomic potentials in a lattice model and
elastic constants, Phys. Rev. B, 6 (1972), pp. 2094–2100.

[3] J. N. Goodier, in Fracture: An Advanced Treatise, Vol. 2, H. Liebowitz, ed., Academic Press,
New York, 1968.

[4] K. Fuchs, A quantum mechanical calculation of the elastic constants of monovalent metals,
Proc. Roy. Soc. London Ser. A, 153 (1936), pp. 622–639.

[5] K. Fuchs, Proc. Roy. Soc. London Ser. A, 157 (1936), p. 444.
[6] M. J. Stott and E. Zaremba, Quasiatoms: An approach to atoms in nonuniform electronic

systems, Phys. Rev. B, 22 (1980), pp. 1564–1583.
[7] J. K. Nørskov, Covalent effects in the effective-medium theory of chemical binding: Hydrogen
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