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SI. DERIVATION OF EXPRESSIONS FOR TRANSFORMATION PARAMETERS θ AND ∆

Here, we discuss in greater detail the expressions for the transformation parameters θpx and ∆px between the
exciton basis and the preferred basis of the NESS. The discussion in the case of localized basis is analogous.

The normalized RDM in the ee sector, ρ̃ssee, is expressed in the preferred basis of the NESS and the exciton basis as
follows

ρ̃ssee =
∑
i

p̃i |pi〉〈pi| =
∑
jk

(∑
i

〈xj |pi〉p̃i〈pi|xk〉

)
|xj〉〈xk|. (S1)

On the other hand, the expression for ρ̃ssee in terms of Pauli matrices

σ1 = |x0〉〈x1|+ |x1〉〈x0|, σ2 = −i (|x0〉〈x1| − |x1〉〈x0|) , σ3 = |x0〉〈x0| − |x1〉〈x1| (S2)

reads as

ρ̃ssee =
1

2
((1 + ax3)|x0〉〈x0|+ (ax1 − iax2)|x0〉〈x1|+ (ax1 + iax2)|x1〉〈x0|+ (1− ax3)|x1〉〈x1|) . (S3)

Using Eqs. (S1) and (S3) together with Eq. (23) of the main text we obtain

ax3 = (2p̃0 − 1) cos(2θpx) = (1− 2p̃1) cos(2θpx) (S4)

ax1 − iax2 = (2p̃0 − 1) ei2∆px sin(2θpx). (S5)

The relationships between the Bloch angles θxB and φxB and transformation parameters θpx and ∆px that presented
in the main body of the manuscript now become apparent.

Let us now discuss the range in which θpx and ∆px may always be chosen. The Pauli matrices may be chosen as in
Eq. (S2) and we this choice will be termed choice 1. There is, however, choice 2, in which |x0〉 and |x1〉 are permuted

σ1 = |x1〉〈x0|+ |x0〉〈x1|, σ2 = −i (|x1〉〈x0| − |x0〉〈x1|) , σ3 = |x1〉〈x1| − |x0〉〈x0|. (S6)

Then, a
x,(1)
3 = −ax,(2)

3 , a
x,(1)
2 = −ax,(2)

2 , and a
x,(1)
1 = a

x,(2)
1 , so that

cos(2θ(1)
px ) + cos(2θ(2)

px ) = 2 cos(θ(1)
px + θ(2)

px ) cos(θ(1)
px − θ(2)

px ) = 0, (S7)

tan(2∆(1)
px ) + tan(2∆(2)

px ) =
(

1− tan(2∆(1)
px ) tan(2∆(2)

px )
)

tan(2∆(1)
px + 2∆(2)

px ) = 0. (S8)

It then follows that (k is an integer)

θ(2)
px =

π

2
± θ(1)

px + kπ, ∆(2)
px = −∆(1)

px + k
π

2
. (S9)

From Eq. (S4), we know that θ
(1)
px ∈ (0, π/2), so that the rotation angle θ

(2)
px can always be chosen so than θ

(2)
px ∈ (0, π/4).

Equation (S9) suggests that such a choice for θpx may result in the phase ∆px acquiring an additional minus sign,
which, however, does not affect the range (−π/4, π/4) of possible values for ∆px. It is for this reason that in Figs. 2–7
of the main text we plot the magnitude |∆px|.
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SII. COMPUTATION OF THE NONEQUILIBRIUM STEADY STATE

As mentioned in the main body of the manuscript, the computational algorithm to obtain the NESS leans on the
method proposed in Ref. 1 to compute the excited-state equilibrium of a molecular aggregate. The method exploits
the fact that the computation of the HEOM steady state can be seen as solving a system of linear algebraic equations,
which can be done in an iterative way using, e.g., the Jacobi iteration method. However, the Jacobi iteration method
relies on the diagonal dominance of the system, an assumption that is, in general, not satisfied in our problem,
especially in the regimes of intermediate and strong system–bath coupling. Equations (10) and (11) of the main text
are the basis for the following iterative procedure to compute the ADMs σss,new

eg,n and σss,new
ee,n in the current iteration

using the ADMs σss,old
eg,n and σss,old

ee,n from the previous iteration(
i
ωx − ωc

γ
+
γn
γ

+ (τcγ)−1 + ε

)〈
x
∣∣σss,new
eg,n

∣∣ g〉 = ε
〈
x
∣∣σss,old
eg,n

∣∣ g〉− ∆

~2γ

∑
j

〈
x
∣∣Vjσss,old

eg,n

∣∣ g〉
+ δn,0

i

~γ
I0〈x|µeg|g〉

+ i
∑
j

K−1∑
m=0

√
1 + nj,m

√
|cm|

(~γ)2

〈
x

∣∣∣∣Vjσss,old

eg,n+
j,m

∣∣∣∣ g〉

+ i
∑
j

K−1∑
m=0

√
nj,m

cm/(~γ)2√
|cm| /(~γ)2

〈
x

∣∣∣∣Vjσss,old

eg,n−j,m

∣∣∣∣ g〉
(S10)

(
i
ωx − ωx̄

γ
+
γn
γ

+ ε

)〈
x
∣∣σss,new
ee,n

∣∣ x̄〉 = ε
〈
x
∣∣σss,old
ee,n

∣∣ x̄〉− ∆

~2γ

∑
j

〈
x
∣∣V ×j V ×j σss,old

ee,n

∣∣ x̄〉
+

i

~γ
〈x|µeg|g〉

〈
x̄
∣∣σss,old
eg,n

∣∣ g〉∗ − i

~γ
〈
x
∣∣σss,old
eg,n

∣∣ g〉 〈x̄|µeg|g〉∗
+ γ−1

〈
x
∣∣Lrec[σss,old

ee,n ]
∣∣ x̄〉+ γ−1

〈
x
∣∣LRC[σss,old

ee,n ]
∣∣ x̄〉

+ i
∑
j

K−1∑
m=0

√
1 + nj,m

√
|cm|

(~γ)2

〈
x

∣∣∣∣V ×j σss,old

ee,n+
j,m

∣∣∣∣ x̄〉

+ i
∑
j

K−1∑
m=0

√
nj,m

cm/(~γ)2√
|cm| /(~γ)2

〈
x

∣∣∣∣Vjσss,old

ee,n−j,m

∣∣∣∣ x̄〉

− i
∑
j

K−1∑
m=0

√
nj,m

c∗m/(~γ)2√
|cm| /(~γ)2

〈
x

∣∣∣∣σss,old

ee,n−j,m
Vj

∣∣∣∣ x̄〉

(S11)

In Eqs. (S10) and (S11), |x〉 and |x̄〉 are exciton states, ~ωx and ~ωx̄ are their respective vertical excitation energies,
while ε is an adjustable parameter whose value should be tuned so that the steady-state HEOM becomes a diagonally
dominant system of linear algebraic equations. The value of ε should be chosen so as to reach a compromise between
algorithm stability and numerical accuracy (large ε) on the one hand and numerical effort (small ε) on the other hand.

Equations (S10) and (S11) are solved in the exciton basis because their free-evolution parts are diagonal in that
basis, see the c-numbers that multiply the ADM elements in the current iteration on the left-hand sides of these
equations. When the trapping and/or recombination Liouvillians are known to be diagonal in the exciton basis, they
may be treated in the same manner as the free-evolution terms, which would lead to a more complicated form of the
c-numbers appearing on the left-hand sides of Eqs. (S10) and (S11).

The iterative procedure is terminated once the continuity equation [Eq.(...) of the main text] is satisfied with the
desired numerical accuracy δ. In more detail, we use the following termination criterion

|Jgen − JRC − Jrec|
min {Jgen, JRC, Jrec}

< δ. (S12)

Our numerical computations suggest that the quantity on the left-hand side of Eq. (S12) monotonously decreases as
the algorithm proceeds, so that the termination criterion is sensible. We also monitor changes the ADM elements
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undergo upon one iteration of the algorithm by following the changes in the following quantities

Eee = max
n,x̄,x

{
[f(n)]

−1 ∣∣〈x ∣∣σss,new
ee,n

∣∣ x̄〉− 〈x ∣∣σss,old
ee,n

∣∣ x̄〉∣∣} , (S13)

Eeg = max
n,x̄,x

{
[f(n)]

−1 ∣∣〈x ∣∣σss,new
eg,n

∣∣ x̄〉− 〈x ∣∣σss,old
eg,n

∣∣ x̄〉∣∣} , (S14)

where the rescaling factor f(n) reads as2

f(n) =
∏
j

K−1∏
m=0

[(
|cm|

(~γ)2

)nj,m

nj,m!

]−1/2

. (S15)

We observe that the quantities Eee and Eeg monotonically decrease during the course of the algorithm, another sign
that our procedure for determining the NESS should lead to correct results.

Another important ingredient of the algorithm is the initial guess for the iterative procedure embodied in Eqs. (S10)
and (S11). In Ref. 1, which dealt with the excited-state equilibrium, the initial condition was the purely electronic
density matrix in the absence of the environment, i.e., e−βHM /TrM

{
e−βHM

}
. Here, however, we have incoherent

driving, trapping, and recombination, so that a natural initial guess for the NESS can be obtained by solving the
corresponding Redfield equation. In our companion paper, we presented the derivation of the Redfield equation under
driving.3 The appropriate modifications to take into account excitation trapping and recombination are described in
the main body of the manuscript. The corresponding steady-state Redfield equations in the eg and ee sectors read as

0 = −i

(
ωx − ωc

γ
− i(τcγ)−1

)
〈x|ρsseg|g〉+

i

~γ
I0〈x|µeg|g〉 − γ−1

∑
x′

(∑
x̃

Re Γxx̃x̃x′

)
〈x′|ρsseg|g〉, (S16)

0 = −i
ωx − ωx̄

γ
〈x|ρssee|x̄〉+

i

~γ
〈x̄|ρsseg|g〉∗〈x|µeg|g〉 −

i

~γ
〈x̄|µeg|g〉∗〈x|ρsseg|g〉

+ γ−1
∑
x̄′x′

(
Re Γx̄′x̄xx′ + Re Γ∗x′xx̄x̄′ − δx̄′x̄

∑
x̃

Re Γxx̃x̃x′ − δx′x
∑
x̃

Re Γ∗x̄x̃x̃x̄′

)
〈x′|ρssee|x̄′〉

+ γ−1 〈x |Lrec[ρssee]| x̄〉+ γ−1 〈x |LRC[ρssee]| x̄〉 ,

(S17)

where the tetradic quantity Γx̄xx̄′x′ is

Γx̄xx̄′x′ =
∑
j

〈x̄|j〉〈j|x〉〈x̄′|j〉〈j|x′〉
∫ +∞

0

ds
C(s)

~2
exp (i(ωx′ − ωx̄′)s) . (S18)

In Eqs. (S16) and (S17), we follow a common practice and neglect imaginary parts of Γx̄xx̄′x′ . For the Drude–Lorentz
spectral density, and under the assumption of purely real exciton wave functions 〈j|x〉, the corresponding real parts
can be computed analytically to yield

Re Γx̄xx̄′x′ =

∑
j

〈x̄|j〉〈j|x〉〈x̄′|j〉〈j|x′〉

 C(ωx′ − ωx̄′), (S19)

where

C(ω) = Re

∫ +∞

0

ds C(s) eiωs =


1
2 ×

2π
~ ×

(
2
πλ

ωγ
ω2+γ2

)
(1 + nBE(ω)) , ω > 0;

1
2 ×

2π
~ ×

(
2
πλ

|ω|γ
|ω|2+γ2

)
nBE(|ω|), ω < 0;

2× λ
~γ ×

kBT
~ , ω = 0.

(S20)

Upon solving Eqs. (S16) and (S17), we explicitly check that the continuity equation Jgen− Jrec− JRC = 0 is satisfied.
The convergence of the HEOM method should always be checked against the maximal depth of the hierarchy and

the number of terms in the optimized exponential series for the bath correlation function. Let us first concentrate on
the convergence with respect to the depth of the hierarchy. We gradually increase the depth of the hierarchy in the
following manner:
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1. we start with Eqs. (S10) and (S11) up to depth D = 2; the initial guess for the RDM is obtained by solving
Eqs. (S16) and (S17), while the ADMs on depths 1 and 2 are set to zero; the numerical accuracy with which
the continuity equation is satisfied is set to δ2, see Eq. (S12);

2. we use the solution up to depth D ≥ 2 as the initial guess for the computations up to depth D+2 (the ADMs at
depths D+ 1 and D+ 2 are set to zero); the numerical accuracy with which the continuity equation is satisfied
in the computation up to depth D+2 is δD+2 = c ·δD, where c < 1 (if the numerical accuracy is not downscaled,
the algorithm at depth D + 2 terminates immediately).

In this manner, we are able to check how the quantities of our interest, in particular transformation parameters
between exciton/localized basis and the preferred basis of the NESS, depend on the maximal depth of the hierarchy.
For the values of model parameters summarized in Table I of the main text, the deepest hierarchy is constructed for
the largest reorganization energy (λ = 400 cm−1), and its depth is 14.

We now briefly discuss the convergence of the HEOM with respect to K, and concentrate on the values of model
parameters listed in Table I of the main text. These values satisfy the low-temperature approximation β~γ � 1
reasonably well. When the interaction with the environment is weak, the steady-state Redfield equations [Eqs. (S16)
and (S17)] should present a good description of the situation of our interest. From Eqs. (S18)–(S20), we see that,
in this case, the relaxation tensor depends on the full spectral density, so that we should have K > 1. We have
checked that K = 3 is a reasonable choice for the weak coupling to the environment. On the other hand, for stronger
excitation–environment coupling, we have numerically verified that it is enough to take K = 1.
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SIII. ANALYSIS OF THE DYNAMICS INITIATED BY A δ-LIKE PHOTOEXCITATION

Here, we analyze in greater detail the dynamics of the model dimer initiated by an impulsive photoexcitation and
extract the time scales of such dynamics. In particular, we examine time dependence of the real and imaginary part
of the interexciton coherence on a picosecond time scale following a sudden δ-like excitation at t = 0. The real part
of the interexciton coherence is fitted using

Re {ρ01(t)} = a0 + a1 e
−t/a2 cos(a3t) + a4 e

−t/a5 + a6 e
−t/a7 , (S21)

while the fitting function for the imaginary part reads as

Im {ρ01(t)} = b1 e
−t/b2 sin(b3t) + b4 e

−t/b5 + b6 e
−t/b7 . (S22)

In Fig. SI, we present the results of computations and fit, while the best values of fitting parameters are summarized
in Tables SI–SIV.



6

Time (ps) Time (ps)

In
te

re
x
ci

to
n

 C
o

h
er

en
ce

In
te

re
x
ci

to
n

 C
o

h
er

en
ce

In
te

re
x
ci

to
n

 C
o

h
er

en
ce

In
te

re
x
ci

to
n

 C
o

h
er

en
ce

Real Part Imaginary Part

FIG. SI. Time dependence of the real (left column) and imaginary (right column) part of the interexciton coherence following
a sudden δ-like excitation of the model dimer. Solid lines are obtained by propagating HEOM, while dashed lines are best fits
to numerical data using the fitting functions given in Eqs. (S21) and (S22). The best fitting parameters are summarized in
Tables SI–SIV.



7

TABLE SI. Fitting Parameters for λ = 20 cm−1.

Parameter (Unit) Value
a0 (-) 2.96× 10−3

a1 (-) −0.3933
a2 (fs) 193.9

~a3 (cm−1) 228.5
a4 (-) −0.091
a5 (fs) 84
a6 (-) 0.010
a7 (fs) 300

b1 (-) 0.4460
b2 (fs) 192.8

~b3 (cm−1) 229.1
b4 (-) −0.0277
b5 (fs) 103
b6 (-) 0.0209
b7 (fs) 282

TABLE SII. Fitting Parameters for λ = 50 cm−1.

Parameter (Unit) Value
a0 (-) 7.24× 10−3

a1 (-) −0.3146
a2 (fs) 105.2

~a3 (cm−1) 235.7
a4 (-) −0.03135
a5 (fs) 277
a6 (-) −0.14762
a7 (fs) 60.70

b1 (-) 0.43085
b2 (fs) 99.20

~b3 (cm−1) 240.6
b4 (-) −0.06465
b5 (fs) 165.2
b6 (-) 0.0526
b7 (fs) 148.0
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TABLE SIII. Fitting Parameters for λ = 200 cm−1.

Parameter (Unit) Value
a0 (-) 0.02787
a1 (-) −0.163
a2 (fs) 51.4

~a3 (cm−1) 230
a4 (-) −0.141
a5 (fs) 43.9
a6 (-) −0.2038
a7 (fs) 270.7

b1 (-) 0.427
b2 (fs) 36.9

~b3 (cm−1) 250
b4 (-) −0.0754
b5 (fs) 15.92
b6 (-) 0.0662
b7 (fs) 156.7

TABLE SIV. Fitting Parameters for λ = 400 cm−1.

Parameter (Unit) Value
a0 (-) 0.050754
a1 (-) −0.082
a2 (fs) 42.80

~a3 (cm−1) 222
a4 (-) −0.163
a5 (fs) 44.7
a6 (-) −0.2746
a7 (fs) 446.5

b1 (-) 0.8
b2 (fs) 19.5

~b3 (cm−1) 170
b4 (-) −0.0496
b5 (fs) 16
b6 (-) 0.0349
b7 (fs) 277
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SIV. TRANSFORMATION PARAMETERS θpl AND ∆pl UNDER FAST TRAPPING
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FIG. SII. (a1)–(d1): Time dependence of populations of localized states |l0〉 (solid line) and |l1〉 (dashed line) of the incoherently
driven and unloaded model dimer for different values of the reorganization energy. (a2)–(d2): Time dependence of the real
(solid line) and imaginary (dashed line) parts of the intersite coherence of the incoherently driven and unloaded model dimer
for different values of the reorganization energy. Both site populations and intersite coherences are measured in units of
I0 d

2
eg/(~γ)2. The excitation is suddenly turned on at t = 0. Dependence of the transformation parameters ∆px [(a3)–(d3)] and

θpx [(a4)–(d4)] between the localized basis and the preferred basis of the NESS on the trapping time constant τRC ∈ (1, 10) ps
for different values of the reorganization energy. Solid lines are computed using time traces of a driven and unloaded model
dimer at t = τRC, while squares emerge from the computation of the NESS using Eqs. (10) and (11) of the main text. The
scale on the abscissa (τRC) in (a3)–(d4) is logarithmic. Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18) of the main text]. The values of the reorganization energy are 20 cm−1 [(a1)–(a4)], 50 cm−1 [(b1)–(b4)], 200 cm−1

[(c1)–(c4)], and 400 cm−1 [(d1)–(d4)].
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