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1)Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2,
Czech Republic
2)Scientific Computing Laboratory, Center for the Study of Complex Systems,
Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade,
Serbia

SI. SECOND-ORDER RESPONSE WITHIN SEMICLASSICAL TREATMENT OF LIGHT–MATTER INTERACTION

In this section, we explain in greater detail why, when we study the second-order response, we can safely limit
ourselves to the subspace containing at most one excitation.

The full density matrix W (t) describing the combined system of aggregate excitations and environment can be
expanded in powers n of the exciting field

W (t) =

+∞∑
n=0

W (n)(t), where W (n)(t) ∝ En. (S1)

According to the expansion theorem of Ref. 1, the nth order contribution W (n)(t) may be expanded in terms of states
containing a definite number of excitations as follows

W (n)(t) =

n∑
n′=0

∑
κ′κ

|n′, κ′, t〉〈n− n′, κ, t| ρB(n, n′, κ, κ′, t). (S2)

Here, |n′, κ′, t〉 is a number state containing n′ excitations characterized by quantum numbers that are collectively
denoted as κ′, while its explicit time dependence stems from the time dependence of the exciting field. In that sense,
state |n′, κ′, t〉 is not normalized, but rather scales as En′ . The expansion coefficients ρB(n, n′, κ, κ′, t) are purely
environmental operators.

Using the expansion theorem, it can be shown that the second-order response is fully formulated in terms of the
following generating functions2

Y αβj =
〈
BjF̂

αβ
〉
, (S3)

Nαβ
ij =

〈
B†iBjF̂

αβ
〉
, (S4)

where

F̂αβ = exp

∑
jξ

αjξb
†
jξ

 exp

∑
jξ

βjξbjξ

 . (S5)

Y αβj is the generating function for (environment-assisted) optical coherences, while Nαβ
ij is the generating function for

(environment-assisted) singly excited-state populations and intraband coherences. A more elaborate analysis shows

that (environment-assisted) biexcitonic amplitudes,
〈
BiBjF̂

αβ
〉

, which also scale as O(E2), do not contribute to the

second-order response, so that they are omitted from further discussions.
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Let us now recall that the excitation annihilation operator Bj may be expanded in terms of number states so that
it manifestly connects subspaces accommodating different numbers of excitons3

Bj = |0〉〈1, j|+
∑
k
k 6=j

|1, k〉〈2, kj|+ . . . (S6)

Then,

Y αβj =

+∞∑
n=0

n∑
n′=0

∑
κ′κ

TrM {Bj |n′, κ′, t〉〈n− n′, κ, t|} TrB

{
F̂αβρB(n, n′, κ, κ′, t)

}
=

+∞∑
n=0

n∑
n′=0

∑
κ′κ

〈1, j|n′, κ′, t〉〈n− n′, κ, t|0〉 TrB

{
F̂αβρB(n, n′, κ, κ′, t)

}
+

+

+∞∑
n=0

n∑
n′=0

∑
κ′κ

∑
k
k 6=j

〈2, kj|n′, κ′, t〉〈n− n′, κ, t|1, k〉 TrB

{
F̂αβρB(n, n′, κ, κ′, t)

}
+ . . .

(S7)

We see that the summand containing 〈1, j|n′, κ′, t〉〈n − n′, κ, t|0〉 is nonzero iff n = n′ = 1, i.e., in the first order in
the exciting field. The summand containing 〈2, kj|n′, κ′, t〉〈n − n′, κ, t|1, k〉 is nonzero iff n′ = 2 and n = 3, i.e., in
the third order in the optical field. Therefore, the expansion of the excitation annihilation operator in number states

actually reflects the contributions to Y αβj that are linear, cubic, etc. in the exciting field, as predicted by the central

theorem of the DCT scheme.2 The fact that the environment has no impact on scaling relations is apparent in our
discussion. Up to the second order in the exciting field, contributions to Bj that involve a state containing more than
one particle do not contribute to the response.

In a similar vein,

B†iBj = |1, i〉〈1, j|+
∑
k

k 6=i,k 6=j

|2, ik〉〈2, jk|+ . . . (S8)

Combining Eqs. (S2), (S4), and (S8), we conclude that all contributions to B†iBj involving states that accommodate
more than a single excitation are at least of the fourth order in the exciting field, and, therefore, do not contribute to
the second-order response.

If we are to study the second-order response, we can limit our description to subspaces that contain up to one
excitation. On the other hand, as described in the main text, once we formulate the model Hamiltonian in the
subspace containing at most one excitation, we can consistently formulate the dynamics only up to the second order
in the exciting field.
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SII. DERIVATION OF THE EXACT EVOLUTION SUPEROPERATOR

Here, we present the derivation of the exact evolution superoperator for a weakly driven excitonic aggregate.
In the interaction picture, the total DM W (I)(t) of the combined system comprising the molecular aggregate, its

environment, and the radiation field, evolves according to

∂tW
(I)(t) = − i

~

[
H

(I)
M−B(t) +H

(I)
M−R(t),W (I)(t)

]
, (S9)

with the factorized initial condition W (I)(t0) ≡W (t0) given in the main text. Here, we define the interaction picture
with respect to the non-interacting Hamiltonian

H0 = HM +HB +HR, (S10)

so that for any operator O in the Schrödinger picture, the corresponding operator in the interaction picture with
respect to H0 reads as

O(I)(t) = U†0 (t, t0)OU0(t, t0), (S11a)

U0(t, t0) = exp

[
− i

~
H0(t− t0)

]
. (S11b)

The formal solution to Eq. (S9) is

W (I)(t) =

+∞∑
n=0

(
− i

~

)n ∫ t

t0

dτn· · ·
∫ τ2

t0

dτ1

[
H

(I)
M−B(τn) +H

(I)
M−R(τn), . . . ,

[
H

(I)
M−B(τ1) +H

(I)
M−R(τ1),W (t0)

]
. . .
]
.

(S12)

Let us now focus on the case of weak interaction with the radiation by keeping in Eq. (S12) only contributions that
contain no more than two interaction Hamiltonians HM−R. At the same time, as discussed in Sec. SI, this means that
we can safely reduce our description to the subspace containing at most one excitation and consequently make the

replacements Bj → |g〉〈j|, B†j → |j〉〈g| in the model Hamiltonian. The specific form of the initial condition, as well as
the fact that any nontrivial dynamics is ultimately induced by HM−R, enable us to separately treat different electronic
sectors (gg, eg, ge, and ee) of the total DM. By electronic sectors gg, eg, and ee of the total DM, we understand here
its parts that, after appropriate reductions, contain information on the ground-state population, optical coherences,
and excited-state populations and intraband coherences, respectively. After a straightforward analysis, we obtain the
following results for the eg sector

W (I)
eg (t) = − i

~

∫ t

t0

dτ U
(I)
M−B(t, τ)H

(I)
M−R(τ)W (t0), (S13)

for the gg sector

W (I)
gg (t) = W (t0)− i

~

∫ t

t0

dτ H
(I)
M−R(τ)W (I)

eg (τ)

+
i

~

∫ t

t0

dτ W (I)†
eg (τ)H

(I)
M−R(τ),

(S14)

and for the ee sector

W (I)
ee (t) =

∫ t

t0

dτ2

∫ τ2

t0

dτ1 U
(I)
M−B(t, τ2)U

(I)
M−B(τ2, τ1)

(
1

~2
H

(I)
M−R(τ1)W (t0)H

(I)
M−R(τ2)

)
U

(I)†
M−B(t, τ2)

+

∫ t

t0

dτ2

∫ τ2

t0

dτ1 U
(I)
M−B(t, τ2)

(
1

~2
H

(I)
M−R(τ2)W (t0)H

(I)
M−R(τ1)

)
U

(I)†
M−B(τ2, τ1)U

(I)†
M−B(t, τ2).

(S15)

In Eqs. (S13) and (S15),

U
(I)
M−B(s2, s1) = T exp

[
− i

~

∫ s2

s1

ds H
(I)
M−B(s)

]
, (S16)
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where T denotes the chronological time ordering. The result embodied in Eq. (S15) can be interpreted in terms of
double-sided Feynman diagrams.4 The two summands on the right-hand side of Eq. (S15) represent the two Liouville
pathways from |g〉〈g| to |e〉〈e|, which differ by the time order of the interactions with the bra and ket. These two

summands are complex conjugates of one another, so that W
(I)
ee (t) is a Hermitian operator.5 Therefore, in further

discussions, it will be enough to perform manipulations with the first summand only.
Let us note that the total number of excitations, which is given by the (total) trace of W (t) [or W (I)(t)], is conserved.

This is most easily proven by rewriting Eqs. (S15) and (S14) as differential equations.
The RDM containing excited-state populations and intraband coherences is obtained by performing partial traces

with respect to the radiation and the thermal bath

ρ(I)
ee (t) = TrB

{
TrR

{
W (I)
ee (t)

}}
. (S17)

Let us concentrate on reducing the first term on the right-hand side of Eq. (S15). The partial trace over radiation is
computed straightforwardly, since radiation operators enter Eq. (S15) only through the two HM−R terms. In more
detail,

1

~2
TrR

{
H

(I)
M−R(τ1)W (t0)H

(I)
M−R(τ2)

}
= A(I)(τ2, τ1)ρgB , (S18)

where the purely electronic operator A(I)(τ2, τ1) is defined as

A(I)(τ2, τ1) =
1

~2

∑
i,j

G
(1)
ij (τ2, τ1)

{
µ(I)
eg (τ1)

}
j
|g〉〈g|

{
µ(I)
ge (τ2)

}
i
. (S19)

In Eq. (S19), the sums over i and j are performed over Cartesian components of the electric field, whereas G
(1)
ij (τ2, τ1)

is defined in the main text. Therefore, in the limit of weak aggregate–radiation interaction, the radiation enters the
reduced dynamics of excited-state populations and intraband coherences only via its first-order correlation function,
as has already been demonstrated.6 Integrating over the bath degrees of freedom provides us with the second ingre-
dient governing the excitonic dynamics, which is the reduced evolution superoperator explicitly containing the two
interaction instants τ1 and τ2 with the radiation, as well as the observation instant t. Having taken partial trace
over radiation, we now expand each phonon propagator [Eq. (S16)] entering Eq. (S15) in powers of HM−B . Since the
averaging is performed over the canonical density matrix of the bath, Wick’s theorem ensures that only contributions
containing an even number of HM−B operators should be evaluated and that the final result is entirely expressed in
terms of the two-point (noninteracting) bath correlation function Cj(t) defined in the main text.7,8

To simplify further discussion, we concentrate on the following operator

w
(I)
ee,1(t, τ2, τ1) = U

(I)
M−B(t, τ2)U

(I)
M−B(τ2, τ1)A(I)(τ2, τ1)ρgBU

(I)†
M−B(t, τ2), (S20)

whose partial trace over bath has to be computed. The operator w
(I)
ee,1(t, τ2, τ1) describes the state of electronic

excitations and the environment at time t when we assume that the first interaction with the radiation takes place

at τ1 from the left, while the second interaction occurs at τ2 from the right. Upon expanding U
(I)
M−B in powers of

H
(I)
M−B , we obtain

w
(I)
ee,1(t, τ2, τ1) =

+∞∑
n=0

(
− i

~

)n
1

n!

+∞∑
m=0

(
− i

~

)m
1

m!

∫ t

τ2

dqn· · ·
∫ t

τ2

dq1

∫ τ2

τ1

dsm· · ·
∫ τ2

τ1

ds1

T
[
H

(I)
M−B(qn)× . . . H

(I)
M−B(q1)×

]
T
[
H

(I)
M−B(sm)C . . . H

(I)
M−B(s1)C

]
A(I)(τ2, τ1)ρgB ,

(S21)

where hyperoperators with superscritps × and C have the same meaning as in the main text. The index n controls the

order of expansion of the combination U
(I)
M−B(t, τ2) . . . U

(I)†
M−B(t, τ2), and the instants at which individual excitation–

environment interactions take place are denoted as q1, . . . , qn. Similarly, index m controls the order of expansion of

U
(I)
M−B(τ2, τ1), and the respective instants are s1, . . . , sm. We now use the explicit form of the excitation–environment

coupling

H
(I)
M−B(s1) =

∑
l1

V
(I)
l1

(s1)u
(I)
l1

(s1), (S22)
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where V
(I)
l1

(s1) is a purely electronic operator, while u
(I)
l1

(s1) is a purely environmental operator. Let us focus in the

following on the operator under sums and integrals in Eq. (S21). Since A(I)(τ2, τ1) is a purely electronic, while ρgB is
a purely environmental operator, we can write

T
[
H

(I)
M−B(qn)× . . . H

(I)
M−B(q1)×

]
T
[
H

(I)
M−B(sm)C . . . H

(I)
M−B(s1)C

]
A(I)(τ2, τ1)ρgB =∑

jn...j1

∑
lm...l1

T

[(
V

(I)
jn

(qn)u
(I)
jn

(qn)
)×

. . .
(
V

(I)
j1

(q1)u
(I)
j1

(q1)
)×]
×

× T
[
V

(I)
lm

(sm)C . . . V
(I)
l1

(s1)C
]
A(I)(τ2, τ1)︸ ︷︷ ︸

purely electronic

T
[
u

(I)
lm

(sm)C . . . u
(I)
l1

(s1)C
]
ρgB︸ ︷︷ ︸

purely environmental

,

(S23)

where, in each term of the sum, the hyperoperators from the outermost layer act on an operator that is factorized
into a purely electronic and purely environmental part. At this point, the following identity is useful

(V u)×OVOu =
1

2

(
V ×u◦ + V ◦u×

)
OVOu, (S24)

where OV and Ou are arbitrary operators such that V can act on OV only, while u can act on Ou only. The last
identity enables us to rewrite Eq. (S23) as follows

T
[
H

(I)
M−B(qn)× . . . H

(I)
M−B(q1)×

]
T
[
H

(I)
M−B(sm)C . . . H

(I)
M−B(s1)C

]
A(I)(τ2, τ1)ρgB =

1

2n

∑
jn...j1

∑
lm...l1

T
[(
V

(I)
jn

(qn)×u
(I)
jn

(qn)◦ + V
(I)
jn

(qn)◦u
(I)
jn

(qn)×
)
. . .
(
V

(I)
j1

(q1)×u
(I)
j1

(q1)◦ + V
(I)
j1

(q1)◦u
(I)
j1

(q1)×
)]
×

× T
[
V

(I)
lm

(sm)C . . . V
(I)
l1

(s1)C
]
A(I)(τ2, τ1)︸ ︷︷ ︸

purely electronic

T
[
u

(I)
lm

(sm)C . . . u
(I)
l1

(s1)C
]
ρgB︸ ︷︷ ︸

purely environmental

.

(S25)

Each term under multiple sums over js and ls has 2n summands and, in each of them, the hyperoperators from the
outermost layer can be written as

V
(I)
jn

(qn)σ̄nu
(I)
jn

(qn)σn . . . V
(I)
j1

(q1)σ̄1u
(I)
j1

(q1)σ1 ,

where σi ∈ {×, ◦}, ×̄ = ◦, and vice versa. Moreover, since all instants qn, . . . , q1 are certainly later than all instants
sm, . . . , s1, we can merge the two time-ordering signs (one ordering qs and the other ordering ss) into a single time-
ordering sign. Having all these transformations performed, we are left with

T
[
H

(I)
M−B(qn)× . . . H

(I)
M−B(q1)×

]
T
[
H

(I)
M−B(sm)C . . . H

(I)
M−B(s1)C

]
A(I)(τ2, τ1)ρgB =

1

2n

∑
jn...j1

∑
lm...l1

∑
σn...σ1

T
[
V

(I)
jn

(qn)σ̄n . . . V
(I)
j1

(q1)σ̄1V
(I)
lm

(sm)C . . . V
(I)
l1

(s1)C
]
A(I)(τ2, τ1)×

× T
[
u

(I)
jn

(qn)σn . . . u
(I)
j1

(q1)σ1u
(I)
lm

(sm)C . . . u
(I)
l1

(s1)C
]
ρgB .

(S26)

We have thus reduced the problem to the computation of the following trace over the environment

TrB

{
T
[
u

(I)
jn

(qn)σn . . . u
(I)
j1

(q1)σ1u
(I)
lm

(sm)C . . . u
(I)
l1

(s1)C
]
ρgB

}
. (S27)

It is clear that this trace may give a nontrivial result only when n + m is even, n + m = 2k, where k = 1, 2 . . . . Let
us now start from the simplest case n+m = 2, in which we face the following possibilities:

1. n = 2 and m = 0: environmental assistance is characteristic for the electronic subsystem in the excited-state
manifold

TrB

{
T
[
u

(I)
j2

(q2)σ2u
(I)
j1

(q1)σ1

]
ρgB

}
= θ(q2 − q1)δj2j1 · 22

(
δσ2,◦δσ1,◦C

r
j1(q2 − q1) + δσ2,◦δσ1,×iCij1(q2 − q1)

)
+

+ θ(q1 − q2)δj2j1 · 22
(
δσ2,◦δσ1,◦C

r
j1(q1 − q2) + δσ2,×δσ1,◦iC

i
j1(q1 − q2).

)
(S28)
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The corresponding contribution to the partial trace over environment of Eq. (S21) then reads as[
TrBw

(I)
ee,1(t, τ2, τ1)

]
n=2,m=0

= − 1

~2

∑
j

∫ t

τ2

dq2

∫ q2

τ2

dq1 ×

× V (I)
j (q2)×

(
Crj (q2 − q1)V

(I)
j (q1)× + iCij(q2 − q1)V

(I)
j (q1)◦

)
A(I)(τ2, τ1)

≡
−→
Wp(t, τ2)A(I)(τ2, τ1),

(S29)

which is the familiar form that has been obtained when the propagation is considered only within the excited-
state manifold.9

2. n = 0 and m = 2: environmental assistance is characteristic for the electronic subsystem in the state of optical
coherence

TrB

{
T
[
u

(I)
l2

(s2)Cu
(I)
l1

(s1)C
]
ρgB

}
= θ(s2 − s1)δl2l1Cl1(s2 − s1) + θ(s1 − s2)δl2l1Cl1(s1 − s2)

≡ δl1l2Cl1(|s2 − s1|).
(S30)

The corresponding contribution to the partial trace over environment of Eq. (S21) then reads as[
TrBw

(I)
ee,1(t, τ2, τ1)

]
n=0,m=2

= − 1

~2

∑
l

∫ τ2

τ1

ds2

∫ s2

τ1

ds1 V
(I)
l (s2)C Cl(s2 − s1)V

(I)
l (s1)C A(I)(τ2, τ1)

≡
−→
Wc(τ2, τ1)A(I)(τ2, τ1).

(S31)

3. n = 1 and m = 1: environmental assistance straddles over periods in which electronic subsystem is in different
states: it starts when the electronic subsystem is in the state of optical coherence, and ends when the electronic
subsystem is in the excited-state manifold; here, we obtain the elementary contribution to the so-called straddled
evolution

TrB

{
T
[
u

(I)
j1

(q1)σ1u
(I)
l1

(s1)C
]
ρgB

}
= δσ1,◦δj1,l1 · 2Cj1(q1 − s1). (S32)

Note that T sign in the last equation can safely be omitted, since we are sure that q1 ≥ s1. The corresponding
contribution to the partial trace over environment of Eq. (S21) then reads as[

TrBw
(I)
ee,1(t, τ2, τ1)

]
n=1,m=1

= − 1

~2

∑
j

∫ t

τ2

dq1

∫ τ2

τ1

ds1 V
(I)
j (q1)× Cj(q1 − s1)V

(I)
j (s1)C A(I)(τ2, τ1)

≡
−→
Wc−p(t, τ2, τ1)A(I)(τ2, τ1).

(S33)

The above analysis conducted in the lowest order of the perturbation expansion gives us basic building blocks from
which higher-order contributions are constructed. This is possible by virtue of the Wick’s theorem

TrB

{
T
[
u

(I)
j2k

(q2k) . . . u
(I)
j1

(q1)
]
ρgB

}
=
∑

a.p.p.

∏
a,b

TrB

{
T
[
u

(I)
jb

(qb)u
(I)
ja

(qa)
]
ρgB

}
, (S34)

which expresses the (equilibrium) expectation value of the product of 2k nuclear displacement operators u as a sum
over all possible pairings (a.p.p.) of products of k (equilibrium) expectation values of two nuclear displacement
operators. A similar identity also holds on the hyperoperator level, which is relevant to our discussion [see Eq. (S27)].
Namely, since all hyperoperators uπ, where π ∈ {×, ◦, C} are linear in nuclear displacement u, we can use Eq. (S34)
to establish the following identity

TrB

{
T
[
u

(I)
j2k

(q2k)π2k . . . u
(I)
j1

(q1)π1

]
ρgB

}
=
∑

a.p.p.

∏
a,b

TrB

{
T
[
u

(I)
jb

(qb)
πbu

(I)
ja

(qa)πa

]
ρgB

}
. (S35)

Equation (S35) provides us with a general recipe to compute the partial trace in Eq. (S27) and, eventually, evaluate
the contribution to Eq. (S21) in arbitrary perturbation order defined by values of n and m. The form of Eq. (S35)
suggests that all the contributions are indeed expressed in terms of the three elementary (lowest-order) contributions



7

that we have evaluated. However, we should still convince ourselves that all these contributions can be resummed
into the form of a time-ordered exponential that presented in the main body of the manuscript.

Since this demonstration is rather formal and not particularly insightful, we only make its sketch for n+m = 2k,
k ≥ 1. There, we have 2k+1 different possibilities for n and m. In the sketch, we make use of the so-called polynomial
expansion, which states that, for mutually commuting entities xc, xp, xc−p we have

(xc + xp + xc−p)
k =

∑
lc+lp+lc−p=k
lc,lp,lc−p≥0

k!

lc!lp!lc−p!
xlcc x

lp
p x

lc−p

c−p . (S36)

The commutativity in our case is ensured by the presence of the global time-ordering sign.

1. n = 2k, m = 0
The application of Wick’s theorem [Eq. (S35)] produces (2k − 1)!! terms, and it turns out that all of them are
the same. In essence, this follows from the fact that all integrals over q2k, . . . , q1 are over the same interval
[τ2, t] and that T sign enables us to permute at will the hyperoperators it affects. All the contributions contain
environmental assistance in the form characteristic for the electronic subsystem in the excited-state manifold.
Even though the Heaviside functions in Eq. (S28) order the integration variables in pairs, they do not enforce
the global order, so that T sign cannot be removed.

The factor 2−2k (appearing in front of sums by js and ls) is cancelled by the factor (22)k that emerges from k
factors of the type given in Eq. (S28). Then, the total prefactor is

1

(2k)!
· (2k − 1)!! =

1

k!
· 1

2k
,

where (k!)−1 is indicative of the k-th order in the expansion of an exponential, whereas (1/2)k compensates for
two equivalent time orderings in Eq. (S28). In Fig. 1 we give the corresponding diagrams for k = 2.

FIG. 1. Diagrams representing different contributions in the fourth-order in HM−B when n = 4 and m = 0. Their sum can be
understood as the square of the primitive diagram in Fig. 1(b) of the main body of the manuscript. For simplicity, here, we
omit information on the state of the electronic subsystem (|g〉 or |e〉).

2. n = 2k − 1, m = 1
Here, we have one environmental assistance that is mixed (straddled), as in Eq. (S32), and (k − 1) assistances
that are characteristic for the electronic system in the excited-state manifold, as in Eq. (S28). All the terms
produced by the application of Wick’s theorem again turn out to be the same. The factor 2−(2k−1) (appearing
in front of sums by js and ls) is cancelled by the factor (22)k−1 · 2 which stems from (k − 1) factors similar to
that in Eq. (S28) and one factor similar to that in Eq. (S32). The overall prefactor

1

(2k − 1)!
· 1

1!
· (2k − 1)!! =

1

2k−1
· k · 1

k!

is then combined with the appropriate term as follows. The factor (1/2)k−1 compensates for two equivalent time
orderings in each of (k − 1) factors analogous to Eq. (S28) (the straddled assistance, by its definition, features
a definite time ordering), factor k reflects the fact that there are k equivalent ways of choosing the straddled
building block (this is the polynomial coefficient k!/(lc!lp!lc−p!) for lc = 0, lp = k − 1, lc−p = 1), while (k!)−1

is again indicative of the k-th order in the expansion of an exponential. In Fig. 2 we give the corresponding
diagrams for k = 2.
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FIG. 2. Diagrams representing different contributions in the fourth-order in HM−B when n = 3 and m = 1. Their sum can
be understood as twice the product of the primitive diagrams in Figs. 1(b) and 1(c) of the main body of the manuscript. For
simplicity, here, we omit information on the state of the electronic subsystem (|g〉 or |e〉).

3. n = 2k − 2, m = 2
Here, we may have

(a) (k− 1) population-like assistances and 1 coherence-like assistance; the number of such terms, which are all
mutually identical, is

(2(k − 1)− 1)!! = (2k − 3)!!;

(b) (k − 2) population-like assistances and 2 straddled assistances; the number of such terms, which are all
mutually identical, is

(2k − 2)(2k − 3)(2(k − 2)− 1)!! = (2k − 2)(2k − 3)!!.

Of course, the total number of terms produced by the application of Wick’s theorem is (2k− 1)!!. Let us briefly
comment on the way how the prefactors combine.

(a) the prefactor 2−(2k−2) (appearing in front of sums over js and ls) is cancelled by the factor (22)k−1 stemming
from (k − 1) terms like that in Eq. (S28); the overall prefactor

1

(2k − 2)!
· 1

2!
· (2k − 3)!! =

1

2k
· k · 1

k!

is combined with the appropriate terms as follows. The factor (1/2)k compensates for two equivalent time
orderings in each of (k−1) factors analogous to Eq. (S28) and the remaining factor analogous to Eq. (S30);
factor k is again the polynomial coefficient k!/(lc!lp!lc−p!) for lc = 1, lp = k − 1, lc−p = 0;

(b) the prefactor 2−(2k−2) (appearing in front of sums over js and ls) is cancelled by the product (22)k−2 · 22

originating from (k − 2) factors like that in Eq. (S28) and 2 factors like that in Eq. (S32); in the overall
prefactor

1

(2k − 2)!
· 1

2!
· (2k − 2)(2k − 3)!! =

1

2k−2

(
k

2

)
1

k!
,

(1/2)k−2 compensates for two equivalent time orderings [Eq. (S28)], while
(
k
2

)
is the polynomial coefficient

k!/(lc!lp!lc−p!) for lc = 0, lp = k − 2, lc−p = 2.

In Figs. 3(a) and 3(b) we give the corresponding diagrams for k = 2.

In a similar manner, one can analyze the remaining terms in order 2k. The main result of such an analysis is the
presence of the factor 1/k!, as well as the corresponding polynomial factor k!/(lc!lp!lc−p!), in each of these terms.
Therefore, the resummation produces the time-ordered exponential that is presented in the main text.
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FIG. 3. Diagrams representing different contributions in the fourth-order in HM−B when n = 2 and m = 2. The diagram in
(a) corresponds to the contribution analyzed under point (a) of the discussion and can be understood as twice the product of
primitive diagrams in Figs. 1(a) and 1(b) of the main body of the manuscript. The two diagrams in (b) correspond to the
contributions analyzed under point (b) of the discussion and can be understood as the square of the primitive diagram in Fig.
1(c) of the main body of the manuscript. For simplicity, here, we omit information on the state of the electronic subsystem
(|g〉 or |e〉).

Finally, let us present the expression for the reduced evolution superoperator
←−
U (I)

red(t, τ2, τ1) that acts on the left (T
denotes antichronological time order)

←−
U (I)

red(t, τ2, τ1) = T exp
[←−
Wc(τ2, τ1) +

←−
Wp(t, τ2) +

←−
Wc−p(t, τ2, τ1)

]
, (S37a)

←−
Wc(τ2, τ1) = − 1

~2

∑
j

∫ τ2

τ1

ds2

∫ s2

τ1

ds1
CV

(I)
j (s1) Cj(s1 − s2) CV

(I)
j (s2), (S37b)

←−
Wp(t, τ2) = − 1

~2

∑
j

∫ t

τ2

ds2

∫ s2

τ2

ds1

(
Crj (s1 − s2) ×V

(I)
j (s1) + i Cij(s1 − s2) ◦V

(I)
j (s1)

)
×V

(I)
j (s2), (S37c)

←−
Wc−p(t, τ2, τ1) = − 1

~2

∑
j

∫ t

τ2

ds2

∫ τ2

τ1

ds1
CV

(I)
j (s1)× Cj(s1 − s2) ×V

(I)
j (s2). (S37d)

In Eqs. (S37), we define hyperoperators ×/◦/CV acting on the left (which is suggested by the position of the superscript)
by the following equalities valid for any operator O

O ×Vj = [O, Vj ] , (S38a)

O ◦Vj = {O, Vj} , (S38b)

O CVj = OVj . (S38c)
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SIII. DERIVATION OF THE REDFIELD EQUATION COMPRISING PHOTOEXCITATION

We start from the central result of our analysis

ρ(I)
ee (t) =

∫ t

t0

dτ2

∫ τ2

t0

dτ1
−→
U (I)

red(t, τ2, τ1)A(I)(τ2, τ1) + H.c. (S39)

and specialize to the case of excitation by a weak laser pulse. Taking time derivative of Eq. (S39), we obtain

∂tρ
(I)
ee (t) = − i

~
ρ(I)
eg (t)µ(I)

ge (t) · E(−)(t) +

∫ t

t0

dτ2

∫ τ2

t0

dτ1 ∂t
−→
U (I)

red(t, τ2, τ1)A(I)(τ2, τ1) + H.c. (S40)

The time derivative of the reduced evolution superoperator reads as

∂t
−→
U (I)

red(t, τ2, τ1) = −
∑
j

V
(I)
j (t)×

× T

{[∫ t−τ2

0

ds

(
Crj (s)

~2
V

(I)
j (t− s)× + i

Cij(s)

~2
V

(I)
j (t− s)◦

)
+

∫ t−τ1

t−τ2
ds

Cj(s)

~2
V

(I)
j (t− s)C

]
−→
U (I)

red(t, τ2, τ1)

} (S41)

If we now assume that the characteristic decay time of the bath correlation function Cj(t) is short compared to the
time scales of the dynamics we are interested in, we can formally set t− τ2 → +∞. Then, the second integral on the
right-hand side of Eq. (S41) is equal to zero, while in the first integral we can invoke Markovian approximation,10

which enables us to formally move hyperoperators V
(I)
j (t − s)×/◦ in front of the T sign. Transferring back to the

Schrödinger picture, we obtain

∂tρee(t) = − i

~
[HM , ρee(t)]−

i

~
ρeg(t)µge · E(−)(t) +

i

~
E(+)(t) · µegρ†eg(t)−

∑
j

V ×j

[
Λjρee(t)− ρee(t)Λ†j

]
, (S42)

where

Λj =

∫ +∞

0

ds
Cj(s)

~2
e−iHMs/~Vj eiHMs/~. (S43)

In an analogous manner, we obtain the following second-order equation for optical coherences

∂tρeg(t) = − i

~
[HM , ρeg(t)] +

i

~
µeg · E(+)(t)|g〉〈g| −

∑
j

VjΛjρeg(t). (S44)

Further manipulations towards the Redfield equation take place in the excitonic basis {|x〉}. These are quite
standard,10 and result in Eqs. (37) and (38) of the main text.
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SIV. EXCITATION BY WEAK INCOHERENT LIGHT: LEVEL OF QUANTUM OPTICAL MASTER EQUATIONS

Here, we demonstrate in more detail how the excitation by weak incoherent light should be handled on the level of

quantum optical master equations to produce the HEOM. We start from the general expression for ρ
(I)
ee (t) [Eq. (S39)]

in which we insert the following the radiation correlation function11

G
(1)
ij (τ2, τ1) = δij

~
6π2ε0c3

∫ +∞

0

dω
ω3

eβR~ω − 1
eiω(τ2−τ1) (S45)

to obtain

ρ(I)
ee (t) =

∫ t

t0

dτ2

∫ τ2

t0

dτ1
−→
U (I)

red(t, τ2, τ1)
1

~2

[
µ(I)
eg (τ1) · µ(I)

ge (τ2)
] ~

6π2ε0c3

∫ +∞

0

dω ω3 nBE(ω, TR) eiω(τ2−τ1)+

+ H.c.

(S46)

The radiation correlation function in Eq. (S45) is computed for the three-dimensional photon gas at temperature

TR = (kBβR)−1, and nBE(ωx, TR) =
(
eβR~ωx − 1

)−1
.

As is usual when the interaction of matter with electromagnetic radiation is treated on the quantum optical level,12

further developments should be conducted in the eigenbasis of HM , i.e., in the excitonic basis {|x〉}, whose basis
vectors satisfy HM |x〉 = ~ωx|x〉. Introducing time intervals t1 = τ2 − τ1 and t2 = t − τ2, and transferring to the
excitonic basis, we obtain

ρ(I)
ee (t) =

1

~2

∑
x̄x

(µx̄ · µ∗x)

∫ t−t0

0

dt2 eiωx̄(t−t2−t0) e−iωx(t−t2−t0)

∫ +∞

0

dω
~

6π2ε0c3
ω3 nBE(ω, TR)×

×
∫ t−t0

0

dt1 ei(ω−ωx̄)t1
−→
U (I)

red(t, t− t2, t− t2 − t1)|x̄〉〈x|+

+ H.c.

(S47)

Further steps are inspired by the Weisskopf–Wigner approximation.13 Namely, the integral over t1 contains the phase
factor ei(ω−ωx̄)t1 that exhibits oscillatory behaviour unless ω ≈ ωx̄. By employing this approximation in Eq. (S47),
the integral over ω reduces to ∫ +∞

0

dω eiωt1 = πδ(t1) + iP
(

1

t1

)
, (S48)

where P denotes the Cauchy principal value. In the spirit of Weisskopf–Wigner approximation, the part containing
the principal-value sign is neglected, and the integration over t1 is performed to arrive at

ρ(I)
ee (t) =

∑
x̄x

(µx̄ · µ∗x)

∫ t

t0

dτ2
ω3
x̄

6πε0~c3
nBE(ω, TR)

−→
U (I)

red(t, τ2, τ2) eiωx̄(τ2−t0)|x̄〉〈x| e−iωx(τ2−t0)+

+ H.c.

(S49)

where we have also restored the interaction instant τ2 as the integration variable. It is now apparent that the quantum-
optical limit is intimately connected to the white-noise model considered in the main text. In both cases, the coherence
time of the radiation is assumed to be negligible compared to other relevant time scales in the problem, so that both
interactions with the radiation take place at the same instant τ2.

The Hermitian conjugate of the first summand in the last equation is easily calculated by noting that the exact

reduced propagator
−→
U (I)

red(t, τ2, τ2), which actually propagates only the excited-state sector of the reduced density
matrix, satisfies

A
←−
U (I)

red(t, τ2, τ2) =
−→
U (I)

red(t, τ2, τ2)A, (S50)

for arbitrary purely electronic operator A. Introducing the spontaneous emission rate Γx from excitonic state |x〉

Γx =
1

4πε0

4ω3
x |µx|

2

3~c3
, (S51)
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the final result for the excited-state sector of the RDM in the interaction picture reads as

ρ(I)
ee (t) =

∫ t

t0

dτ2
−→
U (I)

red(t, τ2, τ2)×

×
∑
x̄x

[
µx̄ · µ∗x
|µx̄|2

1

2
Γx̄nBE(ωx̄, TR) +

µx̄ · µ∗x
|µx|2

1

2
ΓxnBE(ωx, TR)

]
eiωx̄(τ2−t0)|x̄〉〈x| e−iωx(τ2−t0).

(S52)

One can now formulate in the usual manner the HEOM that replaces Eq. (S52). In doing so, we immediately realize
that only the equation of motion for RDM has the source term describing the generation of excitations from the
ground state, while ADMs do not possess such a term. In greater detail, the interaction-picture ADM labeled by
vector n assumes the form

σ(I)
ee,n(t) =

∫ t

t0

dτ2 T

∏
j

∏
m

[∫ t

τ2

ds e−µj,m(t−s)

(
i
crj,m
~2

V
(I)
j (s)× −

cij,m
~2

V
(I)
j (s)◦

)]nj,m

−→
U (I)

red(t, τ2, τ2)

×
×
∑
x̄x

[
µx̄ · µ∗x
|µx̄|2

1

2
Γx̄nBE(ωx̄, TR) +

µx̄ · µ∗x
|µx|2

1

2
ΓxnBE(ωx, TR)

]
eiωx̄(τ2−t0)|x̄〉〈x| e−iωx(τ2−t0)

(S53)

while its equation of motion reads as

∂tσee,n(t) = − i

~
[HM , σee,n(t)]−

∑
j

∑
m

nj,mµj,m

σee,n(t)

+ δn,0
∑
x̄x

µx̄ · µ∗x
|µx̄|2

1

2
Γx̄nBE(ωx̄, TR)|x̄〉〈x|+ δn,0

∑
x̄x

µx̄ · µ∗x
|µx|2

1

2
ΓxnBE(ωx, TR)|x̄〉〈x|

+ i
∑
j

∑
m

[
Vj , σee,n+

j,m
(t)
]

+ i
∑
j

∑
m

nj,m

(
cj,m
~2

Vjσee,n−j,m
(t)−

c∗j,m
~2

σee,n−j,m
(t)Vj

)
.

(S54)

In Eq. (S54), the generation of excited-state populations and intraband coherences from the ground state is described
by the source terms containing excitonic dipole moments, spontaneous emission rates, and photon occupation numbers.
The rate at which the population of excitonic state |x〉 is generated from the ground state assumes the familiar form

(∂tnxx(t))source = ΓxnBE(ωx, TR), (S55)

where the spontaneous emission rate Γx is multiplied by the Bose–Einsten factor, which is characteristic for the
absorption of one photon of energy ~ωx. The rate at which the intraband coherence between excitonic states |x̄〉 and
|x〉 (x̄ 6= x) is generated from the ground state contains factors µx̄ ·µ∗x describing the alignment of the corresponding
transition dipole moments

(∂tnx̄x(t))source =
µx̄ · µ∗x
|µx̄|2

1

2
Γx̄nBE(ωx̄, TR) +

µx̄ · µ∗x
|µx|2

1

2
ΓxnBE(ωx, TR). (S56)

Interestingly, these source terms are present exclusively in the equation for the RDM, as indicated by the presence
of the Kronecker delta δn,0. At first sight, this is very different from the description of the light–matter interaction
on the quantum-optical level in, e.g., Ref. 14, which is inspired by the combined Born–Markov–HEOM approach
developed in Ref. 15. There, each level of the hierarchy contains source terms similar to the ones we encounter in
Eq. (S54) on the level of the RDM. Moreover, the quantum-optical source terms in Ref. 14 also feature the radiative
recombination terms, which deplete excited-state populations and increase the ground-state population.

The reason for such differences lies in the fact that our treatment of the photoexcitation process starts from the
unexcited system and is consistently up to the second order in the exciting field. Within our approximations, the
ground-state population is always close to 1, while the excited-state populations are at least quadratic in the weak
exciting field and are much smaller than 1, compare to the scaling laws under semiclassical light–matter interactions
[Eqs. (13)] presented in the main text. We have already used similar arguments in the main text to transform the
HEOM that does not take into account scaling laws to the HEOM that is consistently up to the second order in the
optical field. Here, on the quantum-optical level, the generation rate of excited-state populations, Eq. (S55), implicitly
contains our assumption that, at all times, the ground-state population differs from 1 by a quantity that is at least
quadratic in the exciting field. Similar terms for higher-tier ADOs are absent in our treatment simply because their
ground-state expectation values are approximately 0 at all times. In a similar vein, our treatment cannot capture
radiative recombination from excited states because that process is at least of the fourth order in the field.
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